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Abstract: Deaths and property damage from the flood have increased drastically in the past two 

decades due to various reasons such as increased population, unplanned development and climate 

change. Losses from floods can be reduced by having accurate intelligence of an emerging flood 

situation in order to make timely decisions for issuing early warnings and responding efficiently. 

This paper presents a thorough analysis of the types and sources of intelligence required for flood 

warning and response processes and technology solutions that can be used for capturing such 

intelligence. A structured review, covering a more comprehensive range of published literature on 

Flood Early Warning and Response Systems (FEWRS), was conducted to identify the necessary 

intelligence and the technology that can be used to capture intelligence required for various phases 

of a flood hazard as it develops. Twenty-seven different types of key intelligence required in the 

flood cycle were identified. A conceptual  architecture was identified that illustrates how relevant 

technology solutions can be used to extract intelligence at various stages of a flood event for decision 

making for early warnings and response. 
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1. Introduction 

Flood is a frequently occurring hazard that imposes adverse effects on a significant 

number of human lives and causes substantial economic damage worldwide. It is the 

highest recorded hazard which is responsible for 43% of the total disasters during the 

period 1998 and 2017, according to the joint report by the Centre for Research on the Epi-

demiology of Disasters (CRED) and the United Nations Office for Disaster Risk Reduction 

(formerly UNISDR). The flood was accounted for 2 billion affected population and 142,000 

deaths during the above period [1], and in recent years, flood frequency and its impact 

have been increasing drastically due to climate change and unplanned urban develop-

ment [2, 3]. 

Panwar and Sen [4] suggest that the economic impact of natural disasters such as 

floods is more prominent in developing countries, and the CRED/UNISDR report [1, 5] 

discloses that deaths by natural disasters in low-income countries are seven times higher 

than that of high-income countries. The key contributing factors for such increased losses 

have been recognised as population growth and rapid urbanisation [6, 7]. Many research-

ers [5, 8] have asserted that such losses and causalities can significantly be reduced by 

implementing an effective Flood Early Warning and Response Systems (FEWRS). In this 

regard, Sendai Framework for Disaster Risk Reduction (SFDRR) emphasises the need for 

the availability of multi-hazard warning systems and disaster risk information to the com-

munity by the end of 2030. SFDRR promotes the necessity for having an integrated and 

coordinated approach to “generate, process and disseminate” disaster risk information 

using state-of-art technologies as a priority action in the member countries [9].  

A study conducted by Rogers [10] reports that an effective forecast and warning sys-

tem, based on accurate real-time intelligence on disasters, can reduce the average annual 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 May 2022                   doi:10.20944/preprints202205.0236.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202205.0236.v1
http://creativecommons.org/licenses/by/4.0/


 

 

flood damage by up to 35%. Furthermore, in Seng [11], the author asserts that such a sys-

tem can reduce vulnerability and mortality rates. The reasons for the existence of ineffec-

tive early warning systems that cause higher death rates are considered to be due to bu-

reaucratic water management and digital divide related issues [12], resulting in the lack 

of timely information for issuing warnings [8]. Therefore, the availability of an infor-

mation system (IS) that can offer accurate and timely data with high service quality and 

user satisfaction has been recognised as one of the key success factors for implementing 

efficient FEWRSs [8]. 

Intelligence is crucial for making sound decisions. Oxford dictionary defines intelli-

gence as “the ability to acquire and apply knowledge and skills”. According to Lowenthal 

[13], intelligence refers to information that meets the stated or understood needs of poli-

cymakers. Further, the author emphasises that “all intelligence is information, but all in-

formation is not intelligence”. DIKIW hierarchy defines the relationship between data, 

information, knowledge, intelligence and wisdom[14]. In this hierarchy, raw data is pro-

cessed to extract valuable information, whereas intelligence is obtained by transforming 

information and knowledge. Albus states that intelligence is needed to understand and 

identify risks to make future plans [15].  

In the quest for intelligence for FEWRSs, a broad range of technologies such as Inter-

net of Things (IoT) [16], big data [17] and near real-time satellite data [18] are used to 

capture critical information such as rainfall, rising river levels and floor rates to detect 

flood threats. Furthermore, integrated information systems [19, 20], geographic infor-

mation systems (GIS) [21], and simulation techniques [22], are being used to process such 

information and to generate early warnings. Increasingly, crowdsource technologies 

based on social media [23], mobile apps [24], volunteer GIS [25] are being used for engag-

ing communities in reporting incidents during the response phase. However, it is im-

portant to establish a clear understanding of the “intelligence” required and “technolo-

gies” that can be used in developing early warning systems. Therefore, this paper presents 

a full range of intelligence needed for flood warning and response phases, captured 

through a review of academic papers published between 2015 and 2020. The study also 

explores the technology that can be used to provide such intelligence for the decision-

makers during various flood warnings and response stages. 

2. Materials and Methods 

The research question established in this review is “what are the types and sources 

of intelligence required for effective early warning and response for flood events ?”. The 

methodology established by Webster and Watson (2002) was followed to identify and an-

alyse the relevant literature for this review. A set of keywords was defined to search for 

the relevant research articles, and an inclusion/exclusion criterion was used to determine 

relevant and quality papers. A search criterion was established to filter relevant articles 

by conducting a “title” search by using a combination of keywords. The keywords 

“floods’, “response” and “warning” were used in the search since the context of this study 

is “floods” within the scope of disaster management phases of “response” or “warning”. 

The keywords “Information” and “Intelligence” were included to limit the articles that 

are written in the specific area of interest in this review. These keywords were combined 

to create the generic search string “Flood” AND (“Warning” OR “Response”) AND (“In-

formation” OR “Intelligence”). 

The keyword combination was used on Scopus, Web of Science, Wiley, Springer, Sci-

ence Direct and Gale databases, which resulted in the retrieval of 156 records. These da-

tabases allowed literature search within a broad range of high-ranked journals and con-

ference proceedings. Furthermore, a manual search in google scholar has added 16 more 

articles to the investigation. The overall search was limited to articles published from 2015 

onwards and written in English. 

Following the above step, the title and abstract of all the papers were thoroughly 

examined to remove duplicate records and false-positive. This exclusion step resulted in 
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65 articles in the database for further in-depth analysis. During the in-depth analysis, the 

following inclusion criteria were used to select suitable papers after studying the full texts 

of: (i) the articles written on flood warning and response systems and processes (ii) the 

articles that describe the use of information and intelligence in the warning and response 

process. After the in-depth analysis phase, fifty-four papers (54) were selected for the 

structured review after studying the full text (see Error! Reference source not found.). 

Only the papers which focused on the intelligence for detecting, monitoring and evaluat-

ing the flood hazards during the warning to response stage were included in the above 

screening processes. Contributions that discussed flood hazard and risk assessments, 

flood preparedness, flood management, health and other emergencies were excluded. 

Each research article was analysed and synthesised to extract the state-of-art knowledge 

on intelligence used in flood warning and response stages, and the tools and techniques 

used to derive such intelligence. 

Table 1. Overview of Search Results. 

Source 
Step 01 – Initial 

search 

Step 02 – Removal 

of duplicates, title 

and abstract 

Assessment 

Step 03 – In-depth 

search 

Scopus 47 16 16 

Web of Science 44 13 09 

Willey Cross-

Reference 
18 09 06 

Springer 06 0 0 

Science Direct 

Elsevier 
05 0 0 

Gale 46 16 12 

Google Scholar 16 16 11 

Total 182 70 54 

 

The scope of this review concurs with the flood risk management framework 

adopted by Adelekan [26]. According to Adelekan, planning for flood warning, 

evacuation, and relief are considered sub-activities in the preparedness phase, whereas 

emergency rescue, humanitarian assistance and reconstruction have been identified as 

sub-activities of the response phase. Following this framework, the intelligence related to 

“potential and historical flood inundation, damages and losses” is considered as it belongs 

to the preparedness phase, whereas the intelligence associated with the “actual flood 

levels, damages and losses” is considered as it belong to the response phase (see Error! 

Reference source not found.). 

 

Figure 1. Scope of the intelligence used in the review (adapted from Adelekan [26]). 
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Fundamental stages of early warning systems such as risk knowledge capture, 

monitoring and warning, dissemination and communication of warning, and 

preparedness to response defined by UNDRR [27]) are used to structure the review 

findings. As an outcome of the literature review, the authors aimed to establish a 

relationship among the flooding process, intelligence necessary at various stages of this 

process, and methods (technologies) that can be used to derive this intelligence (Error! 

Reference source not found.). As shown in Error! Reference source not found., flooding 

is a physical process that undergoes several stages, such as the reception of rainfall in the 

river basin and the increment of river water level; downstream inundation; and flood 

impact on the people and infrastructure. Each stage of the flooding process can be sensed 

by various methods and technologies to derive intelligence in order to make decisions. 

 

Figure 2. Conceptual framework for presenting relationships among the flooding process, methods 

for information capture, intelligence and decision making. 

3. Results 

This section may be divided by subheadings. It should provide a concise and precise 

description of the experimental results, their interpretation, as well as the experimental 

conclusions that can be drawn. 

3.1. Research landscape of the contributions 

Figure 3 shows the spread of publications used in this review, between 2015 and 2020,  

Figure 4 shows where the study had taken place, distributed across 26 countries. The main 

contributors being China (3 articles), Philippines (3 articles), Pakistan (3 articles) and USA 

(5 articles). However, 10 contributions were either review papers, or were not classified 

under a particular country. 

 

Figure 3. Distribution of articles based on the year of publication. 
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Figure 4. Distribution of articles based on the country of affiliation. 

3.2. Intelligence used for flood warning and response phases 

The types of intelligence that were identified as necessary for issuing flood warnings 

and responses from our review can be categorised as follows: intelligence on flood 

hazards; intelligence related to the population at risk; intelligence on impacted 

infrastructure; intelligence on resources and capacities required during the response 

phase. Error! Reference source not found. below summarises the type of intelligence 

under each category with their attributes, purpose/use, and citations.  

Table 2. Intelligence required for flood warning and response. 

Category Intelligence           Attributes) Purpose / Use Reference 

Intelligence on 

flood hazards 

Rainfall values  

 

Real-time rainfall Flood forecasting in real-time 
[23, 28-32] [31, 

33, 34] 

Historical rainfall 

Predict a possible flood scenario 

from past flood incidents for a given 

rainfall.  

[35] 

Duration of rainfall 
Quantify the rainfall and forecast the 

floods 
[28, 36] 

River Flow/ water flow rate (total volume 

passed in a given location) 
Forecast floods [35], [37] 

Intelligence on 

flood hazards 

River and flood 

water level 

 

Measured from 

sensors or manual 

methods Assess whether the river is about to 

be flooded or has flooded and issue 

warnings accordingly.    

[16, 24, 25, 34, 

37-41] 

 

Observed by the 

community 
[23, 25, 42] 

forecasted by 

simulations 

[19, 43-47] 

 

Flood inundation 

inundation extent 

Establish a spatial representation of 

floods to understand the impacted 

area. 

[17, 18, 21-23, 30, 

36, 42, 48-61] 

 

inundation depth 
Identify the hazard/risk level for the 

community and infrastructure 

[23, 25, 29, 50, 

60] 

 

Flood intensity 

Flood frequency / 

flood magnitude 

/return period 

Predict the hazard levels and use 

them to evaluate possible damage to 

the community, infrastructure and 

natural environment.  

[25, 52, 62]  [22, 

36, 55, 56, 62-64] 

0

2

4

6

8

10

12

A
u

st
ra

lia

B
an

gl
ad

es
h

B
ra

zi
l

C
an

ad
a

C
h

in
a

Fr
an

ce

G
er

m
an

y

In
d

ia

In
d

o
n

es
ia

Ir
an

Ja
p

an

M
al

ay
si

a

M
o

ro
cc

o

N
ep

al

N
o

rd
ic

 c
o

u
n

tr
ie

s

P
ak

is
ta

n

P
h

ili
p

p
in

e
s

P
o

rt
u

ga
l

Sa
u

d
i A

ra
b

ia

Sl
o

va
ki

a

Sp
ai

n

St
. L

u
ci

a

Ta
n

za
n

ia

Th
ai

la
n

d

U
K

U
SA

U
n

cl
as

si
fi

ed

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 May 2022                   doi:10.20944/preprints202205.0236.v1

https://doi.org/10.20944/preprints202205.0236.v1


 

 

Historical events 
Historical flood 

event & level 

Understand inundation levels and 

impact caused by past flood events 

and extrapolate this knowledge to an 

emerging flood situation.  

[39, 42, 65] 

Flood propagation 

time  

lead time, eg. 

upstream to 

downstream) or 

flood arrival time 

based on predicted 

or actual rainfall  

 

Calculate lead time (travel time) of 

floods to plan early warnings, 

evacuation and response. 

[30, 44, 45, 51, 

55, 57, 58, 61, 62, 

66] 

Soil moisture level 
Determine the level of water 

infiltration and flood forecasting  
[32, 34] 

 

Intelligence 

related to the 

population at 

risk 

Mobility of Crowd 
Monitor movements of people 

during a disaster  
[17, 48] 

Potentially Affected population  

Plan for better response, evacuation, 

relief distribution and family 

reunification 

[17, 24, 48, 56, 

63, 67]  

population density / demography and 

distribution 

Useful for response planning and 

relief operations 
[19, 54, 59] 

Basic Needs (Food, water etc.) 
Acquisition and managing basic 

needs during the response period 
[56] 

Evacuation (estimated and actual) 
Evacuation planning and relief 

management 
[22, 49] 

Affected Population  
Plan rescue operation and provide 

emergency treatments 

[24, 48, 56, 68, 

69] 

 

 

Intelligence 

related to 

infrastructure 

at risk 

Potential impact 

Infrastructure 

Develop response plan in 

preparedness phase to ensure 

efficient and effective response 

[19, 50, 52, 70, 

71] 

 

 

Roads 

Make necessary re-routing of traffic 

as well as identify routes and 

transport methods to reach  

[49, 63, 67, 70] 

Actual impact  

Infrastructure 
Conduct actual damage assessment 

during and after the disaster to 

support ongoing response as well as 

future risk management and 

response planning 

[29, 57, 72, 73] 

Roads [17, 49, 53, 56] 

Intelligence on 

Resources and 

Capacities 

required 

during the 

response 

phase 

Resources (helipads, evacuation centres, 

medical services etc) 

 

Plan and co-coordinate response. [59, 63] 

Active NGOs and other voluntary 

organisation 

 

Advance response planning [59, 63] 

Food and Supply Information  

Understand help available for 

humanitarian support during 

response.  

[59] 
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Service range (coverage) of responders 

(fire brigade, military, other emergency 

services) 

Plan and coordinate response. [67] 

3.3. Intelligence on Flood Hazards 

The inter-relationship between the stages of the flooding process, numerous 

intelligence captured to detect and monitor each stage, and tools and techniques that is 

being used to capture intelligence are discussed in this section. 

Rainfall 

Rainfall data at various point locations are typically captured through rain gauges 

[20, 23, 28-32], and its spatial variability is captured through doppler and satellite radar 

systems [31, 33]. Such live rainfall data, as well as historical rainfall data, are used as input 

to the hydrological models for flood forecasting [35]. However, in cases where rain gauge 

data is not available, satellite observation is used to monitor and predict floods [74]. In 

some cases, the analysis of past flood events and their magnitude has been used as the 

basis for preparing and responding to emerging flood events [31, 33]. The study reported 

in [32], shows how the analysis of 35 years of soil moisture, data derived from the satellite, 

integrated with gridded rainfall and elevation can be used for flood forecasting [32]. 

River Water Level 

Measuring the water level could be classified into three categories based on the 

method employed to determine the water level: measured water level (by IoT) [16, 24, 25, 

38-41], observed water level (by the public) [23, 25, 42], and forecasted water level [19, 43-

46] through simulations. Many modern early warning systems have employed IoT 

devices such as automated river gauges to continuously measure real-time river water 

levels with greater accuracy [16, 24, 25, 38-41]. On the other hand, active and passive social 

media systems and crowdsourcing platforms are also being used to report water levels 

observed by the community as text and photographs with time and location data [23, 25, 

42]. The crowdsourcing methods are beneficial for areas that do not have expensive 

sensor-based water level monitoring systems [25, 42]. The integration of these two 

approaches (IoT and crowdsourcing) can complement each other and enhance the 

confidence level of the water level measurements during disaster situations [25]. 

In order to gain further lead time for issuing an early warning for evacuation, 

predictive models such as hydrological models and rainfall-runoff inundation models [19, 

43-46] are being used to forecast water levels at a given point. The accuracy of these 

models can be enhanced by providing continuous real-time data gathered through both 

IoT and crowdsourcing [16, 24, 25, 38-41]. 

River Water Flow 

River water flow is a key parameter used in hydrology that measures the amount of 

water passing through a specific point over time. The flow rates are typically measured 

by gauge stations and are used in hydrology models [35] for predicting potential floods 

[37]. 

Flood Inundation  

Flood inundation extent and inundation depth are two vital intelligence used in flood 

warning and response systems. At present, near real-time satellite data is being used to 

collect such intelligence during and post-event scenarios [17, 18, 21, 30, 42, 48, 50, 57].  

Radar data analysis [18] tends to be the most popular method in flood inundation 

mapping during the rainy season as it has the capability to penetrate clouds. In addition 

to the satellite, airborne sensors attached to UAVs, that can supplement or even replace 
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traditional satellite remote sensing systems  can detect spatial coverage of flood disasters 

[21].   

Passive crowdsourcing media such as Twitter, Facebook[23] and active 

crowdsourcing platforms such as Ushahidi[49] have become popular in collecting 

information on flood inundation and damages [56]. Citizen observation of the flood events 

in the form of photographs uploaded via social media and crowdsourcing applications 

has shown valuable for the decision making in response [42]. In Brouwer, Eilander [60], 

both probabilistic and deterministic approaches have been used to transform the Twitter 

response to flood extent. The review articles by Tomaszewski, B., et al. (2015) and Yu et 

al. (2018), elaborate on how the combination of satellite and crowed source information is 

being used to determine the flood extent in near real-time [17, 21]. Two case studies from 

the Philippines and Pakistan, reported in Jongman, Wagemaker [57], show how the 

combination of multiple sources such as near real-time satellite data and Twitter response, 

collected from the community, was useful for monitoring the flood extent. These case 

studies have demonstrated how the integration of traditional remote sensing data with 

real-time social media data could increase the situational awareness of the flood hazard 

context in the form of location, time, cause and impact hence improving the efficiency and 

speed of the response action. 

Many are using numerical models and GIS-based inundation mapping to determine 

the possible inundation zones, which allows advanced planning for disaster response [20, 

22, 33, 35, 64]. Such intelligence for response planning by disaster agencies offers sufficient 

time to mobilise their teams to respond efficiently and warn citizens well in advance.  

Along with the inundation extent, flood depth can also be predicted before and after 

a flood [23, 25, 29, 50, 60] to estimate the impact on the people and properties in advance 

by relevant authorities [25, 75]. Flood depth is typically calculated using hydrological 

models [25], but recently social media systems such as Twitter have been used to collect 

the flood inundation depth [23]. 

Flood Arrival Time  

Flood arrival time (lag time) is known as the time difference between rainfall time 

centroid and peak discharge [62, 76]. Early prediction of the arrival time of floods at a 

given point is used for issuing flood early warnings to the community [30, 45, 51, 55, 57, 

58, 61, 66]. 

Traditionally this is measured by hydrological modelling techniques such as rainfall-

runoff inundation modelling in combination with Geographic Information System (GIS) 

and Remote Sensing (RS) [30, 51]. Recently, researchers have used intelligence from 

multiple sources to improve the accuracy of predicting flood arrival time and eliminating 

false flood warnings. For example, Jongman, Wagemaker [57] present an approach that 

combines passive radar satellite response on soil moisture (AMSR) and social media to 

improve accuracy in flood prediction. Similarly, Tekeli and Fouli [66] present an approach 

that combines AMSR satellite data with Tropical Rainfall Measuring Mission (TRMM) 

satellite data to improve accuracy. In Zhou, Smith [62], the authors present the analysis of 

historical river gauge data and satellite data (radar) of various return periods to ascertain 

the lag time over a given river basin in Charlotte Metropolitan region in USA. 

Flood arrival time is also being estimated by employing various Artificial Intelligence 

(AI) techniques since conventional methods are unable to capture nonlinearity and non-

stationarity related to hydrological applications [45]. Fuzzy sets and artificial neural 

networks (ANN) are two other popular Computational Intelligence (CI) techniques that 

are commonly used in hydrology[45]. Recent research based on Wavelet Transform 

Neuro-Fuzzy (WT-NF) technique has shown promise in forecasting floods with an 

increased lead time [45]. Some researchers have explored how the accuracy of the CI 

techniques can be enhanced by using hybrid methods that combine different CI methods 

for improving the accuracy and lead time of the flood forecasting [45, 77]. For example, 
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[78] combines ANN with Generic Algorithms, and [79] combines ANN with Wavelet to 

increase flood forecast accuracy. 

Other developments in this area is the use of Service-Oriented Architectures (SoA) 

[55], linked with ontological frameworks [58], for capturing and processing data from a 

variety of sources (IoT sensors, social media, crowdsourcing, satellites) to support the 

prediction of flood arrival times using forementioned techniques.  

Flood Frequency and Return Period 

Flood frequencies and return period are two inter-related factors essential in 

understanding and preparing for possible situations since they indicate the magnitude of 

an emerging event [22, 25, 52, 55, 56, 62-64]. Flood frequency analysis is a statistical 

technique used by hydrologists to estimate the flood return period or exceedance 

probability by measuring peak discharge values over a period of time. Flood frequency 

analysis provides decision-makers to pursue a broader understanding of the hydrological 

behaviours of a given river from the perspective of flood response [62]. Higher peak 

discharge and runoff rates increase the flood frequency, hence increasing the severity of 

floods. Therefore, it is necessary to understand the flood hazard level at different flow 

conditions so that proper evacuation planning could be arranged in advance [22]. In 

addition to the frequency calculation, historical flood events are useful for validating 

various models, developing risk and damage functions and preparing for future events 

[39, 42, 65]. 

3.4. Intelligence Related to Exposed Population 

Intelligence required to understand and estimate the exposed population and 

underpinning technology that can be used to acquire such intelligence during flood 

hazards is discussed in this section. 

Population Densities, Distribution, and Demography 

Spatial distribution and density of population is a primary data set that is required 

to identify and estimate an exposed population for a given hazard [19, 54, 59, 80]. 

Population data are usually obtained from the national census, available at spatially 

aggregated forms up to local administrative boundaries, which are too coarser for disaster 

impact analysis. Hence, land use maps [80] and satellite-derived settlement data [81] are 

being used to derive population density maps at finer scales. In addition to that, global 

data sources such as Landscan data also provide population grids at various grid 

sizes[82]. 

Potential Affected Population 

The potentially affected population by the flood is the most important intelligence 

required by authorities to make decisions during the early warning and response stages 

[17, 24, 48, 56, 63, 67]. Furthermore, an estimation of the affected population is essential to 

plan for relief assistance and post-disaster impact assessments [56, 63]. Data from various 

sources such as government authorities and municipalities are typically combined with 

open-source spatial data to estimate the exposed population in the GIS domain [67]. 

Tzavella, Fekete [67] reports how VGI based methods have been successfully used in an 

extreme flood event in Cologne, Germany, to improve the efficiency of flood response 

with the decreased response time.  

Numerous models and approaches have been used to evaluate the potential effect of 

floods on people. For example, the Disaster Diagnostic and Evaluation System (SEDD) 

offers a fuzzy rule-based classification system that can be used to assess the possible 

consequences on people just after a disaster [63]. It uses Emergency Events Database (EM-

DAT) as the primary source of population data together with sources such as the Human 

Development Index (HDI), published by UNDP, to calculate the vulnerabilities. Deng, Liu 

[56] proposes a social media-based model to estimate the impact of a disaster on the 
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community, which has been tested for typhoon Haiyan. In contrast, Ushahidi collects the 

actual affected population during the Haiti earthquake [48] using crowdsourcing. 

 

Mobility of Crowd 

The intelligence with respect to the locations and mobility of crowed is critically 

important in the emergency response phase, which provides response authorities to target 

the people who need immediate rescue and medical assistance. Call Detail Records (CDR), 

referred to as digital trails of modern mobile device users, can be used to monitor 

population movement and displacement and to disaster response planning [48], since it 

offers a  detail record of mobile phone location and calls logs generated by mobile 

companies in real-time. The successful use of CDR techniques is reported in [17], during 

the Haiti earthquake. Even though CDR is a useful technology to understand population 

dynamics, it is still not widely used due to privacy issues and a lack of supportive legal 

frameworks [48].  

Evacuation (estimated and actual) 

People who need evacuation or have already been evacuated are another critical 

intelligence useful in the response phase. The number of people who needs evacuation is 

typically estimated and identified during the preparedness planning process for various 

flood simulation scenarios for multiple return periods [22]. However, a more accurate 

picture of the evacuated people can be captured through social media platforms, active 

and passive crowdsourcing and geo-referenced Volunteered Geographic Information 

(VGI) techniques during a disaster [48].  

Affected Population  

Intelligence on affected people such as those who are trapped, injured, and victims 

who need immediate rescue is critical during emergency response. Furthermore, they 

require a mechanism to connect with response teams and inform their situation to the 

families and friends who are concerned about their safety and well-being. 

Crowdsource applications [48], social media microblogs [56, 69], and mobile CDR 

[48] are potential tools and technologies used to gather the status and needs of the affected 

people in real-time. As successfully demonstrated during the typhoon Haiyan, semantic 

analysis of the microblog, posted through social media, can help authorities to understand 

the concern of affected people at a different stage of the disaster and respond better [50]. 

Ushahidi is another popular crowdsource application that has been successfully used to 

collect, visualise and map data gathered from affected communities [48]. 

Eivazy and Malek [68] illustrate an example of how agent-based solutions, integrated 

with crowdsource services, have been used during the Aquala flood disaster in Iran in 

2019 to help victims to obtain emergency support from the rescuers. In this example, 

individuals injured from a critical situation are reported through crowdsource systems, 

and an agent-based information system attempts to ensure the victims' safety by 

connecting them with the rescuers [68]. The increasing trend in providing safety checks 

through social media systems such as Facebook to inform friends and family during a 

disaster is now common and reported in [48]. Bachmann et al. [24] present a mobile app 

that can be used to reunify families affected by disasters.  

Essential Needs 

During the response phase, government authorities are also responsible for 

supplying essential needs such as food and water required by the displaced population. 

The intelligence regarding the essential needs is typically collected from microblogs such 

as Twitter [56, 69], social media and crowdsource systems [17]. Deng, Liu [56] reports how 

during the typhoon Haiyan, a community of Hainan city of China, used social media 
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techniques (“Sina Weibo”, a Chinese microblog similar to Twitter) and semantic analysis 

to inform the needs of the affected people to the relevant authorities.  

 

 

3.4. Intelligence Related to Affected Infrastructure 

Potential Impact on the Infrastructure  

The potential impact of floods on infrastructures, buildings [50, 52, 70, 71] and roads 

[49, 63, 67, 70] are essential intelligence required for disaster preparedness and response. 

The geo-referenced data of buildings, critical infrastructure, and road networks obtained 

from administrative sources and VGI techniques, including OpenStreetMap, integrated 

with the flood inundations maps, can be used to obtain the infrastructure exposed to the 

floods [19, 70].   

Potential damages to residential buildings and other infrastructures are typically 

carried out with the simulation techniques for multiple return periods with different 

exceedance probabilities of floods [50, 52, 71]. Vulnerability curves that represent damage 

functions of the building for different levels of floods are used to assess the possible 

damage to the buildings and to propose hard and soft mitigation solutions  [52]. The 

monitory value of the damages is then aggregated at different scales, from an individual 

building to administrative boundaries to catchment areas [71]. In addition, early 

identification of road inundation possibilities allows authorities to explore different re-

routing options during a disaster [67].  

Affected Infrastructure 

Intelligence regarding the actual impact on infrastructure, both during and after a 

disaster situation, is essential in managing disaster situations. The use of near-real-time 

satellite data and social media responses (Tweets) for calculating such intelligence is 

reported in Jongman, Wagemaker [57]. Similarly, the use of geo-tagged images of 

damaged buildings to conduct damage assessment is reported by Bica, Palen [72] and 

Nguyen, Ofli [73]. Based on a study conducted in Nepal, Bica, Palen [74] have observed a 

positive correlation between actual ground damage and the damage assessment results 

conducted using the geo-tagged Twitter response of the earthquakes that occurred in 

April and May 2015. 

Analysis of historical damage data in multiple flood events provides a 

comprehensive view of past flood damages. In Rilo, Tavares [29], the authors presented a 

comprehensive database that captures actual damage for housing, infrastructure, and the 

economy for various historical flood events that can be used for future mitigation and 

response planning processes [29]. 

Intelligence regarding the inundated road network is necessary during the 

emergency response phase to plan and re-route rescue services as well as establish regular 

transportation. Road inundation during the flood is acquired mainly by social media, 

crowdsourcing, near real-time satellites and UAV [17, 49, 53, 56].  

3.5. Intelligence on Resources and Capacities 

Resources and Capacities 

Intelligence on available resources and capacities are required in order to respond to 

disasters [59, 63], such as available response organisations and volunteers [59], health 

services [83] and food and supply information [59]. Saad, Latif [59] presents a successful 

implementation of an Integrated Flood Disaster Management system in the District of 

Kemaman in Malaysia, that is comprised of a database with critical resources and 

capacities required during the flood response. In their system, intelligence such as details 

of evacuation centres, data on non-Governmental Organisations (NGO) and other 

volunteer organisations and data on helipad locations have been identified as capacities 

necessary during the responses in order to manage logistics to transport foods and 
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essential needs and efficient response management [59]. Locations of these facilities are 

typically organised and stored in GIS databases. 

Locational data of health facilities and travel time to such facilities are considered 

useful intelligence in the emergency response phase to manage flood-affected victims [83]. 

OpenStreetMap (OSM) derived global health facility data with their locations, and other 

attributes are made available via www.healthsites.io. In Weiss, Nelson [84], access to 

healthcare facilities has been analysed and presented in global maps to visualise travel 

time by foot and motorised transport.  

Tzavella, Fekete [67] calculate the service range of the first responders such as fire 

brigade, through network analysis, taking into account of the road network, points of 

resources and floods in Cologne, Germany. 

4. Discussion 

The critical analysis of the literature shows that the key intelligence required for  

flood warning and responses are associated with rainfall, river flow, inundation, impact 

on people, properties, and response capacities. It was observed that numerous tools and 

technologies are used to derive intelligence that transforms into decisions. The 

relationship between the flooding process, intelligence required, tools and technology to 

derive such intelligence can be presented as a conceptual system architecture of the overall 

decision making platform. This is simplified into four key segments for ease of 

understanding, as discussed below. 

4.1. Conceptual model of flooding process and warning generation 

According to the literature, it was observed that numerous technological approaches 

such as IoT [16, 24, 25, 38-41], crowdsourcing [23, 25, 60], satellites [18, 30, 50, 57, 66, 85] 

and numerical modelling [22, 44, 45, 71] are used to extract intelligence in relation to 

flooding at various stages, such as rainfall, river flow propagation, and inundation as in-

dicated in 

 
.  
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Figure 5. Intelligence Required for Monitoring Emerging Flood Situation. 

According to the literature, it was observed that numerous technological approaches 

such as IoT [16, 24, 25, 38-41], crowdsourcing [23, 25, 60], satellites [18, 30, 50, 57, 66, 85] 

and numerical modelling [22, 44, 45, 71] are used to extract intelligence in relation to 

flooding at various stages, such as rainfall, river flow propagation, and inundation as in-

dicated in 

 
. 

The intelligence extracted from these technology includes rainfall, river level 

(measured, observed, and forecasted), both inundation depth and extent (measured, 

observed, and forecasted), flood frequency, return period, intensity, flood arrival time, 

and soil moisture.  
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 captures the use of technological approaches for extracting intelligence to respond 

to various activities by disaster management personnel during a flood disaster scenario. 

The overall conceptual architecture presented in 

 
 integrates four layers: process layer, technology layer, intelligence layer, and activ-

ity/decision layer. The process layer represents how the flooding process evolves, starting 

from the rainfall, river flow, and up to inundation. The technology layer then uses the 

technological solutions identified in this survey to monitor the evolving flooding situation 

and extract and pass the relevant information to the intelligence layer. The information 

captured in the intelligence layer can then be used by the disaster management authorities 

to monitor the evolving flood situation over time and generate flood early warnings in 
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advance, as illustrated in the decision layer. The conceptual architecture presented in 

 
 can be implemented using the state-of-the-art technology presented in the previous 

sections to allow decision-makers to ensure public safety before, during and after the 

floods. 

However, it should be noted that there are many barriers to implementing such sys-

tems [86], [87],[88]. Some barriers and challenges include (i) inadequate coverage of IoT 

sensors due to capital and maintenance cost and unavailability of internet connections [86] 

(ii) lack of accurate flood simulation models running on high-performance computers to 

provide near real-time response [87](iii) limitation of acquisition and limited coverage of 

near-real-time satellite images [88]. Although many developing countries have access to 

the International Charter for Space and Majors Disasters, Copernicus System, and Sentinel 

Asia System, the average time for satellite activation to first image reception is three to 

four days [89]. As a result, many disaster management agencies in developing countries 

resort to historical inundation information to estimate the possible inundation zones dur-

ing flooding incidents. In this context, crowdsourcing techniques are more efficient than 

satellite observation, even with the limitation of its effectiveness and accuracy [90]. 

4.2. Conceptual model of flooding impact on people  

When a population is exposed to floods, many intelligence such as movements of 

people, their vulnerabilities, numbers, and location of people trapped or injured, people 

evacuated and their basic needs are required by authorities and response teams. These are 

acquired during different phases of the disaster event (before, during and after) using 

simulations, crowdsource technique, voluntary GIS activities, social media, carrier detail 

records (CDR) and remote sensing. 
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Figure 6. Intelligence Required for Issuing Early Warnings, Rescue and Relief Operations. 

Error! Reference source not found. illustrate the relationship between the impact of 

flood inundation on the people and the technologies that can be used to derive intelligence 

for supporting evacuation and rescue operations. As shown in Figure 6, as the inundation 

is impacting on the population, people will begin to self-evacuate themselves, sometimes 

with support from government agencies and NGOs for evacuating vulnerable people who 

have mobility and health conditions. Following the same layered approach used in 

 
, Error! Reference source not found. shows how various technology solutions, iden-

tified in this survey, can be used to extract intelligence required for issuing early warnings 
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and conducting intelligence-driven rescue and relief operations as the inundation is im-

pacting on the people as shown in the process layer. 

The flood inundation results, derived by simulations and satellites, overlayed with 

census data have the potential for providing intelligence on potentially affected people 

and those who are at risk. Such information can be used to disseminate targeted warning 

messages to the people at risk before the floods, hence saving lives. As the flood begins to 

impact people, technologies such as CDR, crowdsource, and social media techniques can 

be utilised to gain intelligence on the affected people on the ground, in near-real-time, to 

coordinate evacuation and rescue operations.  

However, the access to up-to-date population data is problematic since the popula-

tion distribution and demography are obtained mainly from the national census, where 

most countries typically release such data sets in 10-year intervals. As a result, the popu-

lation growth in-between years is not captured by these censuses. Furthermore, the na-

tional census registers do not usually capture the population dynamics at workplaces, 

schools, hospitals, hospices and other public localities. Hence, census data alone will not 

provide actual ground situations to estimate the potentially affected population during a 

flooding situation. Hence, there is a need for the local actors to maintain a more compre-

hensive database of their local population in order to better respond to disasters.  

On the other hand, the accuracy of the predicted inundation scenario plays a vital 

role in determining the affected population. Therefore, simulation models used during 

disaster situations should be calibrated and validated well in advance to ensure the accu-

racy of their outputs.  

Even though social media and crowdsourcing techniques exist, these systems are not 

standardised and well recognised in disaster response plans at a local level [91]. Further-

more, at present, community participation is not actively encouraged to get the maximum 

benefit of these techniques. On the other hand, CDR technology has the potential to offer 

active SIM locations and the movement of people at risk during a disaster [48]. The ex-

ploitation of these possibilities would require disaster management agencies to work 

closely with the mobile service providers and integrate them with their current disaster 

response processes while providing a legal framework for accessing such private data for 

emergency purposes.  

4.3. Conceptual model of flood impact on infrastructure 

Intelligence on physical properties such as housing, utilities, other infrastructure and 

road network that can be affected by the flood is another key intelligence required by 

authorities for optimum risk management planning and response. This intelligence needs 

can be classified into two categories: (i) pre-disaster intelligence on infrastructure that can 

potentially be affected, and (ii) intelligence on actually affected infrastructure during and 

post disaster phases.  

Error! Reference source not found. presents a layered approach that represents the 

relationship between the impact of flood inundation on infrastructure and the potential 

technology that can be used to derive intelligence to support decisions. As in the previous 

sections, the layered architecture is represented through the activity layer, technology 

layer, intelligence layer and decision layer. The infrastructure that can potentially be im-

pacted by floods is usually identified through exposure analysis using the infrastructure 

data collected from various government agencies and estimated inundation. This intelli-

gence can be used for advanced evacuation planning, safeguarding household items and 

livestock, building mitigation plans and business continuation plans for infrastructure 

(utility, public services, government buildings and economic centres).  
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Figure 7. Intelligence Required for Identifying Affected Infrastructure. 

Although the above flood preparedness plans allow authorities to identify potential 

risks to infrastructure and implement mitigation measures using existing data, sources 

such as social media, crowdsourcing technology and satellite imageries are important to 

establish the actual situation on the ground during a disaster. However, the use of satellite 

images for the response is still challenging as the acquisition, and the derivation of intel-

ligence from such sources require considerable time [92]. 

4.4. Conceptual model on response capabilities 

Intelligence on resources and capacities required for the successful response is nec-

essary for the authorities to make timely coordination with relevant parties. For example, 

safe centre locations and their capacities during flood response are necessary for evacua-

tion planning. Furthermore, authorities also require information on surge capacities for 

food, medical assistance, transportation and availability of volunteers in addition to the 

official resources.  

Error! Reference source not found. illustrates the process where intelligence on ca-

pacities and resources can be obtained through numerous resource management data-

bases and systems to assist in the decision-making process. More specifically, during a 

flood emergency, authorities need to locate the nearest evacuation centres and health fa-

cilities with appropriate capacities that match the requirement to re-locate displaced or 

treat injured persons. Typically, local flood preparedness plans identify such facilities and 

hosting capacities well in advance. In addition to that, volunteers, volunteer agencies, and 

other resources such as transport, heavy machines and tools are required to respond on 

demand.  
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Figure 8. Intelligence Required for Capacities and Resources in Response. 

5. Conclusion 

The review of literature presented in this paper identified twenty-eight types of 

intelligence necessary during various stages of the FEWRS (pre-flood, during the flood 

and post-flood) to issue flood warnings in advance and to respond efficiently to safeguard 

people and properties. Over 54 published articles written on several bodies of knowledge, 

including information systems, disaster risk management, and hydrometeorology, have 

been examined and developed inter-relationship between the flooding phenomena, 

intelligence derived for decision making, and sources of technology that are used to 

extract this intelligence. 

The pre-condition for extracting critical intelligence during a flood situation is the 

availability of exposure and vulnerability data of people and infrastructure of the flood-

prone area under consideration. As the flood situation begins to develop, real-time 

information regarding the flood hazard can be captured using numerous techniques and 

tools: citizens as sensors, satellite remote sensing technology, IoT devices and mobiles.  

Information from citizens can be captured through social media and crowdsourcing 

techniques. These raw data can then be used by GIS, artificial intelligence (AI) or hydro-

dynamic modelling to extract critical intelligence such as the dynamic characteristics of 

the hazard (rainfall, river water level/flaw, flood arrival time), population and infrastruc-

ture exposed or at risk, and capacities required during response as presented in Error! 

Reference source not found..  

The conceptual architecture presented in this paper provided guidance for deploying 

various advanced technology approaches for deriving the necessary intelligence required 

by disaster management agencies as the floods begin to spread and impact on the com-

munity and the environment. The architecture presented in Figures 5 to 8 illustrated how 

the required intelligence during the flood cycle need to be managed in order to inform, 

evacuate, rescue and offer relief to citizens and safeguard the properties in a timely man-

ner.  

Moving forward, the layered approach presented in this paper offers a foundation 

for developing a technology platform that disaster management agencies can use to issue 

early warnings with sufficient time for people to evacuate, better respond during floods 

and efficiently manage relief operations. Furthermore, the conceptual system architecture 
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presents a range of technical solutions that can be adopted by the decision-makers, based 

on the availability of the technology, and offers a pathway to increase the accuracy and 

efficiency in receiving the necessary intelligence as the resources become available. It 

shows how information from sensors, databases, big data systems, GIS, hydrological sim-

ulations and satellite remote sensing can be combined to offer a rich set of information for 

decision making and interventions by various agencies. Integration of these technologies 

has the potential for increasing the effectiveness, efficiencies, and accuracy of the overall 

approach to flood monitoring and early warning and evacuation.  

Such integration will overcome the limitations of the present early warning and re-

sponse systems such as unavailability of information and intelligence [8]; insufficient in-

formation sharing [93-96]; lack of coordination among agencies [97, 98]; false early warn-

ings [99]; lack of allocations of resources for response [97]; delayed response [100], which 

often result in crisis escalation and higher numbers of causalities.  
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