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Abstract: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the 

world. Sustained hepatic inflammation is a key driver of the transition from simple fatty liver to 

nonalcoholic steatohepatitis (NASH), the more aggressive form of NAFLD. Hepatic inflammation 

is orchestrated by chemokines, a family of chemoattractant cytokines, which are produced by 

hepatocytes, Kupffer cells (liver resident macrophages), hepatic stellate cells, endothelial cells, and 

vascular smooth muscle cells. Over the last three decades, accumulating evidence from both clinical 

and experimental investigations demonstrated that chemokines and their receptors are increased in 

the livers of NAFLD patients and that CC chemokine ligand (CCL) 2 and CCL5, in particular, play 

a pivotal role in inducing insulin resistance, steatosis, inflammation, and fibrosis in the liver disease. 

Cenicriviroc (CVC), a dual antagonist of these chemokine’s receptor, CCR2 and CCR5, has been 

tested in clinical trials in patients with NASH-associated liver fibrosis. Additionally, recent studies 

revealed that other chemokines, such as CCL3, CCL25, CX3C chemokine ligand 1 (CX3CL1), CXC 

chemokine ligand 1 (CXCL1), and CXCL16 can also contribute to the pathogenesis of NAFLD. Here, 

we review recent updates on the roles of chemokines in the development of NAFLD and their block-

ade as potential therapeutic approaches. 
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1. Introduction 

Chemokines (Greek -kinos, movement) are a large family of chemotactic cytokines 

that involve immune and inflammatory responses through the chemoattraction and acti-

vation of leukocytes [1]. These small proteins (approximately 8–12 kilodaltons) are classi-

fied into four different subfamilies (CC, CXC, CX3C and XC) based on the presence of four 

cysteine residues in conserved locations of N-terminal that are key to forming their 3-

dimensional shape [2]. To date, approximately 50 chemokines expressed in various cell 

types and tissues have been identified in humans and mice [3]. In the liver, not only Kup-

ffer cells, but also hepatocytes, hepatic stellate cells (HSCs), liver sinusoidal endothelial 

cells and vascular smooth muscle cells can secrete chemokines upon activation [4]. 

Chemokine receptors are group of ~20 typical G protein-coupled seven-transmem-

brane proteins and are expressed in various leucocytes and immune cells. Directed migra-

tion of specific chemokine receptor expressing cells allows their recruitment along a chem-

okine concentration gradient [5]. Upon ligand binding, chemokine receptors mediate cel-

lular calcium influx through phosphatidylinositol 3-kinase and small Rho guanosine tri-

phosphatase activation, thereby increasing the avidity of leukocyte integrins that promote 
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leukocyte’s interaction with intercellular adhesion molecules on sinusoidal endothelial 

cells [6,7]. Chemokines regulate not only immune cell recruitment during inflammation 

through ‘inflammatory chemokines’ (CCL2, CCL3, CCL5, etc.) but also the trafficking of 

innate immune cells at homeostasis through ‘homeostatic chemokines’ (CXCL12, etc.) and 

modulate the functions of nonimmune cells, such as fibrogenic HSCs [8–10]. 

Regarding the pathogenesis of NAFLD, relevant chemokines and their receptors 

have been well summarized by the excellent reviews [11,12]. Particularly, the pathophys-

iological roles of CCL2 and CCL5 in the development of NAFLD have been well studied 

in both NAFLD patients and animal models. In NAFLD patients, elevated serum and he-

patic mRNA levels of CCL2 increase the recruitment of CCR2-positive bone marrow-de-

rived monocytes into the liver, resulting in further hepatic inflammation, fibrosis, and ste-

atosis [13–15]. Accordingly, genetic deletion or pharmacological inhibition of CCR2 has 

been reported to improve NASH and insulin resistance in mice [16,17]. CCL5 production 

is also increased by excessive lipid accumulation in the liver [18]. CCL5 is required for the 

progression of liver fibrosis by binding to CCR1 on liver macrophages and CCR5 on he-

patic stellate cells [19,20]. Based on these observations, cenicriviroc (CVC), CCR2 and 

CCR5 dual antagonist, that was originally developed as an anti-HIV drug, is expected to 

improve NASH and has been tested in clinical trials in patients with NASH-associated 

liver fibrosis [21,22]. 

In this review, we will highlight recent updates on the roles of chemokines, including 

CCL3, CCL25, CXCL1, CXCL16, and CX3CL1 (Figure 1), in the development of NAFLD 

and their blockade as a potential therapeutic approach. 

 

Figure 1. Chemokines and chemokine receptors highlighted in this review. 

BM, Bone marrow; KCs, Kupffer cells; LMφ, Liver macrophages; HSCs, Hepatic stellate cells. 

2. An update on chemokine system in the development of NAFLD 

2.1. CCL3-CCR1 and CCR5 

CCL3 (known as macrophage inflammatory protein-1α) is expressed in macrophages 

and secreted to recruit macrophages themselves, various leukocyte subtypes, and T cells 
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to inflamed sites [23,24]. Various proinflammatory stimuli, such as viral infections, lipo-

polysaccharide, tumor necrosis factor-α (TNF-α), interferon-γ, and interleukin-1β (IL-1β) 

can induce the expression of CCL3 [25,26]. CCL3 signals through its receptor, CCR1 and 

CCR5. T cells, eosinophils, and neutrophils express CCR1 [27]. NK cells and subsets of 

resting memory T cells, including some but not all Th1 cells, express CCR5 [27]. Mono-

cytes and mature macrophages express both CCR1 and CCR5 [28]. 

The progression of some inflammatory diseases, including atherosclerosis [29], rheu-

matoid arthritis [30], and NAFLD [31], is associated with the increased expression of CCL3 

and its receptors. Serum CCL3 levels were significantly higher in NASH patients with 

advanced fibrosis compared with healthy controls [31]. Recently, we also reported that 

the serum and hepatic protein levels of CCL3 were significantly increased in patients with 

NASH compared with those of healthy controls [32]. Unlike a previous report [31], how-

ever, patients with simple fatty liver also showed a trend for increased serum CCL3 levels 

and a significant increase in hepatic CCL3 protein expression compared to those of 

healthy controls [32]. Additionally, the circulating levels of CCL3 were increased accord-

ing to the histological severity of ballooning, steatosis, and lobular inflammation [32]. 

These results suggest that CCL3 might be a causative factor, not just as a result of ad-

vanced fibrosis, in NAFLD development. 

We further investigated the role of CCL3 in the pathogenesis of NAFLD in mice fed 

a high-cholesterol and high-fat (CL) diet, a dietary model of NASH [33,34]. We found that  

the circulating levels and hepatic expression of CCL3 were elevated in the CL diet-fed 

mice and the hepatic source of CCL3 is particularly M1-like macrophages, rather than M2-

like macrophages and other cell types [32]. Genetic deletion of CCL3 attenuated the CL 

diet-induced steatohepatitis and hepatic insulin resistance, at least partly, by decreasing 

macrophage recruitment and restoring alternative macrophage activation in the liver [32]. 

Moreover, the specific deletion of CCL3 in bone marrow cells eased CL diet-induced ste-

atohepatitis [32]. These results suggest that CCL3 plays a certain role in the recruitment 

of bone marrow-derived monocytes into the liver and M1 polarization of liver macro-

phages, which contributes to chronic inflammation and hepatic insulin resistance in the 

development of NAFLD. 

2.2. CCL25-CCR9 

The chemokine CCL25 is selectively and constitutively expressed in the thymus and 

small intestine. CCR9, the sole functional receptor of CCL25 [35], is expressed on thymo-

cytes and intestinal lymphocytes [36]. The CCL25-CCR9 axis is crucial for mucosal lym-

phocyte recruitment to the small intestine followed by accumulating CCR9+CD4+ tissue-

infiltrating T cells in both Crohn's disease and a murine model of inflammatory bowel 

disease [37–39]. With regard to liver immunology, CCR9+ macrophages play a pathogenic 

role in a murine acute hepatitis model and humans [40]. Peripheral blood samples from 

patients with acute hepatitis had larger numbers of TNF-α-producing CCR9+ monocytes 

than healthy volunteers [40]. Similarly, in concanavalin A-injected mice, bone marrow-

derived CCR9+ macrophages accumulate in the liver, which produce high levels of TNF-

α and promote Th1 differentiation of naive CD4+ T cells, thereby contributing to acute 

liver inflammation [40]. Additionally, Morikawa et al. provided multiple lines of evidence 

indicating that the CCL25-CCR9 axis also plays a pivotal role in NASH pathogenesis [41]; 

1) Serum CCL25 and hepatic CCR9 and CCL25 levels were increased in patients with 

NASH compared with healthy volunteers and patients with simple fatty liver, 2) CCL25 

was expressed in CD31+/LYVE1+ sinusoidal endothelial cells, while CCR9 was expressed 

in CD68+ macrophages and GFAP+/α-SMA+ HSCs in the livers of patients with NASH; 

whereas the numbers of these CCR9+ cells were significantly lower in control samples, 3) 

CCR9-deficient mice showed alleviated diet-induced steatohepatitis associated with the 

decreased number of CD11b+ inflammatory macrophage accumulation in the liver, 4) 

Consistent with human NASH, CCR9 was also expressed on HSCs in NASH mice and 

CCR9-deficient HSCs show less fibrogenic phenotype, and finally 5) A CCR9 antagonist, 
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vercirnon (CCX282-B) ameliorated steatohepatitis and the development of diethylnitros-

amine-induced hepatocellular carcinoma in a high-fat diet-fed mice. These results indicate 

a therapeutic potential of CCR9 blockade in NAFLD. 

2.3. CXCL1-CXCR2 

CXCL1 is one of the major chemoattractants for neutrophils [42]. After binding to its 

receptor CXCR2, CXCL1 activates PI3K/Akt, MAP kinases, or phospholipase-β signaling 

pathways, resulting in increased recruitment of neutrophils into inflamed sites [43]. 

CXCL1 is also involved in the processes of wound healing, angiogenesis, tumorigenesis, 

and cell motility [44]. CXCL1 is highly expressed in the liver of NASH patients but not in 

simple fatty livers in obese individuals or in high-fat diet (HFD)-fed mice [45,46]. In the 

choline-deficient amino acid defined (CDAA) diet-induced mouse NASH model, hepatic 

mRNA levels of CXCL1 are increased in a toll like receptor 4 (TLR4)-MyD88-dependent 

manner, resulting in increased neutrophil infiltration associated with hepatic inflamma-

tion and fibrosis [47]. Additionally, adenoviral overexpression of CXCL1 in the liver is 

sufficient to progression from steatosis to steatohepatitis in HFD-fed mice by inducing 

hepatic neutrophile infiltration, oxidative stress, and hepatocyte apoptosis [48]. These 

studies indicate the importance of CXCL1/CXCR2-mediated neutrophile recruitment dur-

ing NAFLD development. 

2.4. CXCL16-CXCR6 

In conjunction with CD4, CXCR6 can serve as a co-receptor for the entry of human 

and most simian immunodeficiency viruses (human immunodeficiency virus type I and 

simian immunodeficiency virus) [49]. Similar to CCR5 and CXCR3, the expression pattern 

of CXCR6 is restricted to memory/effector T cells such as natural killer T (NKT) cells [50–

51] and CD8+ T cells [52]. In the liver, CXCR6+ NKT cells patrol liver sinusoids and provide 

intravascular immune surveillance of pathogens [53]. CXCL16, a membrane-bound ligand 

for CXCR6, is expressed on hepatocytes and biliary epithelial cells in the portal tracts and 

on sinusoidal cells in both normal and chronically inflamed liver tissue such as hepatitis 

C [54]. CXCL16 promotes adhesion of CXCR6+ cells to cholangiocytes and hepatocytes by 

triggering conformational activation of β1 integrins and binding to vascular cell adhesion 

molecule-1 (VCAM-1), thereby promoting liver inflammation [54]. Regarding NAFLD, 

Jing et al. demonstrated that serum levels of CXCL16 was elevated in NAFLD patients 

and that CXCL16 was strongly expressed around steatotic hepatocytes in liver biopsy 

specimens [55]. Additionally, in co-culture of murine hepatocytes and HSCs, lentiviral 

overexpression of CXCL16 increased lipid accumulation and mitochondrial stress in 

hepatocytes and induced activation and proliferation of HSCs [55], suggesting that the 

CXCL16-CXCR6 axis mediates the crosstalk between hepatocytes and HSCs in NAFLD 

development. 

In the liver, CXCR6 is also expressed in CD8+ T cells. The auto-aggression of CD8+ T 

cells may be involved in the development of hepatocellular carcinoma from NASH. 

CXCR6+ CD8+ T cells accumulate in the livers of preclinical mouse model of NASH (mice 

fed a choline-deficient and HFD) or of patients with NASH [52]. The T cells are susceptible 

to metabolic stimuli such as acetate and extracellular ATP, showing auto-aggressive kill-

ing of cells in an MHC-class-I-independent fashion [52]. 

2.5. CX3CL1-CX3CR1 

CX3CL1, also known as fractalkine, a membrane-anchored chemokine, is expressed 

on epithelial cells, dendritic cells, and neurons and could be induced by inflammatory 

cytokines, such as TNF-α and IFN-γ [56–61]. CX3CL1 serves as integrin-dependent adhe-

sion and promotes the retention of specific receptor CX3CR1-expressing leukocytes. The 

receptor is mainly expressed on circulating monocytes, tissue-resident macrophages, den-

dritic cells, and T cells [56,62,63]. The N-terminal domain of CX3CL1, containing a CX3C 

motif, can be cleaved by ADAM Metallopeptidase Domain 10 (ADAM10) [64] and 
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ADAM17 [65], yielding a soluble form that also ligates CX3CR1 and exerts potent chem-

otactic activity [66].  

Similar to the other chemokines, both animal and clinical studies have demonstrated 

that CX3CL1-CX3CR1 signaling is enhanced in various inflammatory diseases, such as 

rheumatoid arthritis [67], atherosclerosis [68,69], and chronic hepatitis C [70]. However, 

the pathophysiological role of CX3CL1-CX3CR1 signaling in NAFLD development re-

mains controversial. In the mouse liver, CX3CL1 is expressed in Kupffer cells/liver mac-

rophages and HSCs [71], while CX3CR1 is mainly expressed in Kupffer cells [71,72]. Sutti 

et al. reported that CX3CR1-positive monocyte-derived dendritic cells (moDCs) contrib-

ute to the hepatocyte injury by producing TNF-α in a murine model of steatohepatitis 

induced by methionine/choline-deficient (MCD) diet [73] or carbon tetrachloride (CCl4) 

[74]. Following CCl4 exposure, whole body CX3CR1-deficient mice (CX3CR1gfp/gfp) 

showed the decreased moDCs recruitment into the liver associated with incomplete mat-

uration of monocytes into moDCs [74]. Additionally, in C57BL/6 wild-type mice, treat-

ment with the CX3CR1 antagonist CX3-AT eased CCl4-induced hepatic injury and inflam-

mation along with the decreased moDCs accumulation in the liver [75]. These results sug-

gest that CX3CR1 mediates hepatic inflammation by driving moDCs recruitment and de-

velopment. In contrast, Aoyama et al. reported that whole body CX3CR1 knockout 

(CX3CR1-/-) mice exposed to CCl4 exhibited increased inflammatory cell recruitment into 

the liver and pro-inflammatory cytokine/chemokine production, including TNF-α, IL-1β, 

CCL2, and CCL5, whereas decreased expression of anti-inflammatory IL-10 and arginase-

1 in Kupffer cells, resulting in enhanced HSCs activation and the following liver fibrosis 

[71]. Additionally, our group reported that CX3CR1-/- mice were more prone to the HFD-

induced obesity, insulin resistance, and hepatic steatosis and inflammation compared 

with wild-type control mice [76]. We also found that CX3CL1 expression was decreased 

in the epididymal white adipose tissue (eWAT) of HFD-induced obese C57BL/6J mice, 

and the long-term (4 weeks) in vivo expression of CX3CL1 by pLIVE®  vector (plasma 

CX3CL1 concentration; 220–250 ng/mL vs. 150–170 ng/mL by empty vector) alleviated in-

sulin resistance and inflammation in the liver and eWAT of obese mice [76]. Collectively, 

this discrepancy in previous studies may be due to the different roles of the CX3CL1-

CX3CR1 signaling in different cell types/tissues. 

3. Chemokine-chemokine receptor axis as a therapeutic target of NAFLD (small mole-

cules and food factors) 

3.1. Cenicriviroc (CVC) 

Since CCR2 and CCR5 play an important role in the infiltration of myeloid cells and 

activation of HSCs, CVC, a once-daily, orally available CCR2/CCR5 dual antagonist, has 

been expected to improve NASH by suppressing both inflammation and fibrosis, as 

shown in animal models of steatohepatitis [77,78]. In the Phase 2b CENTAUR study 

(NCT02217475) in adults with NASH and liver fibrosis (NAFLD activity score ≥4, and 

NASH Clinical Research Network stage 1-3 fibrosis), CVC treatment showed a favorable 

safety and tolerability profile and improved liver fibrosis without worsening of steato-

hepatitis compared with placebo [22]. However, unfortunately, the Phase 3 AURORA 

study (NCT03028740), enrolled 1778 participants, of which 1293 participated in Part 1 of 

the study [21], was terminated early due to lack of efficacy based on the results of the 

planned interim analysis of Part 1 data. The disappointing results of the Phase III trial 

likely reflect the complexity of the pathogenesis of NAFLD, which involves diverse im-

mune and metabolic pathways. Currently, for CVC, a Phase IIb study testing the combi-

nation therapy with a farnesoid X receptor agonist candidate, involving bile acid, choles-

terol, and lipid and glucose metabolism [79,80], for treating NASH has been planned. 

3.2. Dietary Carotenoids and Sulforaphane 

Many epidemiological studies have demonstrated that the development of NAFLD 

is closely linked to lifestyle factors (e.g. nutrition, physical activity, etc.) [81]. A nutritional 
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intervention with fruits and vegetables could be effective in preventing NAFLD since di-

etary factors, including antioxidant carotenoids, are useful for decreasing the risk of in-

flammation-related diseases, including cancer, cardiovascular diseases, and obesity [82–

84]. β-Cryptoxanthin and lycopene, carotenoids that specifically exist in Citrus unshiu 

(Satsuma mandarin orange) and Solanum lycopersicum (tomato), respectively, are rela-

tively abundant in human blood [85–87] and have been reported to provide beneficial 

effects in a murine model of NAFLD. The supplementation of these carotenoids attenu-

ated hepatic lipid accumulation and fibrosis in the CL diet- or HFD-fed mice along with 

the decreased accumulation of T cells in the liver and enhanced anti-inflammatory M2-

dominant status of liver macrophages [88–90]. The mechanism of this action was medi-

ated, at least partly, through the downregulation of chemokines, including CCL2, CCL3, 

CCL5, and CXCL10 [88–90].  

Sulforaphane, an isothiocyanate derived from cruciferous vegetables, such as broc-

coli, is a potent inducer of nuclear factor (erythroid-derived 2)–like 2 (Nrf2), a master tran-

scription factor that regulates oxidative stress responses [91,92]. Besides antioxidative ef-

fects, sulforaphane has anti-inflammatory properties, suppressing pro-inflammatory IL-8 

and CCL2 synthesis through inhibiting NF-κB, STAT6, and MAP kinase pathways [93,94]. 

We also reported that broccoli extract supplementation mitigated HFD-induced insulin 

resistance, hepatic steatosis, and the upregulation of CCL2-CCR2 axis [95]. Improved 

NAFLD by the broccoli extract supplementation was associated with decreased hepatic 

macrophage accumulation and M2-dominant polarization of hepatic and adipose macro-

phages [95]. Additionally, the randomized, placebo-controlled, double blind trial con-

ducted by Kikuchi et al. demonstrated that supplementation with a dietary dose of broc-

coli extract for 2 months significantly decreased plasma liver enzymes, ALT, and AST in 

male participants, suggesting improved fatty liver by sulforaphane [96]. Further nutri-

tional intervention studies, including large, long-term randomized clinical trials with his-

tological assessment of NAFLD are warranted. 

4. Conclusions 

Accumulating evidence from in vitro and in vivo studies reveals that some chemo-

kine-chemokine receptor axes play a central role in liver inflammation during the devel-

opment of NAFLD. However, as the result in AURORA study, therapeutic applications 

of targeting chemokines and chemokine receptors to resolve steatohepatitis or fibrosis are 

still challenging. Further basic and clinical research is essential to better understand the 

molecular mechanisms by which the chemokine system mediates hepatic and adipose in-

flammation and their interaction in the progression of NAFLD. To improve response rates 

for patients with NAFLD, combination approaches including lifestyle interventions, 

which are personally tailored to the patient’s disease drivers, such as obesity and type 2 

diabetes, must be required. 
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