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Abstract: Background: Alcohol consumption is associated with the development 

of cardiovascular diseases, cancer, and liver disease. The biological mechanisms 

are still largely unclear. Here, we aimed to use an agnostic approach to identify 

phenotypes mediating the effect of alcohol on various diseases.  

Methods: We performed an agnostic association analysis between alcohol 

consumption (red, and white wine, beer/cider, fortified wine, and spirits) with 

over 7,800 phenotypes from the UK biobank comprising 223,728 participants. We 

performed Mendelian randomisation analysis to infer causality. We additionally 

performed a Phenome-wide association analysis and a mediation analysis 

between alcohol consumption as exposure, traits in causal relationship with 

alcohol consumption as mediators, and various diseases as outcome. 

Results: Of 45 traits in association with alcohol consumption, 20 were in causal 

relationship with alcohol consumption. Gamma glutamyltransferase (GGT; 

β=9.44; CI,5.94-12.93; Pfdr=9.04×10-7), mean sphered cell volume (β=0.189; CI,0.11-

0.27; Pfdr=1.00×10-4), mean corpuscular volume (β=0.271; CI,0.19-0.35; Pfdr=7.09×10-

10) and mean corpuscular haemoglobin (β=0.278; CI,0.19-0.36; Pfdr=1.60×10-6) 

showed the strongest causal relationships. We also identified GGT and physical 

activity as mediators causing liver cirrhosis and alcohol dependence. 

Conclusion: Our study provides evidence of causality between alcohol 

consumption and 20 traits and a mediation effect for physical activity on health 

consequences of alcohol consumption. 
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Introduction 

Alcohol use is responsible for 5.1% of the global burden of disease 

(Organization World Health, 2018) and is considered as the main 

contributor to alcohol liver disease (ALD). Despite a general 

understanding of the link between alcohol consumption and diseases, the 

causal associations and mediatory mechanisms are less clear.  

Phenome wide association studies (PheWAs) examine correlation 

between an exposure (a variant or phenotype of interest) with an array of 

outcomes (the phenome) (Anurag Verma & Marylyn D. Ritchie, 2017). 
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The power of a PheWAS is determined by the sample size and variety of 

clinical information present in the database which makes up the phenome 

(J. C. Denny et al., 2010). The current gold-standard to perform PheWAS 

are large and comprehensive electronic health record datasets (Cathie 

Sudlow et al., 2015). 

PheWAS establish associations between exposures and outcomes 

and are unable to assess causal links. Mendelian randomisation (MR) 

studies investigate causality between instruments and often follow 

PheWAS to further interrogate a suggested association. MR studies 

operate upon the fact that most genetic variants are inherited randomly 

from parents and can be used as a randomisation tool to mimic 

randomised clinical trials (George Davey Smith & Gibran Hemani, 2014). 

Owing to the random nature of genetic inheritance, MR studies decrease 

bias such as reverse causality and confounding (Jie Zheng et al., 2017). 

Genetic variants which are associated with traits (found from association 

studies) can be used as exposure instruments to test for causal 

associations against corresponding outcome instruments (George Davey 

Smith & Gibran Hemani, 2014).  

Identification of causal biomarkers in the pathway between alcohol 

consumption and alcohol liver disease could facilitate their utility in 

better identification of individuals at higher risk of developing alcohol-

related diseases. These high-risk individuals could then be targeted to 

receive public health interventions.  

Here, we applied a multi-stage design to identify traits in causal 

pathway between alcohol consumption and alcohol-related diseases. 

Using a combination of agnostic approaches, PheWAS and MR analyses, 

we investigated over 7,800 phenotypes in the UK biobank cohort for 

association and causal link with alcohol consumption and alcohol related 

diseases. 

Methods 

We used data from the UK biobank (n=223,728) which is a large 

biomedical database with genotypic and phenotypic data on a wide range 

of health-related outcomes for over 500,000 individuals. Participants with 

aged between 40 to 69 and lived within 30 miles of one of the 22 UK 

biobank assessment centres were invited to take part. The UK biobank 

has full ethical approval by the UK NHS National Research Ethics Service 

(Cathie Sudlow et al., 2015). All participants in this study gave consent 

for their data to be used (Fidel Alfaro-Almagro et al., 2021; Simon D. Kyle 

et al., 2017). 
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Figure 1. Overview of included and excluded participants. 

Participants who stated drinking of at least one of the alcoholic 

beverages red wine, white wine, beer/cider, spirits, and fortified wine 

were included in the current analysis (Figure 1). Participants who 

withdrew consent were removed from the dataset (N=109), leaving a 

starting total of N=502,493. Individuals who completed the UK biobank 

touchscreen questionnaire and declared they do not drink (N=41,243), 

only drink on special occasions (N=58,009) or changed drinking habits 

due to health reasons (N=73,562) were removed from this analysis. This 

ensured our analyses focused on individuals who drink alcoholic 

beverages on a regular basis. Using the same questionnaire, individuals 

who had serious co-morbidities a baseline such as self-reported cancer 

(N=54,163) and cardiovascular disease (N=12,434) were also excluded. 

Participants who had missing data for the alcohol phenotypes of interest, 

pregnant women (N=200) and individuals who had missing sex data 

(N=1) were excluded. Individuals who passed the exclusion criteria but 

did not have beverage specific data were removed from this analysis. This 

slightly varied depending on the beverage type (N~44,758). Final 

beverage specific data used in our analysis include red wine (N= 223,245), 

white wine or champagne (N= 223,049), beer or cider (N= 223,728), 

fortified wine (N= 223,599) and spirits (N= 222,880). 
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Figure 2. Overview of the study design. 

The overview of the study design is shown in Figure 2. Data 

collection was performed centrally by the UK biobank. Between 2006 and 

2010, touchscreen questionnaires and in-person interviews were 

conducted by UK biobank in one of their 22 UK-wide assessment centres. 

These baseline assessments include lifestyle choices, environmental 

factors along with personal and family medical history. UK biobank 

participants also gave blood and urine samples (Cathie Sudlow et al., 

2015). All, biological samples were obtained and analysed using the 

protocol outlined by the UK biobank (T. C. Peakman & P. Elliott, 2008). 

Diagnosis of diseases were made based on International Classification of 

Diseases (ICD 10) coding within the UK biobank data 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41203).  

Self-reported information describing the weekly frequency of 

different kinds of alcoholic beverages have been collected in the UK 

biobank. Participants specified their consumption based on the number 

of glasses of red wine, white wine/champagne and fortified wine in an 

average week. Number of pints of beer/cider consumed per week and 

measures of spirits or liquors consumed per week were collected to assess 

consumption of beer/cider and spirits. 

Beverage specific agnostic association analyses 

We performed an initial agnostic analysis in which over 7,800 

phenotypes and circulatory biomarkers from the UK biobank were used 

to investigate association with drinking alcoholic beverages.  
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We performed five agnostic association analyses (one for each 

alcoholic beverage) across the UK biobank database. Weekly 

consumption of red wine, white wine/champagne, beer/cider, spirits and 

fortified wine acted as individual outcome variables in each agnostic 

association analysis. Individual general linear models were constructed 

for each outcome variable with one of the 7,803 UK biobank phenotypes 

acting as the exposure variable. In our agnostic association approach, we 

performed a linear regression model adjusted for potential confounders 

(age, sex, Townsend deprivation index, genetic and ethnic background, 

smoking status, and diabetes).  

To test the significance for each model we calculated an empirical P-

value using a 10,000-iteration permutation test (A. C. Davison & D. V. 

Hinkley, 1997). This involves calculating the probability (empirical P-

value) that the observed P-value from a given model is driven by chance. 

To calculate the empirical P-value, we randomly sampled the outcome 

variable and calculated the P value for the association of alcoholic 

beverages consumption with this randomly sampled outcome. This was 

repeated for 10,000 iterations and the P-value obtained from each of these 

iterations was estimated. The number of permuted P-values which were 

less than the observed (n) +1 was then divided by the number of iterations 

of the permutation test (s) +1 based on the equation: 

 
Where Pe is the empirical P-value, n is the number of permuted P-

values less than the observed P-value and s is the number of iterations of 

the permutation test. If the empirical P-value was less than 0.05, the 

model was considered significant (A. C. Davison & D. V. Hinkley, 1997). 

Analysis of Variance (ANOVA) were conducted on all significant models 

and the percentage of explained variance in the alcoholic beverage 

consumption by each UK biobank phenotype was obtained. 

Two Sample MR 

MR analysis uses genetic variants to explore causal relationships 

between an exposure and outcome. To infer causality between the effect 

of alcohol consumption and other traits, we performed two sample MR 

analysis. In our MR analyses, alcohol consumption was used as the 

exposure and genetic variants associated with alcohol consumption were 

used as instrumental variable. All non-alcoholic traits that were 

significantly associated with alcohol consumption in our initial agnostic 

association analysis were considered as outcome for the MR analysis. i.e., 

traits that were significantly associated with consumption of any 

alcoholic beverages in our agnostic analysis were moved forward to be 

assessed for causality of the association with alcohol consumption. MR 

analyses were performed using either multiple alcohol associated 

instruments (Mengzhen Liu et al., 2019) or the single rs1229984 

instrument (E. Jorgenson et al., 2017).  

- Instrument selection (Multi-instrument MR) 

We obtained genetic data from previously performed genome-wide 

association analyses (GWAS) for the effect of genetic variants on alcohol 

consumption (E. Jorgenson et al., 2017; Mengzhen Liu et al., 2019). β value 

for each of the genetic variant associated with alcohol consumption was 
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used as an instrumental variable (alcohol consumption was defined as 

the exposure; see above). Weak instruments are genetic variants that do 

not capture enough variance in an exposure and introduce bias into a MR 

analysis (S. Burgess & S. G. Thompson, 2011). To account for weak 

instrument bias, the β values were used to calculate the phenotype 

proportion of variance explained (R2) along with the F-statistic for each 

instrument (Supplementary Table 1). The F-statistic is a measure of the 

association between the SNP and the exposure. Any instrument scoring 

an F-statistic of less than 10 was removed from the analysis (Tanya M. 

Teslovich et al., 2010). 

In addition, genetic variants that were in linkage disequilibrium 

with other variants (indicated by r2<0.1) were identified using the 

European population data from the 1000 genomes project (Laura Clarke 

et al., 2012) and were excluded from the instrument list.  

Liu and colleagues performed meta-analyses across multiple alcohol 

consumption GWA studies including the UK biobank. To avoid sample 

overlap with UK biobank, we selected the β values for alcohol 

consumption from one of the meta-analyses by Liu et al. that excluded 

UK biobank data.  

To obtain the β value for each genetic variant associated with 

outcomes (shortlisted traits from agnostic models), we used summary 

statistics from Neale Lab’s UK biobank GWAS studies 

(http://www.nealelab.is/). Neale lab has performed linear regression 

GWAS on almost all UK biobank phenotypes, making it a consistent set 

of summary statistics to use for our MR analyses.  

The R package TwoSampleMR was used to harmonise the exposure 

and outcome effect estimates (Gibran Hemani et al., 2018). The Inverse 

Variance Weighting (IVW) method implemented in the MR-PRESSO 

package was used to perform the MR analyses and identify outlier genetic 

variants responsible for horizontal pleiotropy and remove them from the 

analysis (Marie Verbanck, Chia-Yen Chen, Benjamin Neale, & Ron Do, 

2018). A false discovery rate (FDR) of 0.05 was used to adjust the P-values 

from all analyses (To account for multiple testing). 

- Single-instrument MR analysis 

As a sensitivity analysis for our causal inference, we performed a 

single-instrument MR analysis in which, the β value for the association of 

rs1229984 with alcohol consumption was obtained from the study by 

Jorgenson and colleagues (E. Jorgenson et al., 2017). rs1229984 occurs in 

ADH1A gene as is known to be a functional non-synonymous (Arg48His) 

genetic variant for alcohol consumption (Eric J. Duell et al., 2011). ADH1B 

gene encodes for an enzyme responsible for oxidising alcohol (Howard J. 

Edenberg & Jeanette N. McClintick, 2018).The Wald ratio method was 

used for our single-instrument MR analysis. 

Results that consistently showed causal relationship with the same 

direction of effect across both multiple and single-instrument MR 

analysis were considered significant.  

Phenome-wide association analysis 

We performed a Phenome-wide association analysis (PheWAs) on 

rs1229984 as our exposure within the UK biobank. This was done to 

identify alcohol-related diseases. We used Logistic regression models 

within the R package PheWAS. Genotypes for the rs1229984 were 

extracted from individual level data of the UK biobank using plink 
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(Shaun Purcell et al., 2007). A list of diagnosed diseases and conditions 

from hospital episode statistics were available within the UK biobank 

data in the form of ICD10 codes. We adjusted for the same potential 

confounders that were included in our agnostic analyses. To account for 

multiple testing, a Bonferroni correction was implemented. 

Mediation analysis 

We performed a mediation analysis, to investigate whether the traits 

identified to be causally linked to alcohol consumption through our MR 

analysis mediate the effect of alcohol consumption on alcohol -related 

diseases. Diseases that were linked to rs1229984 within our PheWAS 

analysis were included in our mediation analysis as outcomes.  

Different steps of the mediation analysis included investigation of 

causality between alcohol consumption and alcohol-related diseases 

mediated by the UK biobank phenotypes from our agnostic approach. 

Causal link between alcohol and the UK biobank phenotypes was 

demonstrated in our agnostic approach. To show the causal link between 

the UK biobank phenotypes and alcohol-related diseases, we performed 

another set of MR analysis. Here, we used Neale lab GWAS data to 

identify and select SNPs associated with mediators (i.e. traits highlighted 

to be linked to alcohol consumption in our agnostic approach).  

We additionally used GWAs performed on alcohol associated disease (L. J. 

Bierut et al., 2010; S. Buch et al., 2015; Tuomo Kiiskinen et al., 2020) to perform 

mediation analysis between mediators and alcohol-related diseases. QC 

thresholds of linkage disequilibrium and instrument strength that were applied 

to this set of mediation analysis were described in the instrument selection section 

(see above). 
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Table 1: Baseline characteristics of the population for analysis. 
 

Characteristics 
Red wine 

(n=223,245) 

White wine/sparkling white 

wine (n=223,049) 

Beer or cider 

(n=223,728) 
Spirits (n=222,880) 

Fortified wine 

(n=223,599) 

Age-yr 55.5 (±8.01) 55.5 (±8.01) 55.5 (±8.01) 55.5 (±8.01) 55.593 (±8.01) 

Male sex -no. (%) 108467 (48.59%) 108509 (48.61%) 108579 (48.64%) 108529 (48.61%) 108458 (48.58%) 

Lipid treatment-no./total 

no(%) 
24259 (10.87%) 24246 (10.86%) 19778 (8.86%) 19756 (8.85%) 19774 (8.86%) 

Diabetes mellitus-no./total 

no. (%) 
5840 (2.62%) 5829 (2.61%) 5847 (2.62%) 5830 (2.62%) 5837 (2.61%) 

Body mass index 26.9 (±4.33) 26.9 (±4.33) 26.9 (±4.34) 26.9 (±4.33) 26.9 (±4.34) 

MET Score 2642.4 (±2664.35) 2642.8 (±2665.44) 2642.5 (±2665.28) 2642.1 (±2664.77) 2641.4 (±2663.52) 

current smoking-no. (%) 23593 (10.57%) 23599 (10.57%) 23659 (10.60%) 23553 (10.55%) 23620 (10.58%) 

past smoking-no. (%) 77860 (34.88%) 77884 (34.89%) 77875 (34.88%) 77881 (34.89%) 77875 (34.88%) 

never smoking-no. (%) 121130 (54.26%) 121097 (54.24%) 121044 (54.22%) 121148 (54.27%) 121084 (54.24%) 

Systolic blood pressure-

mean (SD)- mmHg 
140.4 (±19.47) 140.4 (±19.48) 140.4 (±19.48) 140.4 (±19.48) 140.4 (±19.49) 

Diastolic blood pressure- 

mean (SD)- mmHg 
83.4 (±10.82) 83.4 (±10.81) 83.4 (±10.81) 83.4 (±10.81) 83.4 (±10.82) 

Red wine intake- mean (SD)- 

glass/day  
3.9 (±5.68) 3.9 (±5.68) 3.9 (±5.68) 3.93 (±5.68) 3.9 (±5.68) 

White wine intake- mean 

(SD)- glass/day  
2.7 (±4.88) 2.7 (±4.88) 2.7 (±4.88) 2.7 (±4.88) 2.7 (±4.88) 

Fortified wine intake- mean 

(SD)- glass/day  
0.2 (±1.21) 0.2 (±1.21) 0.2 (±1.22) 0.2 (±1.22) 0.2 (±1.22) 

Beer intake- mean (SD)- 

glass/day  
2.9 (±5.59) 2.9 (±5.59) 2.9(±5.62) 2.9 (±5.60) 2.9 (±5.60) 

Spirits intake- mean (SD)- 

glass/day  
1.8 (±5.29) 1.8 (±5.29) 1.8 (±5.32) 1.8 (±5.36) 1.8 (±5.30) 
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Results 

Our data for analysis included 223,728 individuals from the UK 

biobank of which 48% were males (Table 1). The average age in the cohort 

used in our analysis was 55.5 (±8.01) and the average body mass index 

(BMI) was 26.9 (±4.33). We found 45 traits (Figure 3). significantly 

associated with consumption of at least one alcoholic beverage 

(beer/cider, white wine, red wine, fortified wine, and spirits). 

We observed association between gamma glutamyl transferase 

(GGT) with increased consumption of beer/cider (β =0.02; s.e =2.66×10-4; P 

<1.0×10-300; r2=5.3%) and spirit (β =0.01; s.e =2.9×10-4; P <1.0×10-300; 

r2=1.39%). Insulin-like Growth Factor (IGF-1) showed a negative 

association with beer/cider consumption (β =-0.09; s.e=2.05×10-3; P <1.0×10-

300; r2=0.21%) (Figure 4). Individuals showed a significant increase in the 

levels of apolipoprotein A1 (apo-A1) in their blood assays if they reported 

a higher weekly consumption of beer or cider (β =2.2; s.e =4.6×10-2; P 

<1.0×10-300; r2=0.89%), white wine (β =0.09; s.e =2.1×10-3; P <1.0×10-300; 

r2=2.89%) and red wine (β =3.1; s.e =5.2×10-2; P <1.0×10-300; r2=0.71%). We 

additionally observed association between cystatin c levels in the blood 

and red wine consumption (β =-4.0; s.e =0.10; P <1.0×10-300; r2=0.20%).Mean 

corpuscular haemoglobin (MCH) showed association with white (β =0.27; 

s.e =5.94×10-3; P <1.0×10-300; r2= 0.89%), and red wine (β =0.30; s.e =6.95×10-

03; P <1.0×10-300; r2=1.23%). Mean corpuscular volume (MCV) was 

associated with white wine (β =0.12; s.e =2.5×10-3; P <1.0×10-300; r2=1.25%) 

and red wine (β =0.12; s.e =2.9×10-3; P <1.0×10-300; r2=1.16%). Mean sphered 

cell volume (MCSV) was associated with white wine (β =0.09; s.e =2.05×10-

03; P <1.0×10-300; r2=1.04%). 

Systolic blood pressure showed evidence of an association with 

beer/cider consumption (β=0.02; s.e = 6.0×10-4; P <1.0×10-300; r2= 2.4%). 
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Figure 3. Overview of the agnostic association analyses. Manhattan plot illustrates negative log10 observed p values for general linear models 

created for association of UK biobank traits with consumption of various alcoholic beverages. UK biobank traits have been categorised into 

groups. Significant models are plotted as triangles and non-significant models are plotted as circles. Beer/cider results are plotted in yellow, red 

wine results are plotted in pink, spirit results are plotted in purple and white wine results are plotted in blue. 
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Figure 4. Overview of leading associations between consumption of alcoholic beverages and various traits within the UK biobank. A. The effect estimates 

and confidence intervals for the leading associations are depicted. B. Percentage variance explained for association of various alcoholic beverage consumption 
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and UK biobank traits is depicted. Beer/cider results are plotted in yellow, red wine results are plotted in pink, spirit results are plotted in purple and white 

wine results are plotted in blue. 
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In our MR analysis using IVW method, alcohol consumption 

showed a causal association with the liver enzyme GGT (β=9.72; CI=5.78-

13.65; Pemp=5.61×10-5; Table 2). We also observed significant causal 

association between alcohol consumption and multiple lifestyle choices 

including dietary factors such as individuals’ preference to wholemeal or 

wholegrain (β=-0.054; CI=-0.09, -0.02; Pemp=5.69×10-3) and white bread 

preference (β=0.054; CI,0.02-0.09; Pemp=1.99×10-3). We observed significant 

causal association between alcohol consumption and MSCV (β=0.23; CI= 

0.15-0.31; Pemp=3.70×10-6), MCV (β=0.27; CI=0.18-0.36; Pemp=2.36×10-6) and 

MCH (β=0.27; CI=0.18-0.36; Pemp=1.60×10-6) yielded significant results. 

Table 2. Overview of the results of Mendelian Randomization analysis. 

 Single Instrument MR Multiple Instrument MR 
 Beta 95% CI P value Beta 95% CI P value 

Gamma Glutamyl Transferase 9.7 5.8,13.6 1×10-4 9.4 5.9, 12.9 0 

Mean Sphered Cell Volume 0.2 0.15,0.31 0 0.19 0.11, 027 1 ×10-4 

Mean Corpuscular Haemoglobin 0.3 0.18, 0.36 0 0.3 0.19,0.35 0 

Mean Corpuscular Volume 0.3 0.18, 0.36 0 0.3 0.19,0.36 0 

Unplanned physical activity by method of 

transport  
-0.04  -0.07, -0.01 0.01 -0.06  -0.1, -0.03 8 ×10-4 

Wholemeal/ wholegrain bread consumption -0.05  -0.09, -0.02 0.006 -0.06  -0.1, -0.02 0.008 

White bread consumption 0.05 0.02, 0.09 0.002 0.05 0.02, 0.09 0.008 

The results from PheWAS analysis (Table 3) showed significant 

association between causal alcohol SNP (rs1229984) and alcohol-relating 

disorders (β =0.237; s.e=0.038; P =4.78×10-10), alcohol dependency (β =0.264; 

s.e=0.047; P =2.52×10-8), alcoholic liver damage (β =0.271; s.e=0.058; P 

=3.47×10-6), and enthesopathy (β =-0.064; s.e=0.014; P =1.05×10-5).  

Table 3. Overview of the rs1229984 PheWAS results in the UK biobank cohort. 

Description Effect Estimate Standard Error Odds Ratio P-Value 

Alcohol-related disorders 0.24 0.04 1.3 4.87 × 10-10 

Alcoholism 0.26 0.05 1.3 2.52 × 10-08 

Alcoholic liver damage 0.27 0.06 1.3 3.47 × 10-06 

Enthesopathy -0.06 0.01 0.9 1.05 × 10-05 

In our mediation analysis, GGT showed mediating the effect of 

alcohol consumption on alcohol dependence (β=0.016; se=0.0063; 

P=0.0147). In addition, physical inactivity mediated the effect of alcohol 

consumption on alcoholic liver cirrhosis (β=-8.96; se=1.38; P=2.91×10-3) 

(Figure 5). 
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Figure 5. Summary of the mediation analysis. Network to summarise mediators 

of alcohol consumption and alcohol related diseases. Each node represents a trait 

that was included in mediation analysis. Results from MR analysis between each 

pair of traits is depicted on the edges. Data source to obtain summary statistics 

for each trait is depicted in the legend. Beta: Effect estimate from Mendelian 

Randomization; Se: standard error;  P: P-value; GGT: Gamma Glutamyl 

transferase.
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Discussion 

Here, we found evidence of 20 causal relationships between UK 

biobank phenotypes and alcohol consumption. We also identified (1) 

GGT as a possible mediator of alcohol consumption’s effect on alcohol 

dependence and (2) physical activity as a possible mediator of alcohol 

liver cirrhosis. The identification of these risk factors between alcohol 

consumption and various diseases may help identification of individuals 

at higher risk of developing alcohol-related diseases.  

We observed that the liver enzyme GGT showed a significant 

association with alcohol consumption. This analysis found that 

individuals who consume large amounts of spirit and beer or cider per 

week tend to have increased serum GGT. This association was further 

supported by the MR analyses which provided evidence of causal 

relationships between alcohol consumption and GGT. Furthermore, we 

identified GGT as a possible mediator of alcohol consumption and 

alcohol dependence. This finding is in line with previous epidemiological 

evidence and goes further to show the causality of this relationship. A 

four-year prospective study with 6846 male participants observed that 

alcohol consumption was associated with a raised blood levels of 

multiple liver enzymes, including GGT (Duk-Hee Lee, Myung-Hwa Ha, 

& David C. Christiani, 2001). Furthermore, one study found that 

moderate alcohol drinking (which was defined as less than 40g ethanol 

per day) raised GGT but did not significantly raise other liver enzymes 

such as AST (Päivikki I. Alatalo et al., 2008). It was previously shown that 

BMI has larger effect on liver enzymes than alcohol consumption alone 

(Duk-Hee Lee et al., 2001). Our analysis, which included excessive 

drinkers and was corrected for BMI, aligns with these epidemiological 

findings, and additionally demonstrate a causal relationship between 

beer/cider and spirit consumption with GGT. 

We identified GGT and physical exercise as mediators of alcohol 

related diseases. A previous MR study found evidence of positive causal 

relationships between alcohol consumption, BMI and liver enzymes such 

as GGT (A. R. Carter et al., 2019). Our analysis highlights physical activity 

as a mediator of alcoholic liver cirrhosis. This could be possibly due to the 

impact that physical activity has on BMI and therefore non-alcoholic fatty 

liver disease as an important source for liver cirrhosis.  

Our initial agnostic analysis showed associations between 

erythrocyte phenotypes and alcohol consumption. Our MR analyses 

showed a positive causal relationship between wine consumption and 

erythrocyte characteristics. Grape and wine products contain substantial 

amount of iron (S. Galani-Nikolakaki, N. Kallithrakas-Kontos, & A. A. 

Katsanos, 2002) that is a fundamental trace element in production of 

erythrocytes. In our study, alcohol consumption was linked to increased 

MSCV, MCV, and MCH. Severe alcoholism has been associated with 

anaemia and raised reticulocyte count and size (M. Myrhed, L. Berglund, 

& L. E. Böttiger, 1977) (H. S. Ballard, 1997). Toth et al. showed increased 

hematologic parameters in 39 healthy non-smoking volunteers after 

exposure to red wine (A. Toth et al., 2014). Non-alcoholic properties of 

red wine have been shown to act as antioxidant (I. Tedesco et al., 2000). 

Our study highlighted that beer/cider consumption was linked to 

serum urate. Excess alcohol consumption is well documented to be linked 

to hyperuricemia (E. W. Campion, R. J. Glynn, & L. O. DeLabry, 1987) (Y. 

H. Jee, K. J. Jung, Y. B. Park, W. Spiller, & S. H. Jee, 2019). Specifically, 

beer and spirits have been shown to be linked to increases serum urate 
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compared with other types of alcoholic drinks (H. K. Choi & G. Curhan, 

2004; Angelo L. Gaffo et al., 2010). 

Our analysis benefited from the large sample size and the rich 

phenotyping of the UK biobank cohort (Cathie Sudlow et al., 2015) and 

many MR studies we performed to investigate the causality of these 

associations. This increased our statistical power to detect traits 

associated with alcoholic beverage consumption (Xue Li et al., 2018). 

Furthermore, our beverage-specific agnostic approach reduces bias in our 

results, ensuring identification of novel traits associated with alcohol 

consumption (Clare Bycroft et al., 2018). Finally, mediation analysis gave 

us a better understanding of the relationships between alcohol associated 

traits and the alcohol related diseases (Eleanor Sanderson, 2021). 

Our MR analysis was limited by the lack of beverage specific genetic 

instruments (e.g. instruments specific to beer/cider or spirit 

consumption). This would have allowed us to test for causal links specific 

to these beverages and not be limited to instruments associated with 

general alcohol consumption. One possible reason for this limitation 

could be that genetic components have been shown to account for a small 

amount of variance in alcohol consumption (Michelle Taylor, Andrew J. 

Simpkin, Philip C. Haycock, Frank Dudbridge, & Luisa Zuccolo, 2016). In 

our study, we had 34 self-reported traits. Self-reported data (e.g. physical 

exercise) are less generalizable compared to a measured phenotype (e.g. 

BMI) due to recall bias. Our conservative approach in performing 

multiple stage of analyses starting from agnostic association analysis, MR 

analysis, PheWAS and mediation analysis that made use of various data 

sources ensures improvement in accuracy of the results presented. 

Conclusion 

We took an agnostic approach to identify the causal genetic factors 

associated with alcoholic beverage consumption. Our analysis identified 

traits, a liver enzyme and diseases with direct or mediated causal links 

with increased alcohol consumption. Our findings also imply that GGT 

may mediate the effect of alcohol dependence. 
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