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Abstract: Water surface velocity is one of important parameter in hydrology. The development of non-
intrusive measurement of this parameter using cameras is increasing. Traditionally the measurement
of Water surface velocity using a camera utilizes tracking of moving objects that are exist on its
surface. Recently, other methods have emerged that utilize the movement of water ripples to estimate
these parameters. This paper proposes a novel method for estimating Water surface velocity based
on cameras measurement. We name this method Temporal Binary Pattern (TBP), since it extract
binary pattern of pixels of water flow video in time domain using XOR operator. The pattern formed
from the extraction is then used to create a new image which we call a Temporal Binary Pattern
Image (TBPI). Then the histogram of the new image is used as input for the Feed-forward Neural
Network which will correlate it with the water velocity. Since it use Neural Network the final name
of the proposed method is Temporal Binary Pattern Image Histogram Neural Network (TBPIHNN).
We develop Mini Open Channel Water Flow Simulator (MOCWES) to provide video data set for
TBPIHNN. After training the accuracy achieved is 73%. We tested the method in 4 different pump
speeds, at 2 low pump speeds the TBPI formed was significantly differentiated. But not so at the
other 2 higher speeds.This is due to the resolution of TBPI on each pixel which is only 8 bits, and also
the reason why TBPIHNN training accuracy can only reach a maximum of 73%.

Keywords: water surface velocity; image based measurement; dynamic texture analysis

1. Introduction

Water Surface Velocity (WSV) estimation is one of important parameter in environmen-
tal monitoring. It is useful to perform empirical calibration of rating curve [1]. This curve
combine with remote sensing data of river stage can be use to estimate river discharge. The
most respectfull method to estimate WFV is by using Acoustic Doppler Current Profiler
(ADCP) [2,3]. But this methods are quite dangerous since for some river where there are
no bridge present, human operator need to be near the water to perform measurement[1].
Other than safety reasons, above method also have poor spacial coverage [4]. Alterna-
tively measurement of WSV using non-intrusive method had been investigated. Some
non-intrusive method use radars [5], and some use camera[1,3,4,6-23]. Radars technology
were more expensive, time consuming, and require qualified personnel, while camera or
optic base method were inexpensive, and flexible installation either in fixed permanent
location or mounted in UAV [19]. Although WSV are not the same as depth-averaged
velocity (DAV),which is needed to estimate discharge[2], Geng et.al [9] work show that
there are linear relationship between WSV and DAV. They use camera based method to
measure WSV, the error between WSV and DAV are about 4.08%.

The common method to estimate WSV using camera are Particle Tracking Velocimetry
(PTV)[4,7] and Particle Image Velocimetry (PIV)[1,6,7,17,21]. Both of these method and
their variants utilize moving particle to estimate WSV. The difference betwen those two
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are number of tracking particles. PTV track single particle or object in river surface, while
PIV track group of particles[4,17]. Beside using PIV or PTV, which use correlation-based
algorithms, there are other method which estimate WSV using moving particle or object,
such as Optical Flow (OF) based algorithms [8,19]. Elter et. al. [7] also use PIV and PTV
to estimate WSV from thermal signature of river flow, which replace the need of particle.
Thermal signature are captured using Thermal camera for PIV, and RGB Camera for PTV.

There are also exist other types of methods which do not utilize moving particle
or object to estimate WSV. Many of them utilize dynamic movement of water ripple to
estimate WSV. Among them are Space Time Image Velocimetry (STIV) created by Fujita
et.al in 2007 [10], Farneback Optical Flow Method (FOFM) by Wu et.al in 2019[8], and
Galois-Field Representation by Sirenden et.al in 2020 [23]. The first three are originate from
the same root, which is Optical Flow (OF) method . General mathematical formulation of
OFM is first proposed by Horn-Schunk in 1981 [24]. The basic hypothesis of OF are gray
level invariant hypothesis, which is stated that the gray level observed at any object point
remains unchanged for a short time. So when there is a change in the gray level of pixels
it is most likely caused by physical motion. In OF method direction are required since it
calculate two velocity vector in x and y direction of the image frame|[3,8,19,24]. So to able
to capture WSV the velocity vector of water flow should be parallel with one of OF velocity
vector.

The last of the four method mentioned in previous paragraph, are base upon histogram
similarity of dynamic texture of water flow video. The hypothesis of GFR method are water
flow video texture exhibit periodic pattern. This periodic pattern is captured by examining
the Euclidean Distance (ED) of histogram using auto-correlation function. The original
image frame of video were transformed to GFR so its independent of water flow direction.
The original frame of the video is transformed to GFR so that it does not depend on the
direction of the water flow. Unlike the OF-based method where the application of OF is
aligned with the direction of the water flow.

In image texture analysis each pixels are compared with its surrounding neighbours.
For static image, pixel comparison were performed in spatial domain. For dynamic im-
age sequences analysis, such as videos, pixel comparison were conducted in spatial and
temporal domain. One of advantage of pixels comparison method is do not required
mathematical operation such as partial derivative as we can see in all OF based method.
For example in Local Binary Pattern (LBP) and its variants [25-29], Local Binary Count
(LBC) and its variants [27], the calculation is base upon logical operation. Other type of
static texture analysis use bit-wise operation such as XOR which is computationally lighter
[30,31].

In this paper We introduce new dynamic texture descriptor namely Temporal Binary
Pattern (TBP), which use XOR operator to extract temporal feature of dynamic texture of
video image. We combine Histogram of Image formed by TBP and Feed-forward Neural
Network to form TBPIHNN. We train TBPIHNN with water surface flow video produced
by Mini Open Channel Water Flow Simulator (MOCWES) to estimate changes of volume
flow rate. This changes of volume flow rate are proportional to WSV.

2. Related Work
2.1. Space Time Image Velocimetry

STIV analyze water ripple motion to estimate WSV. To do this STIV draws imaginary
lines in the direction of the water flow.The brightness variation of the pixels in these lines
are use to construct a space-time frame called a Space-Time Image (STI). The gradient of
gray level intensity in each local windows which construct STI then calculated. Then the
orientation of each local windows also calculated. As a final step, mean of orientation
angle from the orientation angles obtained for the local windows is calculated. This mean
orientation angle is proportional to WSV [10-12,14,15,22]. Due to its high spatial resolution
and low time complexity STIV is potential method for real time application [22]. STIV had
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been compared with other method such as PIV [10], ADCP [11], propeler flowmeter [16],
and agree fairly.

Despite its advantages, STIV is still being improved by several researchers. The
quality of STI can be affected by noise in real time aplication, for example measurement
of WSV during bad weather or nigth time or other factor which exist in nature [12,15,22].
Fujita et.al [12], proposed new algorithm using auto-corelation function for STI which is
differ to original STI which use 2-D Fourier Transform. This new algorithm are called
QESTA. Zhao et.al [22] proposed new denoising method and combined with Fast Fourier
Transform (FFT) based STIV to improve accuracy due to low quality of STI. Watanabe et.al
[15] use Convolution Neural Network (CNN) to overcome low quality STI. CNN are use to
automatically detect STI gradient pattern. The input to CNN are 2-dimensional Fourier
Transform Image of STI (2DFTISTI). Identification of pattern gradient by CNN are more
easy to do by in 2DFTISTI compared to original STI.

While the above methods concentrate on accuracy and robustness of STIV, the follow-
ing researcher try to modify STIV to develop new method which independent to direction
of imaginary search line. Tsuji et.al [14] develop a method called Space Time Volume Ve-
locimetry (STVV), which based on STIV. It try to overcome the need to generate imaginary
lines parallel to water flow direction. Instead of generate STI, this method generate Space
Time Volume (STV) and analyzed using 3-dimensional Inverse Fourier Transform. Han
et.al [16] proposed two dimensional STIV, where the search line were rotated to find the STI
which has the most prominent oblique stripes. They develop the method to overcome the
shortcoming of STIV due to the requirement of predetermined search angle, and STVV ac-
curacy which depend heavily on the angle recognition error due to difficulty to recognition
of space angle compared to plain angle.

2.2. Farnelback Optical Velocimetry

Wu et.al [8] use Farneback Optical Flow Method (FOFM) to estimate WSV. By com-
paring FOFM with physical measurement by a portable propeller velocimeter in standard
trapezoidal open channel flow testbench, it is found that FOFM and portable propeller
agree with in 4.5%, and it is required 150 frame of images to have stable WSV measurement
result. Similar with STIV, FOFM need to identify the direction of water flow first. FOFM
are considered Dense Optical Flow (DOF) type of OFM [8], while STIV is Tensor Based (TB)
type [10,24]. Previously Paygude et.al [32] had combine FOFM with Gabor Filter to detect
velocity and orientation of traffic and cloud movement in real time application. FOFM is
use to estimate velocity, while Gabor Filter is use to detect orientation.

2.3. Galois Field Representation

WSV estimation using a camera is basically a dynamic texture analysis problem. As
seen in STIV the dynamic texture analysis is carried out in space and time framework.
Dynamic texture can be considered a changes or variant in gray level of pixels value as
we can see in STIV and FOFM method. The author had also proposed method to analyse
WSV from video based on idea that water flow video exhibit periodic pattern. To capture
this periodic pattern the author use spatial and temporal feature extraction separately.
First the static image in each frame were transform to other representation using Galois
Field addition operator, which is XOR. This new representation are called Galois Field
Representation (GFR). Then two spatial feature, Histogram and Normalized Cumulative
Histogram (NCH), will be extracted from GFR. To extract temporal feature, Euclidean
Distance (ED) applied to measure similarity between spatial feature of the first frame and
the rest of the frame. The ED metric then will be analyze using auto-correlation function to
determine the periodicity of dynamic texture of water flow video. The periodicity of ED
is assumed to be proportional to the WSV. The result of experiment shows that NCH is
perform better as spatial feature compared to Histogram [23]. The idea of using Galois Field
is inspired by Shivashankar et al. [30,31], which apply GFR to static texture classification
such as face recognition and other texture, which invariant to rotation and scale changes.
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Figure 1. Visualization of SWE in front view of OCC

In GFR method each of pixel were transformed into new representation by mean of XOR
operation of central pixel with 8 local neighbouring pixels.

2.4. Local Binary Pattern and its variants

Similar strategy also exist in Local Binary Pattern (LBP) method, where the central
pixel become threshold value for other 8 local neighbouring pixels. When the value of one
pixel in neighbouring pixels are lower or same with central pixel, than the value of that
pixel location become 0, otherwise the value become 1. Since the new transformation value
only 0 and 1, the method is named LBP [25-29]. Other method which developed from LBP
is Local Binary Count (LBC), the difference is in how the result are being presented. In
LBP the result is being presented as byte for example 11111111 is 256, while in LBC the
result is count of how many 1, so in the example it is 9 for LBC. The motivation of LBC
development is to reduce the size of final result[27].

With the reason popularity of Machine Learning, some researcher combine LBP and
their variants with Neural Network (NN).Xu et.al [26] reformulate traditional method of
encoding in LBP to convolutional filters which is use in CNN. This reformulation lead to
design of Local Binary Convolution Neural Network (LBCNN). They compared LBCNN
with other NN algorithm using MNIST, SVHN, CIFAR-10, ImageNet, and demonstrates
excellent performance and perform as well as standard CNN. Wei et.al [29] combine CNN
and LBP to classify hyperspectral image with very high spectral resolution. They use
two-dimensional CNN (2D-CNNN), the first one dimensional CNN (1D-CNN) extract
hierarchical spectral features and another same 1D-CNN is applied to process LBP features
to further extract spatial features. The demonstration of this method show that it can
provide good classification accuracy on limited training samples.

For dynamic texture analysis or classification, evolve to Volume LBP (VLBP) and LBP
from Three Orthogonal Planes (LBP-TOP). Both of these method use 3D-spaces which is X,
Y (2D spatial frame) and T (time frame) axis. In VLBP the operation of LBP were conducted
in 3D surrounding pixels of centre pixel. The number of patterns in VLBP is will increase
by 23P+2, where P is the number of surrounding pixels, so the number will be very large.
Due to this, Ma and Cisar [25] proposed LBP-TOP. In LBP-TOP, LBP were carried out in
three separated 2D planes, which is XY, XT and YT. After LBP operation is performed, the
histogram of this three orthogonal planes then joined. By using this strategy the number
of bin or patterns is reduced to 3 - 2P Zhao et.al [27] develop Volume LBC (VLBC) which
combine LBC and VLBP. This method able to include more neighboring pixels without
exponentially increasing the feature dimension as VLBP does, and run much faster than
VLBP and LBP-TOP.
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Figure 2. Visualization of SWE in side view of OCC
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Figure 3. Visualization of Saint Venant Equation in OCC

3. Proposed Method

Consider three dimension physical boundary of open channel where water is flowing
through as shown in Fig. 3, where Q(x, t) is water discharge and A(x, t) is cross-sectional
area of water flow, which vary over x direction and time t. Hereafter we call this physical
boundary as Open Channel Column (OCC). For shallow water that flowing inside OCC,
famous equation called Saint Vennant capture fluid motion behaviour as is shown in
equation 1. This formula also called Shallow Water Equation (SWE) and its derived from
Navier Stokes equation [33].

0A(x,t)  9Q(x, 1)
aF o ox

If we take front view of OCC as shown in Fig. 1, we can derive A(x, t) from the mean
height of water in OCC (H), OCC width (W), water ripple height (h(x,y, t)), which is vary
over x, y direction and time t. Mathematical formulation of this visualization is shown in
equation 2. If we take side view of OCC as shown in Fig. 2, it can visualize that Q(x, t) is a
product of A(x, t) and mean velocity (v(x, t)) as in equation 3.

=0 (1)

Ax,t) = (H-W) + /(H+ h(x,y,t)dy @)

Qx,t) = A(x, t) - v(x,t) (©)]
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Figure 4. Visualization of Image Frame from Top View

As we can see in equation 1, it is necessary to have partial derivative of A(x,t) over ¢
and Q(x, t) over x. The partial derivative of Q(x, t) over x is given in equation 4, and we
can see in that equation it is required to take partial derivative of A(x,t) over x as well.
Equation 5 and 6 show partial derivative of A(x,t) over t and x. As we can see the from
that equations that derivative of A(x,f) over t and x are integral of partial derivative of
h(x,y,t) over t and x trough y direction.

E)Q(_gic,t) — A1) aug;, f) () aAa(z,t) )
0A(x,t) [ oh(x,y,t))

ot _/ o W ®)
0A(x,t) [ oh(x,y,t))

ox / dx dy ©)

Visualization of image frame taken by camera from top of OCC is shown in Fig. 4.
The grid is representation of pixel (p(x,y,t)) which is vary over x , y and t. In water flow
video this pixels change are related with water ripple change over x , y and t. So we
can assume that partial derivative of h(x,y, ) over x and t approximately represented by
partial derivative of p(x,y, t) over those axis. Equation 7 and 8 show this assumption in
mathematical form.

oh(x,y,t) _ 9p(x,yt))
ot ot

@)

oh(x,y,t) _ 9p(x,yt))
ox ox

®)

In this paper the author consider to extract feature from change over time of each pixel
in the video frame then transform it. Then take histogram of the transformation and use it
as a learning parameter for FNN.
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Figure 6. Temporal Binary Patern

3.1. Temporal Binary Pattern Image

To construct TBPI, we collect 9 frame. The first frame is at current time (¢) and the last
frame is at t — 9 as shown in Fig. 5. In each pixel coordinate we collect 9 pixels in time
direction as shown visually in Fig. 6 and mathematically in equation 9. We call this pixels
collection as p,(x,y), where n is pixel index as shown in equation 10. In this paper we use
gray-scale image. Pixels in a grayscale image have a range from 0 to 255. This number is in
digital number format. This number range is a byte consisting of 8 bits. The bits by, (x, y)
that make up the p,(x,y) are shown in the equation 11.

pa(x,y) ={0,1,2,...,255}

= b1,nb2,1b3,1b4 b5 b6 b7, 8 1 )
n={tt—1t-2,.,t—9} (10)
bmu(x,y) ={0,1} (11)

After that we construct g, (x, y) resulting from the XOR operation between p, and
Pn—1 as shown in figure 6 and equations 12 and 13. Since it is an XOR operation, g, (x, y)
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Figure 7. Transformation from original image frajne (p(x,y,t)) to TBPI (s(x,y, )

will be the same size as p,(x,y). It also contains a collection of bits called By, (x,y). If
we perform XOR operation for each By, »(x,y) as shown in equation 14, we can have new
variable called r,(x, y) which is one bit value. We collect this bit value and construct a new
image called TBPI (s(x, y, t)) as shown in equation 15. TBPI may be vary in space and time
(x,y,1), and have the same size with original image (p,(x,y)). This transformation from
p(x,y,t) tos(x,y,t) can be visualize in Fig. 7.

an(%,¥) = pn(X,y) ® pu-1(x,y)

= B1,,B2,1 B3, B4, B, B6,nB7,1Bs (12)

Binn (%, y) = bin(%,y) © bnu—1(x,y) (13)

tn(%,y) = B1,y © Boy ® B3y ® By, ® Bs;y ® By ® By, & Bg (14)
s(x,y,t) = rirarararsreryrs (15)

3.2. Temporal Binary Pattern Image Histogram

The transformation result s(x,y,t) is also a image with the same size as p(x,y, ).
Since TBP had extract temporal dynamic feature, but not the spatial feature, we will use
histogram as spatial feature extraction. The reason why histogram are chosen because it
is independent on spatial orientation. This will be an advantage, because the proposed
method will not be affected by the direction of the water flow. In this paper we use 11 bins
to construct our histograms.

3.3. Feature Learning Using Feedforward Neural Network

The histogram of s(x, y, t) which discussed before will become input for FNN. The
structure of FNN is 11 input node, 2 hidden layer and 1 output layer. The output is numeric
value, so our FNN is solving regression problem. Table 1 show the structure of FNN.
We train the network using ADAM optimizer and Mean Absolute Error (MAE) as a loss
function, 1000 epochs will be use in the training.


https://doi.org/10.20944/preprints202205.0233.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2022 d0i:10.20944/preprints202205.0233.v1

90f17

Network Structure

Layer Node Activation
Input 11 ReLU
15 Hidden 11 ReLU
2" Hidden 10 ReLU
Output 1 Linear

Training Parameter

Optimizer ADAM
Loss Function MAE
Epochs 1000

Table 1. FNN Structure and Training Parameter
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Figure 8. Mini Open Channel Water Flow Simulator

4. Experimental Setup

Water flow video data are collected from MOCWES, which consist of Open Channel
Column (OCC) made from PVC, small submersible pump, mini flow-meter and instrumen-
tation box (IB). Figure 8 show the whole part of MOCWEFS. OCC serves as a container of
water, it’s mechanical dimension are shown in Figure 9. Water are fill into OCC approxi-
mately 7 cm from bottom as shown in Figure 10. Camera sensor which is use to capture
water surface are OV2460, which is integrated with ESP32 in ESP32-CAM module. As
shown in Figure 11 ESP32-Cam are located in the bottom of IB, The distance of IB to the
bottom of OCC is approximately 15.5 cm, therefore the distance of water surface to camera
is about 8.5 cm as shown in Figure 12.

The water in the OCC is driven by a mini sumersible pump. The pump speed is
controlled by the Field Programmable Gate Array (FPGA) inside the IB. Meanwhile, the
volumetric flow rate of water produced by the pump is measured by a mini flow-meter. The
flow-meter pulse data is sent to the FPGA. The FPGA and ESP32-Cam communicate with
each other using a serial communication protocol. The ESP32-Cam transmits the pump’s
Pulse Width Modulation (PWM) data to FPGA, and receives flow-meter frequency data
from it. The PWM data correlates with the pump speed, while the flow-meter frequency
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Figure 9. Open Channel Column Mechanical Dimension

Figure 10. Water Level inside OCC

data correlates with the volumetric flow rate as measured by the flow-meter. The flow-
meter data received by the ESP32-Cam is forwarded to the PC when requested, the PC also
sends the pump speed data to the ESP32-Cam. In addition to functioning as a wireless
data trans-receiver, the ESP32-Cam also captures images of surface water flows and sends
them to a PC.In the PC there is a Python program that functions to send pump speed data
and receive surface water flow image data. The program utilizes the TCP-IP protocol to
communicate with the ESP32-Cam continuously. Meanwhile, to receive the flow-meter data,
the Hercules program is used, the user sends a certain command that tells the ESP32-Cam
to send the flow-meter data. This data transaction does not occur continuously for fear of
disturbing image data transactions. The communication protocol used for data flow-meter
transactions is UDP. The processes described previously can be seen visually in Figure 13.

Table 2 show the pump specification. PWM data format which send by ESP32-Cam to
FPGA is MxxxxxS. Where xxxxx is integer value from 0 to 9999, which corelated with PWM
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Figure 11. Instrumentation Box: 1) Esp32-Cam 2) FPGA 3) MOSFET 4) Connecting Circuit 5) Power
Supply Connector 6) Connector to Flow-Meter and Pump.
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Figure 12. Distance of camera sensor to water level.

value. The author write VHDL code which create PWM generator which have period of 50
millisecond and resolution of 16 bit.

The specification of flow-meter can be seen in table 3. Data format send by FPGA to
ESP32-Cam is BxxxxV, where xxxx is frequency value in range of 0 to 9999 Hz. K-Factor in
that table is use to convert frequency data to volume flow rate. Frequency meter are created
using VHDL inside FPGA, it has 1 Hz sampling rate.

The author use Cyclone II EP2C5T144 module. It is a low cost FPGA Development
Board from Altera-Intel. It has 50 Mega Hz oscillator, maximum clock frequency is 300
MHz, JTAG programming connector, EPCS4SI8 4 Mega byte serial configuration flash,
active Serial connector for programming, 5 Volt power jack, , 89 1/Os, 3.3 Volt (I/O) and 1.2
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Figure 13. Sigral Trancsaction Between Electronic Component inside IB and PC/Laptop.

Characteristic Value

Maximum Flow 14 Litre/Minute
Working Voltage 12 VDC
Maximum Current 1.2 A
Maximum Suction 5 metre

Pump Type Submersible

Table 2. Characteristic of Mini Submersible Pump

Characteristic Value

Model YF-5201

Flow Range 1-30 Litre/Minute

Voltage Range 3.5-24 VDC

Connection Cable Three Wire (Power, Signal, Ground)
Flow Rate (Litre/Minute) Frequency (Hz)/7.5

Measurement Error +5%

Table 3. Characteristic of Flow-meter

Volt (core) voltage regulators, 3 LEDs, 1 pushbutton switch. The core chip of this module,
Altera Cyclone II, EP2C5T144C8N has 4068 logic elements, multiple 4k RAM blocks giving
a total of 119,898 bits. Author configure the FPGA using Very High-Speed Hardware
Description Langguage (VHDL) in Quartus II software.

The camera module, ESP32-Cam is a very competitive small-size minimum system
with a footprint of only 27%40.5*4.5 mm and a deep sleep current of up to 6 mA. It has
SPI flash 32 Mbit, 520 KB SRAM, 4 Mbit PSRAM, Bluetooth capability, 802.11 b/g/n WiFi
capability, UART, SPI, I2C, PWM, 9 I/O port, on-board PCB antenna, gain 2 dBi, image
format Grayscale, BMP, JPEG, 5 volt power supply range. The pixel size of image data
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PWM  Flowrate (LPM)

5000 33+£05
3000 27 +0.5
1000 1.3+04

Table 4. Relation between PWM and volume flow rate

captured by ESP32-Cam is 160x120, with frame rate of 24 frame per second (FPS). Author
create C++ code using Arduino IDE and embed it in to ESP32-Cam.

In PC/Laptop the author create python program to capture pixel data send by ESP32-
Cam, and use it to create video data and place it in side specific folder. The folder and
video name are specific base upon PWM data. Another python program is use to create
10 second video from original video. The original and 10 second videos can be found in
author github page which the link can be found in supplementary section of this paper. It
is already organize in specific folder base on the PWM values.

5. Results
5.1. Temporal Binary Pattern Image

Using MOCWES we have 15106 video data set which reader can found in our github
link, we also create youtube channel, so reader can see the how MOCWEFS work. The
web address of our github repository and YouTube channel are given in Data Availability
Section. The data set are divided in to 4 folder which correlated with PWM value given to
water pump. Using flow-meter installed after water pump, we able to estimate the volume
flow rate generated by the pump. Table 4 show relation between PWM with estimated flow
rate. Unfortunately due to limitation of the flow-meter, when PWM value of 500 the flow
rate reading is 0. Although in PWM 500 water is still moving. The reader can see the water
movement when PWM is 500 in our github link.

5.2. Temporal Binary Pattern Image

Figure 14 show various pattern produced by TBPI on various PWM value. We can see
on the lower PWM value, there is a lot of black pixels appear. As the PWM value goes high,
or volume flow-rate is increasing, this black pixels is decreasing. At PWM value of 3000
and 5000 the pattern is almost similar.

5.3. Histogram of Temporal Binary Pattern

A comparable phenomenon is seen on the histogram of the TBPI as we can see in
Fig.15. The resulting histogram shows the difference between low and high value PWM.
The higher the PWM value, the histogram will resemble a box. At the PWM 3000 and 5000
the histograms produced by both values are almost the same.

5.4. Feed Forward Neural Network Training

From 15106 video data set, we divide the data to 10574 data for training and 4532 for
testing. We train histogram data using Google Colabs and achieved accuracy is between 72
to 73 %, the training time around 10 to 16 minute. Fig.16 show accuracy during training
process.

6. Discussion

As described in previous sections, TBP is able to extract temporal feature of WSV. We
can visually see how TBPI are differ between pump PWM value. Except for PWM value of
5000 and 3000 where TBPI have simmilar pattern. Histogram of TBPI (TBPIH) also show
significant difference between PWM value 500 and the rest of the value, but not for PWM
value 3000 and 5000 where TBPIH are almost similar. The similarity of TBPI and TBPIH of
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Figure 14. TBP Transformation on various PWM value
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Figure 15. Histogram of TBP Transformation on various PWM value

these two PWM values may be due to the similar maximum changes in water ripple height.
The water thrust generated by the pump between PWM 3000 and 5000 cannot produce a
water ripple height that can be significantly distinguished by the TBP method. But in low
PWM value or low flow rate, such as PWM 500 and PWM 1000, TBP method are able to
distinguish them significantly.
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Figure 16. Accuracy of FNN Training

At the low flow rate, PWM 500, black pixel dominate the region. We can see this at
Histogram of TBIP at Fig. 15a, where black pixels (integer value of 0) reach 20000 count.In
binary form black pixel is equal to 00000000. This is mean many of pixels in the area do not
vary a lot. When PWM value is increase to 10000, the flow is also increase, black pixels is
decreasing as we can see in 15b. The black pixels value is 10000, and other pixels value is
increasing compare to Fig 15a. When th PWM value reach 3000 and 5000, in Fig 15c and
Fig 15d, the black pixels count is 8000, while other pixels value is in the range between
7000-8000 except pixels value of 250 which is only 2000. The disability to distinguish WSV
in higher PWM pump may caused by bit size in TBPI. Since it is only 8 bits, pixel variations
due to the movement of water in high flow rates may not be captured. More bit size
required, which means more frames to be captured.

Although TBPIH is unable to distinguish variation of water ripple in high flow rate.
Training result using FNN show quite fair results with more than 70% of accuracy. At first
author use RSME as loss function, and the accuracy of training is around 50%, and 5 layers
were used. When Loss Function are changed to MAE, the training accuracy is increased,
and only 2 layers are required. As known the difference between RSME and MAE is on
how it handle out layer data. RSME is more prone to out layer data, while MAE are more
robust. So MAE is more appropriate to handle TBPIH data, since it may contain out layer.
Although MAE had increase training accuracy, but since at high PWM value or flow rate
TBP unable to distinguish them appropriately, maximum accuracy that can be achieved is
73%.

With this accuracy, TPBIHNN can be an alternative method for WSV estimation using
camera. Since it use XOR operation to extract temporal pattern this method has low
computation complexity and can be implemented in micro controller or FPGA. The greatest
computational complexity mostly comes from FNN which has 14,983 parameters that must
be calculated to predict the results. Compare to STIV which need 2D-Fourier Transform,
TBPIH is have less time complexity. In term of memory, since TBPIH result is the same size
as original image, compared to VLBP or VLBC or LBP-TOP the proposed method have less
memory requirement.
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7. Conclusion

This study had shown that temporal feature of WSV can be extracted using XOR
operator. The proposed method TBPIHNN has fair accuracy of 73%, it’s still had draw
back when distinguish WSV at medium flow rate (2.7 to 3.3 LPM). Further work should be
carried out to improve TBPIHNN by increasing bit size in TBPI, or using more light Neural
Network structure such as Extreme Learning Machine to reduce network parameter.
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