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Abstract: Water surface velocity is one of important parameter in hydrology. The development of non- 1

intrusive measurement of this parameter using cameras is increasing. Traditionally the measurement 2

of Water surface velocity using a camera utilizes tracking of moving objects that are exist on its 3

surface. Recently, other methods have emerged that utilize the movement of water ripples to estimate 4

these parameters. This paper proposes a novel method for estimating Water surface velocity based 5

on cameras measurement. We name this method Temporal Binary Pattern (TBP), since it extract 6

binary pattern of pixels of water flow video in time domain using XOR operator. The pattern formed 7

from the extraction is then used to create a new image which we call a Temporal Binary Pattern 8

Image (TBPI). Then the histogram of the new image is used as input for the Feed-forward Neural 9

Network which will correlate it with the water velocity. Since it use Neural Network the final name 10

of the proposed method is Temporal Binary Pattern Image Histogram Neural Network (TBPIHNN). 11

We develop Mini Open Channel Water Flow Simulator (MOCWFS) to provide video data set for 12

TBPIHNN. After training the accuracy achieved is 73%. We tested the method in 4 different pump 13

speeds, at 2 low pump speeds the TBPI formed was significantly differentiated. But not so at the 14

other 2 higher speeds.This is due to the resolution of TBPI on each pixel which is only 8 bits, and also 15

the reason why TBPIHNN training accuracy can only reach a maximum of 73%. 16

Keywords: water surface velocity; image based measurement; dynamic texture analysis 17

1. Introduction 18

Water Surface Velocity (WSV) estimation is one of important parameter in environmen- 19

tal monitoring. It is useful to perform empirical calibration of rating curve [1]. This curve 20

combine with remote sensing data of river stage can be use to estimate river discharge. The 21

most respectfull method to estimate WFV is by using Acoustic Doppler Current Profiler 22

(ADCP) [2,3]. But this methods are quite dangerous since for some river where there are 23

no bridge present, human operator need to be near the water to perform measurement[1]. 24

Other than safety reasons, above method also have poor spacial coverage [4]. Alterna- 25

tively measurement of WSV using non-intrusive method had been investigated. Some 26

non-intrusive method use radars [5], and some use camera[1,3,4,6–23]. Radars technology 27

were more expensive, time consuming, and require qualified personnel, while camera or 28

optic base method were inexpensive, and flexible installation either in fixed permanent 29

location or mounted in UAV [19]. Although WSV are not the same as depth-averaged 30

velocity (DAV),which is needed to estimate discharge[2], Genç et.al [9] work show that 31

there are linear relationship between WSV and DAV. They use camera based method to 32

measure WSV, the error between WSV and DAV are about 4.08%. 33

The common method to estimate WSV using camera are Particle Tracking Velocimetry 34

(PTV)[4,7] and Particle Image Velocimetry (PIV)[1,6,7,17,21]. Both of these method and 35

their variants utilize moving particle to estimate WSV. The difference betwen those two 36
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are number of tracking particles. PTV track single particle or object in river surface, while 37

PIV track group of particles[4,17]. Beside using PIV or PTV, which use correlation-based 38

algorithms, there are other method which estimate WSV using moving particle or object, 39

such as Optical Flow (OF) based algorithms [8,19]. Elter et. al. [7] also use PIV and PTV 40

to estimate WSV from thermal signature of river flow, which replace the need of particle. 41

Thermal signature are captured using Thermal camera for PIV, and RGB Camera for PTV. 42

There are also exist other types of methods which do not utilize moving particle 43

or object to estimate WSV. Many of them utilize dynamic movement of water ripple to 44

estimate WSV. Among them are Space Time Image Velocimetry (STIV) created by Fujita 45

et.al in 2007 [10], Farneback Optical Flow Method (FOFM) by Wu et.al in 2019[8], and 46

Galois-Field Representation by Sirenden et.al in 2020 [23]. The first three are originate from 47

the same root, which is Optical Flow (OF) method . General mathematical formulation of 48

OFM is first proposed by Horn-Schunk in 1981 [24]. The basic hypothesis of OF are gray 49

level invariant hypothesis, which is stated that the gray level observed at any object point 50

remains unchanged for a short time. So when there is a change in the gray level of pixels 51

it is most likely caused by physical motion. In OF method direction are required since it 52

calculate two velocity vector in x and y direction of the image frame[3,8,19,24]. So to able 53

to capture WSV the velocity vector of water flow should be parallel with one of OF velocity 54

vector. 55

The last of the four method mentioned in previous paragraph, are base upon histogram 56

similarity of dynamic texture of water flow video. The hypothesis of GFR method are water 57

flow video texture exhibit periodic pattern. This periodic pattern is captured by examining 58

the Euclidean Distance (ED) of histogram using auto-correlation function. The original 59

image frame of video were transformed to GFR so its independent of water flow direction. 60

The original frame of the video is transformed to GFR so that it does not depend on the 61

direction of the water flow. Unlike the OF-based method where the application of OF is 62

aligned with the direction of the water flow. 63

In image texture analysis each pixels are compared with its surrounding neighbours. 64

For static image, pixel comparison were performed in spatial domain. For dynamic im- 65

age sequences analysis, such as videos, pixel comparison were conducted in spatial and 66

temporal domain. One of advantage of pixels comparison method is do not required 67

mathematical operation such as partial derivative as we can see in all OF based method. 68

For example in Local Binary Pattern (LBP) and its variants [25–29], Local Binary Count 69

(LBC) and its variants [27], the calculation is base upon logical operation. Other type of 70

static texture analysis use bit-wise operation such as XOR which is computationally lighter 71

[30,31]. 72

In this paper We introduce new dynamic texture descriptor namely Temporal Binary 73

Pattern (TBP), which use XOR operator to extract temporal feature of dynamic texture of 74

video image. We combine Histogram of Image formed by TBP and Feed-forward Neural 75

Network to form TBPIHNN. We train TBPIHNN with water surface flow video produced 76

by Mini Open Channel Water Flow Simulator (MOCWFS) to estimate changes of volume 77

flow rate. This changes of volume flow rate are proportional to WSV. 78

2. Related Work 79

2.1. Space Time Image Velocimetry 80

STIV analyze water ripple motion to estimate WSV. To do this STIV draws imaginary 81

lines in the direction of the water flow.The brightness variation of the pixels in these lines 82

are use to construct a space-time frame called a Space-Time Image (STI). The gradient of 83

gray level intensity in each local windows which construct STI then calculated. Then the 84

orientation of each local windows also calculated. As a final step, mean of orientation 85

angle from the orientation angles obtained for the local windows is calculated. This mean 86

orientation angle is proportional to WSV [10–12,14,15,22]. Due to its high spatial resolution 87

and low time complexity STIV is potential method for real time application [22]. STIV had 88

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 May 2022                   doi:10.20944/preprints202205.0233.v1

https://doi.org/10.20944/preprints202205.0233.v1


Version April 27, 2022 submitted to Appl. Sci. 3 of 17

been compared with other method such as PIV [10], ADCP [11], propeler flowmeter [16], 89

and agree fairly. 90

Despite its advantages, STIV is still being improved by several researchers. The 91

quality of STI can be affected by noise in real time aplication, for example measurement 92

of WSV during bad weather or nigth time or other factor which exist in nature [12,15,22]. 93

Fujita et.al [12], proposed new algorithm using auto-corelation function for STI which is 94

differ to original STI which use 2-D Fourier Transform. This new algorithm are called 95

QESTA. Zhao et.al [22] proposed new denoising method and combined with Fast Fourier 96

Transform (FFT) based STIV to improve accuracy due to low quality of STI. Watanabe et.al 97

[15] use Convolution Neural Network (CNN) to overcome low quality STI. CNN are use to 98

automatically detect STI gradient pattern. The input to CNN are 2-dimensional Fourier 99

Transform Image of STI (2DFTISTI). Identification of pattern gradient by CNN are more 100

easy to do by in 2DFTISTI compared to original STI. 101

While the above methods concentrate on accuracy and robustness of STIV, the follow- 102

ing researcher try to modify STIV to develop new method which independent to direction 103

of imaginary search line. Tsuji et.al [14] develop a method called Space Time Volume Ve- 104

locimetry (STVV), which based on STIV. It try to overcome the need to generate imaginary 105

lines parallel to water flow direction. Instead of generate STI, this method generate Space 106

Time Volume (STV) and analyzed using 3-dimensional Inverse Fourier Transform. Han 107

et.al [16] proposed two dimensional STIV, where the search line were rotated to find the STI 108

which has the most prominent oblique stripes. They develop the method to overcome the 109

shortcoming of STIV due to the requirement of predetermined search angle, and STVV ac- 110

curacy which depend heavily on the angle recognition error due to difficulty to recognition 111

of space angle compared to plain angle. 112

2.2. Farnelback Optical Velocimetry 113

Wu et.al [8] use Farneback Optical Flow Method (FOFM) to estimate WSV. By com- 114

paring FOFM with physical measurement by a portable propeller velocimeter in standard 115

trapezoidal open channel flow testbench, it is found that FOFM and portable propeller 116

agree with in 4.5%, and it is required 150 frame of images to have stable WSV measurement 117

result. Similar with STIV, FOFM need to identify the direction of water flow first. FOFM 118

are considered Dense Optical Flow (DOF) type of OFM [8], while STIV is Tensor Based (TB) 119

type [10,24]. Previously Paygude et.al [32] had combine FOFM with Gabor Filter to detect 120

velocity and orientation of traffic and cloud movement in real time application. FOFM is 121

use to estimate velocity, while Gabor Filter is use to detect orientation. 122

2.3. Galois Field Representation 123

WSV estimation using a camera is basically a dynamic texture analysis problem. As 124

seen in STIV the dynamic texture analysis is carried out in space and time framework. 125

Dynamic texture can be considered a changes or variant in gray level of pixels value as 126

we can see in STIV and FOFM method. The author had also proposed method to analyse 127

WSV from video based on idea that water flow video exhibit periodic pattern. To capture 128

this periodic pattern the author use spatial and temporal feature extraction separately. 129

First the static image in each frame were transform to other representation using Galois 130

Field addition operator, which is XOR. This new representation are called Galois Field 131

Representation (GFR). Then two spatial feature, Histogram and Normalized Cumulative 132

Histogram (NCH), will be extracted from GFR. To extract temporal feature, Euclidean 133

Distance (ED) applied to measure similarity between spatial feature of the first frame and 134

the rest of the frame. The ED metric then will be analyze using auto-correlation function to 135

determine the periodicity of dynamic texture of water flow video. The periodicity of ED 136

is assumed to be proportional to the WSV. The result of experiment shows that NCH is 137

perform better as spatial feature compared to Histogram [23]. The idea of using Galois Field 138

is inspired by Shivashankar et al. [30,31], which apply GFR to static texture classification 139

such as face recognition and other texture, which invariant to rotation and scale changes. 140
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Figure 1. Visualization of SWE in front view of OCC

In GFR method each of pixel were transformed into new representation by mean of XOR 141

operation of central pixel with 8 local neighbouring pixels. 142

2.4. Local Binary Pattern and its variants 143

Similar strategy also exist in Local Binary Pattern (LBP) method, where the central 144

pixel become threshold value for other 8 local neighbouring pixels. When the value of one 145

pixel in neighbouring pixels are lower or same with central pixel, than the value of that 146

pixel location become 0, otherwise the value become 1. Since the new transformation value 147

only 0 and 1, the method is named LBP [25–29]. Other method which developed from LBP 148

is Local Binary Count (LBC), the difference is in how the result are being presented. In 149

LBP the result is being presented as byte for example 11111111 is 256, while in LBC the 150

result is count of how many 1, so in the example it is 9 for LBC. The motivation of LBC 151

development is to reduce the size of final result[27]. 152

With the reason popularity of Machine Learning, some researcher combine LBP and 153

their variants with Neural Network (NN).Xu et.al [26] reformulate traditional method of 154

encoding in LBP to convolutional filters which is use in CNN. This reformulation lead to 155

design of Local Binary Convolution Neural Network (LBCNN). They compared LBCNN 156

with other NN algorithm using MNIST, SVHN, CIFAR-10, ImageNet, and demonstrates 157

excellent performance and perform as well as standard CNN. Wei et.al [29] combine CNN 158

and LBP to classify hyperspectral image with very high spectral resolution. They use 159

two-dimensional CNN (2D-CNNN), the first one dimensional CNN (1D-CNN) extract 160

hierarchical spectral features and another same 1D-CNN is applied to process LBP features 161

to further extract spatial features. The demonstration of this method show that it can 162

provide good classification accuracy on limited training samples. 163

For dynamic texture analysis or classification, evolve to Volume LBP (VLBP) and LBP 164

from Three Orthogonal Planes (LBP-TOP). Both of these method use 3D-spaces which is X, 165

Y (2D spatial frame) and T (time frame) axis. In VLBP the operation of LBP were conducted 166

in 3D surrounding pixels of centre pixel. The number of patterns in VLBP is will increase 167

by 23P+2, where P is the number of surrounding pixels, so the number will be very large. 168

Due to this, Ma and Cisar [25] proposed LBP-TOP. In LBP-TOP, LBP were carried out in 169

three separated 2D planes, which is XY, XT and YT. After LBP operation is performed, the 170

histogram of this three orthogonal planes then joined. By using this strategy the number 171

of bin or patterns is reduced to 3 · 2P. Zhao et.al [27] develop Volume LBC (VLBC) which 172

combine LBC and VLBP. This method able to include more neighboring pixels without 173

exponentially increasing the feature dimension as VLBP does, and run much faster than 174

VLBP and LBP-TOP. 175
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Figure 2. Visualization of SWE in side view of OCC

Figure 3. Visualization of Saint Venant Equation in OCC

3. Proposed Method 176

Consider three dimension physical boundary of open channel where water is flowing 177

through as shown in Fig. 3, where Q(x, t) is water discharge and A(x, t) is cross-sectional 178

area of water flow, which vary over x direction and time t. Hereafter we call this physical 179

boundary as Open Channel Column (OCC). For shallow water that flowing inside OCC, 180

famous equation called Saint Vennant capture fluid motion behaviour as is shown in 181

equation 1. This formula also called Shallow Water Equation (SWE) and its derived from 182

Navier Stokes equation [33]. 183

∂A(x, t)
∂t

+
∂Q(x, t)

∂x
= 0 (1)

If we take front view of OCC as shown in Fig. 1, we can derive A(x, t) from the mean 184

height of water in OCC (H), OCC width (W), water ripple height (h(x, y, t)), which is vary 185

over x, y direction and time t. Mathematical formulation of this visualization is shown in 186

equation 2. If we take side view of OCC as shown in Fig. 2, it can visualize that Q(x, t) is a 187

product of A(x, t) and mean velocity (ν(x, t)) as in equation 3. 188

A(x, t) = (H · W) +
∫
(H + h(x, y, t))dy (2)

Q(x, t) = A(x, t) · ν(x, t) (3)
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Figure 4. Visualization of Image Frame from Top View

As we can see in equation 1, it is necessary to have partial derivative of A(x, t) over t 189

and Q(x, t) over x. The partial derivative of Q(x, t) over x is given in equation 4, and we 190

can see in that equation it is required to take partial derivative of A(x, t) over x as well. 191

Equation 5 and 6 show partial derivative of A(x, t) over t and x. As we can see the from 192

that equations that derivative of A(x, t) over t and x are integral of partial derivative of 193

h(x, y, t) over t and x trough y direction. 194

∂Q(x, t)
∂x

= A(x, t) · ∂ν(x, t)
∂x

+ ν(x, t) · ∂A(x, t)
∂x

(4)

∂A(x, t)
∂t

=
∫

∂h(x, y, t))
∂t

· dy (5)

∂A(x, t)
∂x

=
∫

∂h(x, y, t))
∂x

· dy (6)

Visualization of image frame taken by camera from top of OCC is shown in Fig. 4. 195

The grid is representation of pixel (p(x, y, t)) which is vary over x , y and t. In water flow 196

video this pixels change are related with water ripple change over x , y and t. So we 197

can assume that partial derivative of h(x, y, t) over x and t approximately represented by 198

partial derivative of p(x, y, t) over those axis. Equation 7 and 8 show this assumption in 199

mathematical form. 200

∂h(x, y, t)
∂t

≈ ∂p(x, y, t))
∂t

(7)

∂h(x, y, t)
∂x

≈ ∂p(x, y, t))
∂x

(8)

In this paper the author consider to extract feature from change over time of each pixel 201

in the video frame then transform it. Then take histogram of the transformation and use it 202

as a learning parameter for FNN. 203
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Figure 5. Frame Collection from t to t − 9

Figure 6. Temporal Binary Patern

3.1. Temporal Binary Pattern Image 204

To construct TBPI, we collect 9 frame. The first frame is at current time (t) and the last 205

frame is at t − 9 as shown in Fig. 5. In each pixel coordinate we collect 9 pixels in time 206

direction as shown visually in Fig. 6 and mathematically in equation 9. We call this pixels 207

collection as pn(x, y), where n is pixel index as shown in equation 10. In this paper we use 208

gray-scale image. Pixels in a grayscale image have a range from 0 to 255. This number is in 209

digital number format. This number range is a byte consisting of 8 bits. The bits bm,n(x, y) 210

that make up the pn(x, y) are shown in the equation 11. 211

pn(x, y) = {0, 1, 2, ..., 255}
= b1,nb2,nb3,nb4,nb5,nb6,nb7,nb8,n (9)

n = {t, t − 1, t − 2, ..., t − 9} (10)

bm,n(x, y) = {0, 1} (11)

After that we construct qn(x, y) resulting from the XOR operation between pn and 212

pn−1 as shown in figure 6 and equations 12 and 13. Since it is an XOR operation, qn(x, y) 213
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Figure 7. Transformation from original image frame (p(x, y, t)) to TBPI (s(x, y, t))

will be the same size as pn(x, y). It also contains a collection of bits called Bm,n(x, y). If 214

we perform XOR operation for each Bm,n(x, y) as shown in equation 14, we can have new 215

variable called rn(x, y) which is one bit value. We collect this bit value and construct a new 216

image called TBPI (s(x, y, t)) as shown in equation 15. TBPI may be vary in space and time 217

(x, y, t), and have the same size with original image (pn(x, y)). This transformation from 218

p(x, y, t) to s(x, y, t) can be visualize in Fig. 7. 219

qn(x, y) = pn(x, y)⊕ pn−1(x, y)
= B1,nB2,nB3,nB4,nB5,nB6,nB7,nB8,n (12)

Bm,n(x, y) = bm,n(x, y)⊕ bm,n−1(x, y) (13)

rn(x, y) = B1,n ⊕ B2,n ⊕ B3,n ⊕ B4,n ⊕ B5,n ⊕ B6,n ⊕ B7,n ⊕ B8,n (14)

s(x, y, t) = r1r2r3r4r5r6r7r8 (15)

3.2. Temporal Binary Pattern Image Histogram 220

The transformation result s(x, y, t) is also a image with the same size as p(x, y, t). 221

Since TBP had extract temporal dynamic feature, but not the spatial feature, we will use 222

histogram as spatial feature extraction. The reason why histogram are chosen because it 223

is independent on spatial orientation. This will be an advantage, because the proposed 224

method will not be affected by the direction of the water flow. In this paper we use 11 bins 225

to construct our histograms. 226

3.3. Feature Learning Using Feedforward Neural Network 227

The histogram of s(x, y, t) which discussed before will become input for FNN. The 228

structure of FNN is 11 input node, 2 hidden layer and 1 output layer. The output is numeric 229

value, so our FNN is solving regression problem. Table 1 show the structure of FNN. 230

We train the network using ADAM optimizer and Mean Absolute Error (MAE) as a loss 231

function, 1000 epochs will be use in the training. 232
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Network Structure

Layer Node Activation

Input 11 ReLU
1st Hidden 11 ReLU
2nd Hidden 10 ReLU
Output 1 Linear

Training Parameter

Optimizer ADAM
Loss Function MAE
Epochs 1000

Table 1. FNN Structure and Training Parameter

Figure 8. Mini Open Channel Water Flow Simulator

4. Experimental Setup 233

Water flow video data are collected from MOCWFS, which consist of Open Channel 234

Column (OCC) made from PVC, small submersible pump, mini flow-meter and instrumen- 235

tation box (IB). Figure 8 show the whole part of MOCWFS. OCC serves as a container of 236

water, it’s mechanical dimension are shown in Figure 9. Water are fill into OCC approxi- 237

mately 7 cm from bottom as shown in Figure 10. Camera sensor which is use to capture 238

water surface are OV2460, which is integrated with ESP32 in ESP32-CAM module. As 239

shown in Figure 11 ESP32-Cam are located in the bottom of IB, The distance of IB to the 240

bottom of OCC is approximately 15.5 cm, therefore the distance of water surface to camera 241

is about 8.5 cm as shown in Figure 12. 242

The water in the OCC is driven by a mini sumersible pump. The pump speed is 243

controlled by the Field Programmable Gate Array (FPGA) inside the IB. Meanwhile, the 244

volumetric flow rate of water produced by the pump is measured by a mini flow-meter. The 245

flow-meter pulse data is sent to the FPGA. The FPGA and ESP32-Cam communicate with 246

each other using a serial communication protocol. The ESP32-Cam transmits the pump’s 247

Pulse Width Modulation (PWM) data to FPGA, and receives flow-meter frequency data 248

from it. The PWM data correlates with the pump speed, while the flow-meter frequency 249
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Figure 9. Open Channel Column Mechanical Dimension

Figure 10. Water Level inside OCC

data correlates with the volumetric flow rate as measured by the flow-meter. The flow- 250

meter data received by the ESP32-Cam is forwarded to the PC when requested, the PC also 251

sends the pump speed data to the ESP32-Cam. In addition to functioning as a wireless 252

data trans-receiver, the ESP32-Cam also captures images of surface water flows and sends 253

them to a PC.In the PC there is a Python program that functions to send pump speed data 254

and receive surface water flow image data. The program utilizes the TCP-IP protocol to 255

communicate with the ESP32-Cam continuously. Meanwhile, to receive the flow-meter data, 256

the Hercules program is used, the user sends a certain command that tells the ESP32-Cam 257

to send the flow-meter data. This data transaction does not occur continuously for fear of 258

disturbing image data transactions. The communication protocol used for data flow-meter 259

transactions is UDP. The processes described previously can be seen visually in Figure 13. 260

Table 2 show the pump specification. PWM data format which send by ESP32-Cam to 261

FPGA is MxxxxxS. Where xxxxx is integer value from 0 to 9999, which corelated with PWM 262
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Figure 11. Instrumentation Box: 1) Esp32-Cam 2) FPGA 3) MOSFET 4) Connecting Circuit 5) Power
Supply Connector 6) Connector to Flow-Meter and Pump.

Figure 12. Distance of camera sensor to water level.

value. The author write VHDL code which create PWM generator which have period of 50 263

millisecond and resolution of 16 bit. 264

The specification of flow-meter can be seen in table 3. Data format send by FPGA to 265

ESP32-Cam is BxxxxV, where xxxx is frequency value in range of 0 to 9999 Hz. K-Factor in 266

that table is use to convert frequency data to volume flow rate. Frequency meter are created 267

using VHDL inside FPGA, it has 1 Hz sampling rate. 268

The author use Cyclone II EP2C5T144 module. It is a low cost FPGA Development 269

Board from Altera-Intel. It has 50 Mega Hz oscillator, maximum clock frequency is 300 270

MHz, JTAG programming connector, EPCS4SI8 4 Mega byte serial configuration flash, 271

active Serial connector for programming, 5 Volt power jack, , 89 I/Os, 3.3 Volt (I/O) and 1.2 272
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Figure 13. Sigral Trancsaction Between Electronic Component inside IB and PC/Laptop.

Characteristic Value

Maximum Flow 14 Litre/Minute
Working Voltage 12 VDC
Maximum Current 1.2 A
Maximum Suction 5 metre
Pump Type Submersible

Table 2. Characteristic of Mini Submersible Pump

Characteristic Value

Model YF-S201
Flow Range 1-30 Litre/Minute
Voltage Range 3.5-24 VDC
Connection Cable Three Wire (Power, Signal, Ground)
Flow Rate (Litre/Minute) Frequency (Hz)/7.5
Measurement Error ±5%

Table 3. Characteristic of Flow-meter

Volt (core) voltage regulators, 3 LEDs, 1 pushbutton switch. The core chip of this module, 273

Altera Cyclone II, EP2C5T144C8N has 4068 logic elements, multiple 4k RAM blocks giving 274

a total of 119,898 bits. Author configure the FPGA using Very High-Speed Hardware 275

Description Langguage (VHDL) in Quartus II software. 276

The camera module, ESP32-Cam is a very competitive small-size minimum system 277

with a footprint of only 27*40.5*4.5 mm and a deep sleep current of up to 6 mA. It has 278

SPI flash 32 Mbit, 520 KB SRAM, 4 Mbit PSRAM, Bluetooth capability, 802.11 b/g/n WiFi 279

capability, UART, SPI, I2C, PWM, 9 I/O port, on-board PCB antenna, gain 2 dBi, image 280

format Grayscale, BMP, JPEG, 5 volt power supply range. The pixel size of image data 281
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PWM Flowrate (LPM)

5000 3.3 ± 0.5
3000 2.7 ± 0.5
1000 1.3 ± 0.4

Table 4. Relation between PWM and volume flow rate

captured by ESP32-Cam is 160x120, with frame rate of 24 frame per second (FPS). Author 282

create C++ code using Arduino IDE and embed it in to ESP32-Cam. 283

In PC/Laptop the author create python program to capture pixel data send by ESP32- 284

Cam, and use it to create video data and place it in side specific folder. The folder and 285

video name are specific base upon PWM data. Another python program is use to create 286

10 second video from original video. The original and 10 second videos can be found in 287

author github page which the link can be found in supplementary section of this paper. It 288

is already organize in specific folder base on the PWM values. 289

5. Results 290

5.1. Temporal Binary Pattern Image 291

Using MOCWFS we have 15106 video data set which reader can found in our github 292

link, we also create youtube channel, so reader can see the how MOCWFS work. The 293

web address of our github repository and YouTube channel are given in Data Availability 294

Section. The data set are divided in to 4 folder which correlated with PWM value given to 295

water pump. Using flow-meter installed after water pump, we able to estimate the volume 296

flow rate generated by the pump. Table 4 show relation between PWM with estimated flow 297

rate. Unfortunately due to limitation of the flow-meter, when PWM value of 500 the flow 298

rate reading is 0. Although in PWM 500 water is still moving. The reader can see the water 299

movement when PWM is 500 in our github link. 300

5.2. Temporal Binary Pattern Image 301

Figure 14 show various pattern produced by TBPI on various PWM value. We can see 302

on the lower PWM value, there is a lot of black pixels appear. As the PWM value goes high, 303

or volume flow-rate is increasing, this black pixels is decreasing. At PWM value of 3000 304

and 5000 the pattern is almost similar. 305

5.3. Histogram of Temporal Binary Pattern 306

A comparable phenomenon is seen on the histogram of the TBPI as we can see in 307

Fig.15. The resulting histogram shows the difference between low and high value PWM. 308

The higher the PWM value, the histogram will resemble a box. At the PWM 3000 and 5000 309

the histograms produced by both values are almost the same. 310

5.4. Feed Forward Neural Network Training 311

From 15106 video data set, we divide the data to 10574 data for training and 4532 for 312

testing. We train histogram data using Google Colabs and achieved accuracy is between 72 313

to 73 %, the training time around 10 to 16 minute. Fig.16 show accuracy during training 314

process. 315

6. Discussion 316

As described in previous sections, TBP is able to extract temporal feature of WSV. We 317

can visually see how TBPI are differ between pump PWM value. Except for PWM value of 318

5000 and 3000 where TBPI have simmilar pattern. Histogram of TBPI (TBPIH) also show 319

significant difference between PWM value 500 and the rest of the value, but not for PWM 320

value 3000 and 5000 where TBPIH are almost similar. The similarity of TBPI and TBPIH of 321
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(a) s(x, y, t) when PWM value 500 (b) s(x, y, t) when PWM value 1000

(c) s(x, y, t) when PWM value 3000 (d) s(x, y, t) when PWM value 5000

Figure 14. TBP Transformation on various PWM value

(a) Histogram of s(x, y, t) when PWM value 500 (b) Histogram of s(x, y, t) when PWM value 1000

(c) Histogram of s(x, y, t) when PWM value 3000 (d) Histogram of s(x, y, t) when PWM value 5000

Figure 15. Histogram of TBP Transformation on various PWM value

these two PWM values may be due to the similar maximum changes in water ripple height. 322

The water thrust generated by the pump between PWM 3000 and 5000 cannot produce a 323

water ripple height that can be significantly distinguished by the TBP method. But in low 324

PWM value or low flow rate, such as PWM 500 and PWM 1000, TBP method are able to 325

distinguish them significantly. 326
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Figure 16. Accuracy of FNN Training

At the low flow rate, PWM 500, black pixel dominate the region. We can see this at 327

Histogram of TBIP at Fig. 15a, where black pixels (integer value of 0) reach 20000 count.In 328

binary form black pixel is equal to 00000000. This is mean many of pixels in the area do not 329

vary a lot. When PWM value is increase to 10000, the flow is also increase, black pixels is 330

decreasing as we can see in 15b. The black pixels value is 10000, and other pixels value is 331

increasing compare to Fig 15a. When th PWM value reach 3000 and 5000, in Fig 15c and 332

Fig 15d, the black pixels count is 8000, while other pixels value is in the range between 333

7000-8000 except pixels value of 250 which is only 2000. The disability to distinguish WSV 334

in higher PWM pump may caused by bit size in TBPI. Since it is only 8 bits, pixel variations 335

due to the movement of water in high flow rates may not be captured. More bit size 336

required, which means more frames to be captured. 337

Although TBPIH is unable to distinguish variation of water ripple in high flow rate. 338

Training result using FNN show quite fair results with more than 70% of accuracy. At first 339

author use RSME as loss function, and the accuracy of training is around 50%, and 5 layers 340

were used. When Loss Function are changed to MAE, the training accuracy is increased, 341

and only 2 layers are required. As known the difference between RSME and MAE is on 342

how it handle out layer data. RSME is more prone to out layer data, while MAE are more 343

robust. So MAE is more appropriate to handle TBPIH data, since it may contain out layer. 344

Although MAE had increase training accuracy, but since at high PWM value or flow rate 345

TBP unable to distinguish them appropriately, maximum accuracy that can be achieved is 346

73%. 347

With this accuracy, TPBIHNN can be an alternative method for WSV estimation using 348

camera. Since it use XOR operation to extract temporal pattern this method has low 349

computation complexity and can be implemented in micro controller or FPGA. The greatest 350

computational complexity mostly comes from FNN which has 14,983 parameters that must 351

be calculated to predict the results. Compare to STIV which need 2D-Fourier Transform, 352

TBPIH is have less time complexity. In term of memory, since TBPIH result is the same size 353

as original image, compared to VLBP or VLBC or LBP-TOP the proposed method have less 354

memory requirement. 355
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7. Conclusion 356

This study had shown that temporal feature of WSV can be extracted using XOR 357

operator. The proposed method TBPIHNN has fair accuracy of 73%, it’s still had draw 358

back when distinguish WSV at medium flow rate (2.7 to 3.3 LPM). Further work should be 359

carried out to improve TBPIHNN by increasing bit size in TBPI, or using more light Neural 360

Network structure such as Extreme Learning Machine to reduce network parameter. 361
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