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Abstract

Melanoma is considered to be the most aggressive form of skin can-
cer. Due to the similar shape of malignant and benign cancerous lesions,
doctors spend considerably more time when diagnosing these findings. At
present, the evaluation of malignancy is performed primarily by invasive
histological examination of the suspicious lesion. Developing an accurate
classifier for early and efficient detection can minimize and monitor the
harmful effects of skin cancer and increase patient survival rates. This
paper proposes a multi-class classification task using the CoAtNet archi-
tecture, a hybrid model that combines the depthwise convolution matrix
operation of traditional convolutional neural networks with the strengths
of Transformer models and self-attention mechanics to achieve better gen-
eralization and capacity. The proposed multi-class classifier achieves an
overall precision of 0.901, recall 0.895, and AP 0.923, indicating high per-
formance compared to other state-of-the-art networks.
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1 Introduction
Artificial intelligence (AI) is emerging to assist healthcare professionals with
routine tasks such as removing noise, analysing images or reading medical re-
ports. (Hamet & Tremblay 2017) In deep learning, currently the most widely
adopted AI technique, computer algorithms learn using backpropagation to pre-
dict outcomes based on large data sets. (Albawi et al. 2017) The efficiency of
these methods has improved dramatically in recent years and can now be found
in areas ranging from computer-aided diagnostics (CADx) to online shopping to
autonomous vehicles. However, deep learning tools also raise troubling questions
because they solve problems in ways that humans cannot always observe. (Wang
et al. 2020, Holzinger et al. 2019) There is a growing call among researchers and
institutions to clarify the basis on which artificial intelligence makes decisions.
(Kvak et al. 2022, Amann et al. 2020, Samek & Müller 2019)

The US Food and Drug Administration (FDA) recently outlined ten guid-
ing principles that should be the cornerstone for the development of clinically
applicable artificial intelligence. (FDA 2021) These guiding principles can help
support the introduction of objective, safe and effective medical devices to the
market. Beyond monitoring or defining the correct use, the core principles in-
clude many practices that have proven successful in other sectors; however, the
greatest emphasis is on the so-called explainability of predictions (XAI, explain-
able artificial intelligence), which limits the risk of clinical bias. (Ghassemi et al.
2021)

2 Background
One of the most common methods used to identify melanoma is the ABCD rule
which was introduced in 1985. (Nachbar et al. 1994) The acronym stands for
Asymmetry, Borderline Irregularity, Changes in Color and Diameter. In 2004,
the letter E was added to the ABCD acronym to stand for Evolving. (Jensen &
Elewski 2015) Each criterion has certain features that are recognized to distin-
guish between benign and malignant melanoma. In addition, the method failed
to recognize certain malignant nevi in their early stages. (Carli et al. 2002, Liu
et al. 2005)

Melanoma is less common than other types, but it is the most dangerous
form of skin cancer because it can spread quickly to other parts of the body.
(Coit et al. 2009) It results from neoplastic proliferation of melanocytes. Ma-
lignant melanoma predominantly affects the skin, but can also affect eyes, ears,
leptomeninges, and the mucous membranes of the mouth or genital tract. (Bas-
tian 2014) The incidence of melanoma is increasing, affecting mainly the light
skin population. (Matthews et al. 2017, Rigel et al. 1996) The pathophysiol-
ogy of melanoma development is not yet clearly understood. (Hida et al. 2020)
Multiple pathogenetic mechanisms of melanoma development are hypothesized.
Melanoma develops not only on sun-exposed skin, where UV radiation is the
main pathogenetic factor, but also in body parts that are relatively protected
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Figure 1: The delay-adjusted incidence and observed incidence of melanoma by
age and gender in the United States between 1975 and 2011.

from radiation. (Apalla et al. 2017, Coit et al. 2009) When melanoma is sus-
pected, it is important to biopsy the suspicious lesion on the skin or mucosa
(excision with a 1-3 mm margin of tissue) and subsequent histological examina-
tion. (Bastian 2014)

3 Computational approach
CADx approaches based on deep learning and computer vision may represent
an effective and, above all, affordable alternative to invasive histological exam-
ination. (Kassani & Kassani 2019) Applications based on convolutional neural
networks (CNN) show promising results in medical image detection, classifica-
tion and segmentation. (Li et al. 2014, Anwar et al. 2018) High accuracy is now
achieved in interstitial lung disease classification (Shen et al. 2015) or in the
detecion of colorectal adenomas and neoplastic lesions. (Yu et al. 2016) Many
attempts have been made in the literature to improve the performance of CNN,
either by using optimization methods to select significant features or by using
image preprocessing techniques before the classification step. (Thoma 2017)

3.1 Proposed model arcitecture
CoAtNet offers a unique combination of depthwise convolutions (1) and
self-attention (2) to allow fast and accurate advancement for large-scale im-
age recognition and classification. The proposed architecture is based on the
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observation that CNNs tend to exhibit improved generalization (i.e., the differ-
ence in performance between training and testing) due to their inductive bias,
whereas self-attention models tend to show greater capacity (i.e., the ability to
fit large-scale training data). (Dai et al. 2021)

Figure 2: Overview of the used CoAtNet model.

(1) is a type of convolution operation where we use one convolution filter for
each input channel. (Tan & Le 2019) Unlike spatially separable convolutions,
depthwise convolutions work with kernels that cannot be split. (Guo et al. 2019)
In a conventional 2D convolution performed over multiple input channels, the
filter is as deep as the input and allows us to arbitrarily mix channels to generate
individual features in the output. (Chang & Sha 2016) In contrast, depthwise
convolutions maintain each channel separately. We can express this with the
formula below:

yi =
∑

j∈L(i)

wi−j ⊙ xj (1)

(2) has become widespread technique adopted in natural language processing
(NLP), with the fully-attentional Transformer model having largely replaced
recurrenr neural networks (RNN) and being used in state-of-the-art language
understanding models such as GPT, BERT, and XLNet. This technique allows
the receptive field to be entire spatial locations, and computes weights based on
renormalized pairwise similarity between pairs: if each pixel in the feature map
is treated as a random variable and paring covariances are calculated, the value
of each predicted pixel can be enhanced or weakened based on its similarity to
other pixels in the image. The participating target pixels are the weighted sum
of the values of all pixels, where the weights represent the correlation between
each pixel and the target pixel. This can be represented by the following formula:

yi =
∑
j∈G

exp
(
x⊤
i xj

)∑
k∈G exp

(
x⊤
i xk

)︸ ︷︷ ︸
Ai,j

xj (2)
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4 Dataset
The development of robust CADx systems for the automated diagnosis of skin
lesions is hindered by the small size of clinically evaluated dermatoscopic im-
age datasets available. (Garg et al. 2021) We assembled dermatoscopic images
from various publicly available repositories while maintaining a representation
of different populations, acquired and stored by different modalities.

The final dataset consists of 6,826 dermatoscopic images, representative of all
important diagnostic categories in the field of various lesions: actinic keratoses,
basal cell carcinoma, benign keratosis-like lesions, dermatofibroma, melanoma,
nevus, and vascular lesions (angiomas, angiokeratomas, pyogenic granulomas,
and hemorrhages). For a fraction of the images (∼50%), the ground truth was
determined by histopathological examination, while in the remaining images
the finding was decided by expert consensus or confirmed by in vivo confocal
microscopy. A total of 300 images were extracted from the dataset as a test
set (100 melanoma, 100 non-melanoma skin cancer, 100 benign skin lesions).
The remaining 6,526 dermatology images were split between the training and
validation set in an 80/20 ratio.

Figure 3: Examples of melanoma at different stages represented in the training
set.

4.1 Data augmentation
Data augmentation increases the size of the input training data along with the
regularization of the model, thus improving the generalization of the training
model. (Mikołajczyk & Grochowski 2018) It also helps to create new train ex-
amples by randomly applying different transformations to the available dataset
to reflect the noise in the real data. (Shorten & Khoshgoftaar 2019, Elgendi
et al. 2021) In this study, we applied transformations involving random rota-
tions (<= 0.25), modifications in contrast (0.9-1.1) and brightness (0.9-1.1),
zoom (<= 0.25), and saturation (0.9-1.1). The extension of validation set was
not investigated.
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Class No. of images Precision Recall AP

Average model performance 6,826 0.901 0.895 0.923
Actinic keratoses 332 0.786 0.821 0.772
Basal cell carcinoma 514 0.880 0.922 0.919
Benign keratosis-like lesion 1,099 0.894 0.877 0.903
Dermatofibroma 115 0.875 0.913 0.944
Melanoma 1,563 0.870 0.875 0.908
Nevus 3,061 0.935 0.913 0.958
Vascular lesions 142 1.000 0.931 0.995

Table 1: CoAtNet classifier performance on the used dataset.

5 Classifier performance
The classification performance of the proposed model for multi-class problem
was evaluated for each component and the average classification performance
of the model was calculated. Table 1 includes the precision (3) and recall (4)
calculated based on the following equations below:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

For specific experiments and given that there is a class imbalance problem,
the most reliable metric is the model average accuracy metric, while given that
the accuracy is high, the second most important metric is the recall metric for
individual classes. (Japkowicz & Stephen 2002) This is due to the importance of
correctly identifying true cases that are malignant. AP (Average Precision) (5)
summarizes a precision-recall curve as the weighted mean of precisions achieved
at each threshold (Yilmaz & Aslam 2006), with the increase in recall from the
previous threshold used as the weight:

AP =
∑
n

(Rn −Rn−1)Pn (5)

5.1 Visualizing model predictions
Despite the classifier showing impressive results on standard metrics, from a
clinical perspective, it is important for us to determine whether features relevant
to skin lesion detection and analysis were extracted during CoAtNet training
using backpropagation. (Payer et al. 2019) As mentioned in the chapter 1
Introduction, medical devices should not serve as "black boxes" but need to
provide additional information about how the model arrived at its predictions.
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(England & Cheng 2019, Amann et al. 2020, Samek & Müller 2019) Gradient-
weighted Class Activation Mapping (Grad-CAM) is a method that uses gradient
extraction from the last convolutional layer of a neural network to indicate the
pixels that contribute most to the model output and the predicted probability of
an image belonging to a predefined class. (Selvaraju et al. 2017) The resulting
activation map can be plotted over the original image and can be interpreted as
a visual tool to identify the regions that the model predicts whether an image
belongs to a particular class. (Selvaraju et al. 2017, Panwar et al. 2020)

Figure 4: Grad-CAM activation heatmap visualization from CoAtNet model on
real-world test data.

5.2 Model performance on test data
The precision-recall curve shows the trade-off between precision and recall for
different thresholds. (Buckland & Gey 1994) A high area under the curve rep-
resents both high recall and high precision, with high precision associated with
low False Positive cases and high recall associated with low False Negative cases.
(Boyd et al. 2013) The combination of the Figure 4 and Figure 5 for the test
set suggests that the model learned appropriate features for classification across
malignant and benign lesions from a limited dataset.

6 Conclusions
In this study, we classified nine skin lesions with a particular focus on melanoma,
which, although not as prevalent, is responsible for three-quarters of skin cancer
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Figure 5: (a) Precision-Recall curve for Melanoma class. (b) Confusion matrix
showing the results on the compiled 3-class test set.

related deaths. The classification of melanoma was performed using no lesion
segmentation or complex image preprocessing. The proposed method is based
on the state-of-the-art CoAtNet architecture, which incorporates the advan-
tages of depthwise convolution and self-attention mechanism. Considering the
necessity of large-scale data for efficient training, we applied data augmentation
techniques to the existing dataset. Evidence from the exploratory analysis shows
that the proposed approach significantly outperforms state-of-the-art models by
achieving model average precision of 0.901, recall 0.895 and AP 0.923.
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