Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2022 d0i:10.20944/preprints202205.0259.v1

Article
Dark matter in a galaxy as vacuum polarization

Sergey Cherkas *(70000-0002-6132-3052 and Vladimir Kalashnikov %>*(20000-0002-3435-2333

1
2

Institute for Nuclear Problems, Bobruiskaya 11, Minsk 220006, Belarus; cherkas@inp.bsu.by

Department of Physics, Norwegian University of Science and Technology, Hegskoleringen 5, Realfagbygget,
NO-7491, Trondheim, Norway; vladimir.kalashnikov@ntnu.no

*  Correspondence: cherkas@inp.bsu.by

1t These authors contributed equally to this work.

Abstract: We considered a vacuum polarization around a massive object in the eikonal approximation
and found two types of vacuum polarization. The first type has the equation of state similar to
radiation and can produce a halo that increases the rotation velocity of a test particle with a radial
distance. The second type of vacuum polarization has a more complicated equation of state. As a static
physical effect, it produces renormalization of the gravitational constant. Besides, we demonstrate
that a nonstationary polarization of the second type caused by a swift increase of the galactic nuclei
mass results in a gravitational potential looking like a dark matter halo.
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1. Introduction

Among the various issues of combining general relativity (GR) and quantum mechanics, one
encounters the problems of the vacuum energy and the existence of black holes. The first problem is to
explain why zero-point vacuum energy, if it is real, does not influence universe expansion (see, e.g., [1]
and references herein). The horizon of a black hole leads to loss of unitarity and information (see, e.g.,
[2,3] and references herein), which prevents the definition of a pure quantum state.

On the other hand, the basis of GR is a notion of manifold [4], i.e., a metric space, which could be
covered by the coordinate maps. When a concrete space-time possessing some symmetry is considered,
one intends to introduce a system of coordinates allowing maximal covering of this particular manifold.
For instance, the Schwarzschild solution describes the only region in front of the horizon, and one
has to introduce the Kruscal coordinates to cover the complete domain [5]. Nevertheless, one could
admit an opposite point of view: restricting manifold by sewing all the black hole horizons by some
coordinate transformation. This approach is similar to a case when a man finds a hole in trousers at a
knee. In such a case, he steps back a little from the hole border and then subtends it into a node with
the help of sewing. Such a way leads to the conformally-unimodular metric [6], where the compact
astrophysical objects look as the nonsingular balls -“eicheons” [7]. At the same time, the vacuum
energy problem could be partially solved in the conformally-unimodular metric if one builds a gravity
theory admitting an arbitrary choice of the energy density level [6]. That is possible because the
equations for evolution of the Hamiltonian H# and the momentum constraints P admit not only the
trivial solution H = 0, P = 0, but also H = const ,’P = 0. The constant compensates for the main
part of the vacuum energy density proportional to the Planck mass in the fourth degree. Residual
energy density, remaining after omitting the main part of the vacuum energy density, is some kind of
dark energy and results in a cosmological picture containing a period of linear evolution in cosmic
time [8,9] changed by the late accelerated expansion.

Both dark energy and dark matter are unknown mystical substances appearing in the modern
cosmology and astrophysics [10,11]. Dark matter appears not only at the cosmological scales but
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also at the galaxy size ones (kPc). The last is the smallest scale at which dark matter was observed.
Sometimes the dark energy is associated with the vacuum energy, but the dark matter is expected to be
some kind of an actual matter weakly interacting with the known particles of the standard model [12].
Nevertheless, there are attempts to explain the dark matter by a vacuum polarization induced by the
gravitational field. Heuristic models of vacuum polarization like [13-15] which demand antisreaning
or dipolar fluid [16], or anti-gravitation [17] are of interest. As for the conventional renormalization
procedure of the quantum field theory applied to vacuum energy near a massive object [18-22], it
leads to modification of the gravitational potential only at small distances that seems unobservable.

The outline of this paper is as follows. In Section 1, we argue the necessity of considering a
vacuum polarization from a cosmological point of view and explain that the conformally-unimodular
metric is needed to avoid the main part of vacuum energy. Section 2 contains a perturbation formalism
in the conformally-unimodular metric, which is required to introduce a vacuum polarization as some
media, i.e., “ether”. The eikonal approximation is used in section 3 to obtain the vacuum energy density
and pressure of a quantum scalar field by summation of the contributions of the virtual distorted plane
waves. The expression for a vacuum equation of state is obtained. In Section 4, the first type of vacuum
polarization, possessing a radiation equation of state, is used in the Tolman-Volkov-Oppenheimer
(TOV) equations for two substances to obtain a dark halo. In Section 5, the second type of vacuum
polarization is considered. We considered a vacuum polarization around a massive object in the
eikonal approximation and found two types of vacuum polarization. The first type has the equation of
state similar to radiation and can produce a halo that increases the rotation velocity of a test particle
with a radial distance. The second type of vacuum polarization has a more complicated equation of
state. As a static physical effect, it produces renormalization of the gravitational constant. Besides,
we demonstrate that a nonstationary polarization of the second type caused by a swift increase of the
galactic nuclei mass results in a gravitational potential looking like a dark matter halo.

2. A spatially uniform universe in the conformally-unimodular metric

A class of conformally-unimodular metric is defined as [6]
ds? = guudxtdx’ = a® (1 — 9, P™)* di? — v;j(dx’ + N'd) (dx + N'dyp), 1)

where x# = {5, x}, 11 is a conformal time, 7;; is a spatial metric, a = 7176 is a locally defined scale
factor, and y = det ;;. The spatial part of the interval (1) looks as

di? = fyijdxidxj = a*(y, x)f?ijdxidxj, (2)

where ¥;; = 'yij/ a? is a matrix with the unit determinant. The interval (1) is similar formally to the
ADM one [23], but the lapse function is taken in the form a(1 — 9,,,P™), where P™ is a three-dimensional
vector, and 9, is a conventional partial derivative. In the gravity theory [6] admitting arbitrary choice
of the energy density level there are the Lagrange multipliers P, N (shift function), and three triads
e” to parametrize the spatial metric y;; = e?e?. Such a theory [6] is known as the five vectors theory
(FVT) of gravity. In contrast to GR, where the lapse and shift functions are arbitrary, the restrictions
0y (0, N™) = 0 and 9, (9, P") = 0 arise in FVT. The Hamiltonian H and momentum P; constraints in
the particular gauge P' = 0, N' = 0 obey the constraint evolution equations [6]:

oy =0; (77P;), 3)
9y Pi = s, @

which admits adding some constant to H. Thus, the constraint H is not necessarily to be zero, but
H = const is also allowed.
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Let’s consider a spatially uniform, an isotropic and flat universe with the metric
ds*> = a(y)?(dy* — dx?). )
The Friedmann equations takes the form [8,24,25]
M; 2% — 1ez”‘o/z = const (6)
P P 2 B ’
lX// + a/Z _ M;ZEZa(p _ 3P), (7)

where a(17) = loga(n). Here and everywhere further, the system of units 1 = ¢ = 1 is used as well as

the reduced Planck mass M, = 4/ ﬁ is implied. According to FVT [6], the first Friedmann equation
(6) is satisfied up to some constant, and the main parts of the vacuum energy density and pressure

K
Po = (Nboson - Nferm)lwnéig};ﬁ/ 8)
1
Po = gpv )

do not contribute to the universe expansion because the constant in (6) compensates the vacuum
energy density, whereas there is no a vacuum contribution in Eq. (7) by virtue of the equation of state
(9). In the formula (8), the UV cut-off k;;5x and the difference between bosonic and fermionic degrees of
freedom of the quantum fields appear since the zero-point stress-energy tensor is an additive quantity
[26]. Here, we do not consider the supersymmetry hypotheses [27] due to absence of evidence of the
supersymmetric particles to date.

Other contributors to the vacuum energy density are the terms depending on the derivatives
of the universe expansion rate [9,24,25,28]. They have the right order of p, ~ M%HZ, where H is the
Hubble constant, and allow explaining the accelerated expansion of universe. Then, the energy density
and pressure are [9,24,25,28]:

a2 M3(2+ Ns)So (1 1
py - ﬁMIZ?(Z + NSC)SOI p-() == pa—é <211/2 - 3(1”(1) ’ (10)
where, 5 = K Egs. (10) include the number of minimally coupled scalar fields N, plus two,

8m2MZ "
because the gravitgtional waves give two additional degrees of freedom [24], whereas the massless
fermions and photons do not contribute to (10) [24].
The residual vacuum energy density and pressure (10) lead to the accelerated universe expansion,
which allows finding a momentum UV cut off

12Mp
kmax = ———=—.
v2 + N

from the measured value of the universe decceleration parameter and other cosmological observations
[9,24].

(11)
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3. Perturbations under uniform background in conformally-unimodular metric

Below, the scalar per’curbations1 [29]

3 o
ds* = a(y, x)? (d;yZ - ((1 +% Y 0% F(n, x)) Sij — aiajF(n,x)> dxldx]> , (12)
m=1

of the conformally-unimodular metric (1) will be considered, where the perturbations of the locally
defined scale factor are expressed through a gravitational potential &:

aly,x) = &0 x 0 (14 O (y, %), (13)
A stress-energy tensor could be written in the hydrodynamic approximation

Ty = (p + p)uptty — p Suv- (14)

The perturbations of the energy density p(17,x) = p(1) + ép(n,x) and pressure p(n,x) = p(y) +
dp(n, x) are considered around the spatially uniform values. Let us introduce new variables

o(n,x) = a*(n,%)p(y,x), (15)
I(y,x) = a*(n,%)p(1, x) (16)

for the reasons which will be explained below. The perturbations of (15), (16) around the uniform
values can be written now as p(17,x) = e*o() + 5p(y,x), TI(57,x) = 4D p(y7) + 6T1(57,x). The
4-velocity u is represented in the form of

W= et U0 e () — a(y x)), Sy LY
' TNV S ey ST A @) Y ey (17)

where v(#, x) is a scalar function. Expanding all perturbations into the Fourier series dp(1,x) =
Y 69k (7)e**... etc. results in the equations for the perturbations:

—6D} + 60/ Dy + K*Ff, + 13/?%62“ Zi;vk,- =0, (18)
184/ @), — 6(K* + 302Dy + k*Fy + ;Z%em Z&pki =0, (19)
i
—12®;, — 3(F/ +24'F) + k*F; = 0, (20)
—9(®} 4 2a' D)) — 9(20" +20"% + K*) Dy + K*F — 1\?1,%;62“ (; 3611, — 5pki> =0, (21)

where index i denoting kind of a substance is introduced. It is remarkable that, as a result of the choice
of the variables (15), (16), (17), the values p and p do not appear in the system (18)-(21). This allows
avoiding an influence of the large uniform energy density and pressure (8), (9) on the evolution of
perturbation. Egs. (18), (19) are consequences of the Hamiltonian and momentum constraints, while

1 We consider only scalar perturbations, because vector and tensor perturbations do not perturb the matter.
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Egs. (20), (21) are equations of motion. For consistency of the constraints with the equations of motion,
every kind of fluid has to satisfy continuity and the Euler equations

o' (8px; — 30T1x;) — (3TL; — ;) (P} — 4Pke) + 4Dy — 54, + kv =0, (22)
q)k(pi — 31_11‘) —+ 5Hki + U;a- =0. (23)

4. Vacuum as a medium: the eikonal approximation for quantum fields

Generally, a vacuum could also be considered as some fluid, i.e., “ether” [25,28], but with some
stochastic properties along with the elastic ones [30]. Here we will be interested in its elastic properties
only. In Refs. [25,28] sound speed of the scalar waves of vacuum polarization ¢ = 5:—877; was
introduced, where p, and p, are given by (10), but it was the too heuristic picture. Here we provide
the actual calculations of the vacuum density and pressure on the curved background in the eikonal
approximation, which has a straightforward sense: in the Minkowsky’s space-time, the virtual plane
waves penetrate space-time, and to obtain the vacuum energy density, we must summarize the
contributions of the every wave. In the curved space-time, we must summarize the contributions of
the distorted waves to obtain the spatially non-uniform energy density and pressure. It should be
mentioned that eikonal approximation was successfully used in high energy physics [31] and even in
gravity [32], where the small-angle scattering amplitude of two massive particles was calculated in all
orders on gravitational constant G.

A massless scalar field in the external gravitational field obeys the equation

1
——9, (v/—g¢"0,) ¢ = 0. (24)
\/jg M ( 88 V) 4)
Using the gauge N = 0, P = 0 in (1) reduces the conformally-unimodular metric to
ds* = a?(dn® — '?ijdxidxj), (25)

so that the equation (24) takes the form

a 1 L
(P” + ZE(P/ _ 67281, (aZ,Yl]aj) ¢=0, (26)

which turns to .

X' - X% — 570:0,x —9;779; x + %C ('7ijaiaja + ajﬂaﬁij) =0, (27)

after change of the variables ¢ = )x/a or, in terms of metric perturbations ® and F, becomes

X' —=dx+Vx=0, (28)
where a “potential” V has the form
{7:—1)4”70c’2—20c,q>/*q)"+A<D+1APAf8271: P —%(V(AF))~V (29)
3 oxjox! oxfox’ 3 '

A quantization of the scalar field in terms of creation and annihilation operators implies [33]
(7, %) = ) (i, %) + i (1, )4, (30)
k
where the function uy, satisfies Eq. (27) and the orthogonality condition [33]

/(ukaﬂu,’; — uzaﬂuq)d?’x = i0kq- (31)
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Solution of Egs. (27), (29) for the functions uj can be written in the eikonal approximation
1
ur(n,x) = — exp (—ink + ikx — iOy (1, x)), 32
which leads to the equation for eikonal function
20, + (2km7mf - iamﬂymf) 9,0y + — (a — ¥i3,0;0 — 3;a,7'1) +
1k]-8mh m_ kmk]-hmf =0, (33)
and, according to Egs. (12), (13), is written in terms of the metric perturbations ®(#, x), F(1, x):
1
k@);c + kV@k(ﬂ, x) = EVk, (34)
where 5
Vk(ﬂ, x) = 24P - " + AD + klk]ala]l: - %AF. (35)
Solution of (34) can be obtained in the form
O (1, x) = i v o+ X)) ar (36)
R =0k Jyy R\ AT

where lower integration limit 77y depends on the cosmological model. In particular, it could be 0 or
—o00. Mean value of the stress-energy tensor of a massless scalar field

A | PN
Ty = 9y povg — Eguvg"‘ﬁa,x PIp¢ (37)
can be averaged over the vacuum state and compared with the hydrodynamic expression (14). That
gives
2 $)2 D!
_ ) <097 M R PR ) )"
Sp(n,x) = W < 0] + 0> 2; — 0% P (38)
2 ¢” (V¢)2 WY o KVOx
I(y,x) = 2 <05 — 0>~ Z O+~ (39)
M A k cA !
Vo =20 < 0|¢' V|0 >~ ) - Ve - a ZQD, (40)

k

where only spatially non-uniform parts of the vacuum averages are implied in the second equalities on
the right-hand side of (38), (39) and (40), which depends on the metric perturbations F(7, x) and ® (7, x)
contained in Egs. (12), (13). The final equalities in (38), (39) and (40) are the results of calculations in
the eikonal approximation (32). Considering the quantity dp(7, x) — 36I1(1, x) and using equations
(34) and (35) one comes to

kVO dod
5, %) = 30T1(1, %) = = ) = + @) + —— =
k
/! k2 NSC 2 1
— Z oV +22 Z O — A® — kikj9,0;F + =AF | = o — sk (D7 — AD), (41)
k

where summation has been changed by integration Y, — [ d°k/(27)% and it is taken into account
that f k<konn (k ki — ,]> d3k = 0. Besides, the number N, of the scalar fields minimally coupled


https://doi.org/10.20944/preprints202205.0259.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2022 d0i:10.20944/preprints202205.0259.v1

7 of 18

with gravity has been introduced as well as in (10). As it follows from Eq. (41), two types of spatially
nonuniform vacuum polarization exist. Namely, F-polarization has a radiation equation of state

1
5H‘0F(’7/x) = gépvjf(U,X), (42)
whereas ®-type has the equation of state

Mo (1,%) = 300001, %) — 533 Kous (@ — AD) (@3)
Both types of spatially nonuniform vacuum polarization correspond to the uniform component (8), (9),
whereas the uniform polarisation given by (10) has no nonuniform counterpart to an accuracy of our
consideration, i.e., in the second order on derivatives.
In principle, the system of equations (18), (19), (20), (21), (22), (23), (42), (43) is a fundamental
system allowing to consider a wide range of cosmological and astrophysical phenomena including
CMB and BAO. However, below we restrict ourselves to a galactic scale “dark matter”.

5. Galactic dark matter as a F-vacuum polarization

As it was shown in the section 4, the F-component of vacuum has the equation of state analogous
to radiation. In this sense, it is similar to the uniform part of vacuum energy density in Eq. (8).

At the same time, it is difficult to determine the concrete value of the nonuniform vacuum energy
density because according to (38), it contains eikonal function @, which is determined by the integral
(36). For instance, from (35),(36) one has @ (17,1) = ¥, C:)k,q(n)ei‘l’ and

~ 1/1 U ika(T—
Ouy() = 1 (389 = (k) [ Fy(mpehatcn/hae. (a4)

Calculation of the integral (44) needs to know the full evolution history of F; (7). It is simpler to use
only the fact that the F-contribution to the vacuum polarization has the equation of state

Por = PouF /3. (45)

For the static case in the first order on perturbations, the form of the matter-energy density distribution
and potential are not determined (see, e.g., Appendix). However, it is possible to consider a heuristic
nonlinear model treating the F-vacuum as an abstract substance with the above equation of state. Say
that is a core of some incompressible substance on the radiation background, i.e., the F-polarized
vacuum or “dark radiation”, which does not interact with the ordinary substances. Below we find a
spherically symmetric solution for an incompressible substance with the constant energy density p; on
the background of radiation density ps.

5.1. Equations in the conformally-unimodular metric

Conformally-unimodular metric in the case of spherical symmetry acquires the form [7]
ds* = a?(dn® — f?ijdxidxf) = (d;yz — e Mdx)? — (M — e‘“)(xdx)z/rz) , (46)

where r = |x| and a = exp a, A are the functions of 77, 7. The matrix 4;; with the unit determinant is
expressed through A(7, 7). The interval (46) could be also rewritten in the spherical coordinates:

x =rsinfcos¢, y=rsinfsing, z=rcosd (47)

to give
ds? = e (dﬂZ —dr?e* — e 22 (d92 + sin? GdgbZ)) . (48)
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Restricting ourself by static solutions, the equations for the functions a(r) and A(r) are written as [7]

(a1 Adedd 1 (da\P L 2de 1
B 612 6r2 3drdr 6 \dr 3rdr  3dr2

7 [(dA 5dr  1d%A e
6 (m) T3rdr 3 dr2> * M%]ZPj(r)> = const, )

d2a 3¢50 3 dadA <d¢x> 10 da (d)\)z 6 dA ZWM

a2~ 2 T2 Cdrdr

r dr

2 6\
M—Se+518d’“i)‘+1z(

doc) 18 dua (dA) 14d)  e2utar
dr? r2 dr d

o)t 8l ) g e M ]Zp]-fBPj, (51)

where Eq. (49) is the Hamiltonian constraint, which could be rewritten in the form containing no
second derivatives using Egs. (50), (51):

e2a—4A dua da [ dA dA 2 61 3¢t
H = 2r2< 3r2 <dr> +4ra (rdr —1) - (rdr —1) +e + M% ;pj = const.  (52)

Each kind of substance has to satisfy

dp;
dr

do

)

)— =0. 53
Vacuum solution of the equations (49), (50), (51), corresponding to the point massive particle,

was considered in [7] where an absence of evidence for horizon was demonstrated. Let us consider

another solution, corresponding to the substance of a radiation type filling all the space. This particular

solution is written as

1 1
a(r) =Inr— p In7, A(r)= 61n7, (54)

and under (45) from (53) it follows

d 4o _ _174 -1/3
R ®

if to use (54) and (49) with const = 0 in the right hand side of Eq. (49). Here, p is measured in terms of
r;zMrj 2, and r is measured in units of r¢, which is not gravitational radius of something, but some
arbitrary spatial scale. It should be noted that, for (45), Egs. (50), (51) look as those for an empty
space, whereas Eq. (49) could also be considered as that for an empty space, but with const # 0. Thus,
in conformally-unimodular metric of FVT where the Hamiltonian constraint is satisfied up to some
constant, one could alternatively consider the F-vacuum polarization solution like that for an empty
space, but with some value of const in Egs. (49), (52).

Since the solution (55) is singular, it is not related to reality. To obtain a more realistic model, one
has to consider at least two substances: a compact object in the center consisting of a substance with
constant energy density and a substance with the radiation equation of state (42).

5.2. Equations in the Schwarzschild type metric

It is more convenient to begin consideration from the Schwarzschild type metric [34]

ds?> = B(R)dt* — A(R)dR? — R%dQ), (56)

d0i:10.20944/preprints202205.0259.v1
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where the solutions (54), (55) correspond to the well-known solution [34]
(R) = 1 (57)
P28 = TaRe
obeying the TOV equation [35,36] for a radiation fluid
3p2 (m +47R3p,/3
p’zz—"(RR 2/3) (58)
R (R—5%)
in all the spatial region R € (0, o), where m(R) is defined by
m'(R) = 47tR?p,. (59)

I (@) (b)

Figure 1. (a) Schematic picture of an eicheon in the metric (56) with taking into account a vacuum
polarization in the form of dark radiation, (b) an eicheon in the metric (48) looks like a solid ball with
the finite energy density of dark radiation in the center.

P2 P2

0.0025| 0.0025}

0.0015} 0.0015}

0.0005 0.0005
105 115 1925 Rirg 02 04 0608 10 12

Figure 2. (a) py — energy density of the vacuum polarization in a form of dark radiation in coordinates
R > R; calculated for the eicheon parameters p; = 7M;2,r§ 2 R; = 1.001rg, Ry = 1.024rg, p2(R f) =
0.00ZM%rgf 2, (b) p2 calculated in the coordinates r of the metric (48).

Again, p, is measured in terms of re ZM%?, and R is measured in the units of r¢. The solutions (57) and
(55) are singular at R = 0 and, thereby, nonphysical. The situation changes cardinally in the presence
of a core consisting of incompressible matter. More exactly, in a presence of incompressible matter

of low density pj, the corresponding solution remains singular, but if p; > % (%), a solid ball in the
metric (48) looks like a shell over r¢ in the metric (56) [7] shown in Fig. 1 (a). Here we again imply
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Viot/C
1.0
0.8F
0.6
04}
0.2
00 L L L Il L L L Il L L L Il L L L Il L L L J R/rg
0 2000 4000 6000 8000 10000
Figure 3. The general form of a mode rotational curve for the eicheon parameters specified below Fig.
2.
Vrot/C
0.001
0.0005 -

1 1 1

J
1.x10"2 2.x10"? 3.x10"? 4.x10"

Rirg

Figure 4. The rotational curve for the eicheon parameters p; = IOOM%@ 2R = 1.0001rg and p2(Ry) =
4 x 1077 MZrg2.

the gravitational radius r¢ as a measure of the distances, but calculate it taking into account only an
incompressible matter. Such a matter occupies a region between R; and Ry, where

Ry = 3R?+2:)1 (60)

in the units of r;. Here the energy density p; is constant and measured in the terms of 7 ZM]%, where

3WI1
27M3
a type arising in FVT is known as "eicheon" [7] and replaces a black hole of GR. The appearance of
eicheon in the center makes the solution (58) to be nonsingular because it allows for setting the finite
boundary conditions for radiation.

To explain this, let us consider two fluids in the metric (56) obeying the TOV equations:

the gravitational radius is defined as ry = and m; = %npl (R}% — Rf’) Compact object of such

3 £2
P,lz_(3p1 +p1)(m+47ﬂ§m(p1+ 3)), 1)
47R (R — 31)

3p2 (m+47R3 (p1 + 2))
R (R - 3%)

0y = , (62)


https://doi.org/10.20944/preprints202205.0259.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2022 d0i:10.20944/preprints202205.0259.v1

110f18

Viot, km/s
350

300
250
200
150
100

50

: . : R, kPc
0.001 0.100 10 1000

Figure 5. The rotational curve in the logarithmic scale: the points correspond to the Milky Way
rotational curve from [37], whereas the calculated curve includes the only contribution of eicheon
described by the parameters given under Fig. 4, and the vacuum polarization of F — type.

where the function m(R) satisfies to
m'(R) = 47R*(p1 + p2). (63)

For p1 > % (g) these equations hold for the internal range R; < R < Ry, where R; > r, and the border,
occupied by py, is defined through (60).

The pressure of incompressible fluid must turn to zero at the end of the range filled by matter
R = Ry, and it is a boundary condition for p;. Then one could set an amount of radiation at R = Ry
and solve system of equations in a region {R;, R¢} assuming m(R;) = 0. A solution allows determining
m(Ry), and, using this value as an initial condition, one should solve the equation for the radiation
fluid (58) in an outer region {R¢, co}. The metric could be obtained by solving the equations [34]

148 _ 2 dpn___ 2 dp (64)
BAR  pi+p1 dR pa+p2 dR’
d (RY _ 5
R <A> =1-2R"(p1 + p2). (65)
Comparing the metric (46) and (56) leads to relation of the radial coordinates R and r [7]
dR _ /r\2 B%?2
dr (E) Al/2 (66)

where the dependencies B(R(r)) and A(R(r)) are implied. Eq. (66) has to be integrated with the initial
condition R(0) = R;, which means that R; in the metric (56) corresponds to r = 0 in the metric (46).
Knowing R(r) allows ploting p»(R) shown in Fig. 2 (a) as the r— dependent function p,(R(r)) (Fig. 2
(b))

Let us consider the motion of a test particle on a circular orbit in the metric (56). Angular velocity
on a circular orbit is calculated as [34]:

dp  [1dB

it~ VRaR (67)
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A spatial interval passed by the particle along the circular orbit equals dIl = Rd¢ = R‘;—‘fdt. To obtain
rotation velocity seen by the observer situated in rest near the moving particle, one has to divide the
spatial interval over proper time ,/goodt = v/Bdt of such an observer [38]:

oy = W _ JRdAB_ [ R dpy 1 [ Rdpy (69)
" /Bt 2B dR pp+p2dR ~ 2\ pydR

A qualitative example of a general form of the numerical solution for rotation velocity is shown in
Fig. 3. Although the shape of the curve resembles an observed curve, asymptotic of the rotation curve
corresponds to vyt ~ 1/+4/2 ~ 0.71. This very large velocity (in units of speed of light) corresponds
to asymptotic value py ~ R Zin (57), whereas, in the reality, the rotation velocities of galaxies are
Vrot ~ 100 — 300 km /s ~ 0.001. To obtain smaller velocities, one has to diminish density of radiation
in the center of eicheon, i.e. at ¥ = 0 in the metric (48) or R = R; in the metric (56). For central radiation
density of p, = 2 x 1072%, one has the rotation curve shown in Fig. 4. This is pure “dark radiation”
contribution without the galaxy bulge and disk. It increases linearly with the distance and corresponds
to the rising part of the general curve shown in Fig. 3. In the logarithmic scale, one could see (Fig. 5)
the contribution of the eicheon of the mass of 4.2 x 10® M, in the center of the Milky Way (the left side
of the curve) and the impact of the dark radiation (the right side of the curve), whereas the effects of

galactic bulge and disk responsible for the intermediate region are not taken into account. However, it
is expected that bulge and disk attraction will influence the F-type vacuum polarization in such a way
that the curve in Fig. 4 will be not linear but bend. We do not gain insight into such details because
our goal is to show that the F-type vacuum polarization could arise only around a “sewed” black hole,
i.e., around eicheon.

We emphasize that the presented consideration is heuristic because, although the linear system
for the perturbation and the eikonal approximation for vacuum polarization seem trustable, we use
its results in the nonlinear TOV model. Another thing is that we set the density of radiation (F-type
vacuum polarization) in the center of eicheon, i.e., at r = 0, of R = R; empirically but not calculate it
from the first principles, i.e., we use only the equation of state from the eikonal calculations.

6. Vacuum polarization of ®-type

In the sections 3, 4 the linear system of equation (20),(21),(22),(23),(41) was deduced, which
describes the evolution of perturbation by taking into account vacuum polarization (see Eq. (41)).
Galaxy formation is a complex nonlinear process that develops during cosmological time scales.
Generally, the linear system is insufficient to describe the galaxy. However, one could create a heuristic
picture setting an approximate profile of matter near the galaxy center and obtain a gravitational
potential produced by vacuum polarization obeying the linear equations. Below we will discuss that
the observed galaxy halo could originate from a very fast, compared to the cosmological times, process
of mass increasing the galaxy nuclei. We will neglect cosmological evolution assuming «(#) = 0. That
reduces the above system of the equations to

~12®, — 3F)/ + ¢?F, =0, (69)
9
—9@;’ — 9q2q>q + q4Fq + M2 <Z5pki - 35Hqi> =0. (70)
p i
5 36T L — Nsc kz ol Zq) 71
Pqv — = g2 max( q+q '1)’ (71)

where the last equation holds out for the vacuum polarisation of ®-type and is denoted by i = v.
Substituting @, from Eq. (69) and §p4u — 36114, from Eq. (71) into Eq. (70) gives the equation

3 (kuax? = 872M,2) (3E;" + 202y ) = 4*Fy (3Nckax + 872 M, ) = 288726 pg.¢(n),  (72)
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where an effective “density” of all the substances except vacuum is denoted as

69qerr (1) = Y 6pri — 30T1,;. (73)
i#v
Eq. (72) allows developing an empirical model: setting profile and time dependence of the quantity
©q¢ff(17) empirically makes possible to find the metric perturbation F; and calculate @, using (69), i.e.,
to determine the gravitational field corresponding to o .f¢(77)-
Let us for simplicity, take o, .¢¢(7) in the form

@qeff(ﬂ) = mZ(q)e”/T, (74)

where m is a “mass” of the object at 7 = 0, Z(q) is a form-factor and T is a some typical time of
increasing of the “mass”. That is a heuristic model implying that some rapid processes like accretion
occurs around the massive object, i.e., around the galaxy nuclei. Substitution of the expression (74)
into Eq. (72) allow finding F;(7) = Fye’/T, where

B 28872 T4mZ(q) 75)
T BNk (4T — 242T2 — 3) + 872 M2 (T2 + 3)%

and Eq. (69) gives ®4(17) = Dge/T

2472T? (q*T? — 3) mZ(q)

o, = — 5 5 5. (76)
3Nsckmax™ (q*T* — 2¢°T? — 3) + 812 M~ (4*T? + 3)
At T — oo the corresponding static limit is
2
by — — 24°mZ(q) 77

(3Nsckax? + 872 M%) g2’

which implies that the vacuum polarization leads to renormalization (increasing) of the Planck mass,
i.e.,, decreasing the gravitational constant. In particular, using the value (11) obtained from the
cosmological observations [9] gives

54N, 54N,
M2 = (14— ) M2 Gren=G/ [1+ —25 ). 7
pren ( + 7T2(2+Nsc)) p’ ren / + 7T2(2+Nsc) ( 8)

It seems that the vacuum polarization, in some sense, acts like antigravitation, and the gravitational
constant G, appearing in Newton’s law has to differ from the gravitational constant G in the
Friedmann equations for the uniform universe. Although the gravitational constant’s renormalization
does not influence the cosmological balance of the different kinds of matter expressed in units of the
critical density M%Hz, it should be taken into account in comparison with the directly measured (for
instance, utilizing luminosity) density. Numerically Ns, = 2 gives G = 0.27 G.

6.1. Invariant potentials and rotational curve

Astrophysicists are trying to express the results of observations in terms of gauge-invariant
quantities, which are not dependent on system of coordinates. Potentials ®(#, x) and F(#, x) are not
invariant relatively the infinitesimal transformations of coordinates and time of the following type

=n+381(1,x), r=x+Va(n,x), (79)
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where 1(77,x) and (77, x) are some small functions. Usually the potentials ®;,, (77, x) and ¥, (17, x)
are introduced [39-41] which are invariant relatively transformations (79). The potentials correspond
to the metric

ds? = a(17) ( (14 2i (1, %) )ay? — (1= 2% 30 (1, x)) 0y’ (80)

and are expressed though ® and F as

a'(n)F! a(n)F!
) =+ CORD ) o
a'(n)F!
Yqino(n7) = —(;7:(;)(17) —D4(n) + %quq(ﬂ) = —®,4(n7) + %‘izpq, (82)

where the final equalities at the right hand side of (81), (82) hold for our case a = const, ®,F ~
exp (17/T). Using (75), (76) gives

6 247°T? (q*T? +3) m Z(q)
T 3Nuc kmax® (¢*T* — 242T2 — 3) + 8m2M,2 (T2 +3)*

(83)

and ‘T’q ino = d~>q inv- Thus, we obtained the Fourier transformation of the time-dependent gravitational
potential @, = CIDq — allowing to establish

Dy (x )—ﬁ &, iy €903 (84)
ino\X, 1) = (2n)3 qinv q.

To obtain a concrete empirical formula, one has to set the form factor Z(g), for instance, using the
Gaussian profile 5p,¢¢(x) = n-3/2m D=3 ¢~**/D* The spatial dependence of potential (84) at present
time, i.e., # = 0 allows finding the rotational velocity dependence on the spatial coordinate

Z)roif(r) = 77&%’?(;’)' (85)
Here potential (84) is time-dependent, and actually, there are no pure rotational curves because the
radial velocities are presented, as well, but for the estimation, we discuss only tangential velocity. The
rotational velocity dependence on radial coordinate is shown in Fig. 6. The rotational curve has some
similarities with the conventional picture at N5 = 2, but in the conventional picture, the contribution
of the galactic nuclei, bulge, and disk are taken into account. We include all these components into the
Gaussian form factor of galactic nuclei in our oversimplified picture. Then we permit it to increase (or
decrease) with time and obtain vacuum polarization caused by this process.

7. Conclusion

We have considered two types of vacuum polarization corresponding to the F and ® metric
perturbations in the conformally-unimodular frame.

The F-type spatially-nonuniform vacuum polarization has the equation of state the same radiation.
In the first order on perturbations, one could not determine the form of the static gravitational potential
around an astrophysical object. Nevertheless, we propose a nonlinear heuristic model considering
the TOV equations for matter and radiation. It was found that the solution, which is nonsingular at
r = 0, arises only if an eicheon arises. Eicheon is an analog of the black hole in GR and looks like an
empty nut in the Schwarzschild type metric. From this point of view, we assume that the dark matter,
as a vacuum polarization, arises only in the galaxies having an eicheon (i.e., a “black hole” in the old
terminology) in the center. Namely, the eicheon conjecture allows converting a singular solution for
pure radiation into a nonsingular physical one. Galaxies without an eicheon in the center (e.g., diffuse
galaxies [42]) have not a dark matter halo. One more conclusion is that the dark halo in terms of a test
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Vrot

Figure 6. The rotational curves are in arbitrary units, but r-axes units could be associated with kPc. The
form factor of Galaxy nuclei is taken as Z(g) — exp (—qu), A =1, accretion rateis T = 10 i.e. 10 kPc,
which corresponds to 32000 years. Number of the minimally coupled scalar fields set to Ns; = 2, and
K20 = SM%J nz% is assumed. The lower blue curve corresponds to the contribution of galactic nuclei,
the upper curve takes the vacuum ®-polarization into account.

particle’s rotation velocity always increases with the distance from the center if an isolated galaxy is
considered. Decreasing the halo could occur only due to a violation of the isolation of a galaxy, i.e., at a
distance ~ 2 MPc. Thus, the dark halo mass must be infinite for an isolated galaxy.

For the ®-type vacuum polarization, the renormalization of the gravitational constant (or Planck
mass) has been found. That means that the gravitational constant found in the Earth, the Solar system,
and galaxy observations is not equal (approximately four times less) to the gravitational constant used
in cosmology to describe a spatially uniform universe. This fact does not influence the balance of the
different kinds of matter in cosmology if one measures them in M,z, H?, but fourfold increases for the
directly counted matter contribution, i.e. the luminous baryonic matter has to contribute 3.7 times
stronger into the cosmological Friedmann equations. The second effect of the ®-type polarization is
the creation of the dark halo in the nonstationary process. It is found that the time-dependent evolving
mass of the galaxy nuclei produces the gravitational potential of the dark halo type. This point urges a
more careful observational investigation of the possibility of the nonstationary origin of the dark halo.
However, the required time for the galaxy nuclei mass growth seems very small ~ 32000 years. In
such a situation, clarifying the physical status of the possible accretion of vacuum energy and vacuum
condensates discussed in [43—-45] is very desirable.

To summarize, it is possible to obtain an equation of the state of vacuum polarization, which is
some kind of “ether”. A result seems trustworthy, but it is challenging to find the “amount” of ether
because it depends on the object’s entire history due to the nonlocality of the vacuum state on the
curved background. Here we have adjusted the “amount” to astrophysical observations. Thus, the
final results obtained have, in some sense, a heuristic nature.
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Appendix A

We emphasize that the presented consideration is heuristic because, although the linear system
for the perturbation and the eikonal approximation for vacuum polarization seem trustable, we use its
results in the nonlinear TOV model. Another point is that we empirically set the density of radiation
(F-type of the vacuum polarization) in the center of an eicheon, i.e., at r = 0, of R = R;. That is, we
do not calculate it from the first principles, i.e., we use only the equation of state from the eikonal
calculations. Let us consider the system of equations (18), (19), (20), (21), (22), (23), for an empty
space-time with the vacuum polarization of F-type in the form of radiation fluid. For e**p = const the
constant in Eq. (6) could be chosen in such a way, that there is no evolution of the scale factor, i.e.,
a = 0 (a static universe).

For the substance obeying (45), Egs. (23), (22) are reduced to

—30 oF + 77 0g0F = 0, (A1)
5HqUF + U;vp =0, (Az)
and have the solution

. qn qan
1) = (1 8in —= 4+ ¢y cos —, A3

ny : nq
B Cy COS (\/5) c1 sin (\[3) Al
UgoF = . (A4)

V3q

Let us also to place into this universe some amount of a dust matter dgp;, obeying 6I1;,, = 0 and
without uniform component, i.e., I, = 0, g, = 0. The complete solution of the system (18), (19), (20),
(21), (22), (23) takes the form

S (1) = 31" My2 (e +c5), (A5)
Om — 36T Mp’, (A6)
Fy(17) = cen + 5 — 311’4Mp’2 (sin (%) (C4q2Mp2 +2v3e11q + 15cz) +
cos (\’7/‘75) (7 (csaMp* = 2V3ear) + 15c1)>, (A7)
D4(n) = %(Céﬂ +c5)— 2Mlz%qZ (6 sin (:%) (c4Mp2q2 +2v/3c1nq + 9c2) +
cos (%) (q (C3Mp2q - Zﬁczﬂ) + 9c1>>. (A8)

Then, in accordance with (38) the energy density for a F-vacuum polarization is expressed
approximately as
1 kVoe
Spur(,%) = 5 1~ + 0%, (A9)
k

which gives

Somar() = ~2eknast [ (944201 = 72 sin(gl - ) +

Fy(T)

101 =) (0 =72 = 9) cos(aly — 7))
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If to consider this equation as an additional equation to the system (18), (19), (20), (21), (22), (23), one
finds that the constants cy, ¢2, c3, c4, ¢ have to be zero and only c5 term is permitted because

dt =0.

/’7 ((9—44%(n — 7)) sin(g(n — 1)) + q(n — ) (4*(n — 1)* = 9) cos(gq(n — 71)))
—o 3q(n —1)*

Thus, the static gravitational potential

2c
@, = q 152(‘7) (A11)

of arbitrary form (because c5 could be function of g) is permitted in the framework of a linear system
of equations considered.
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