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Abstract: Because of the improvement of sensory technologies, there is an explosion in the develop-
ment of low-cost electronic systems to operate smart city environmental features. Computer-based
solutions that improve the quality of practical services are becoming increasingly popular as the
world becomes more urbanised. Most present research on decentralised IoT applications focuses on a
particular vulnerability. In contrast, for IoT-enabled industrial applications, only a few mechanisms
address the challenges of privacy and trust. In addition, the current plans are in a poor state of repair.
such as decentralised mobile networks when time is of the importance, like long-term evolution
(LTE-A) The following is an example: Because of its trust-awareness and seamless authentication,
TABSAPP is able to address issues of privacy, security, and delivery ratio. The redesigned traffic
arrangement and the proposed method both make advantage of this technique. TAB-SAPP is shown
to be a viable solution through the usage of identity management. boosts the number of active users
by delivering more packets, which results in more mobility.

Keywords: security; privacy; blockchain; smartcontracts; IoT; encryption; transaction

1. Introduction

Artificial Intelligence (Al), blockchain, and the Internet of Things (IoT) are just few
of the computing technologies that make up Industry 4.0. (IoT). The Internet of Things
(IoT) devices are connected to each other via a cyber-physical system. In order to keep an
eye on the health of data-intensive applications in real time, predictive maintenance can
be employed. Smart intelligence capabilities embedded into each programme can help
policymakers find data-driven solutions to pressing concerns.

Based on the difficulties of Module-SIS and M odule-LWE problems, we present a
significantly more practical way for establishing knowledge of a short vector fulfilling
A’s "t mod q." For the time being, demonstrating that s’s 18 norm is modest is sufficient
as a workaround. Polynomial product of CRTpmq and s coefficients is equal to 0 and
the CRTpmq "t mod Q" polynomial vector with CRT coefficient equal to the s coefficients,
is a polynomial vector. Since CRT embedding is a must and these approaches can only
naturally be extended to show the 18-norm, they are already quite good for practical use.
The 12 norms of the coefficients of s can be shown to be small using a straightforward and
efficient method that does not necessitate an equivocation with the 18 norm or a conversion
to the CRT form. If r and s are polynomials, then the product of their coefficients can be
used to find this coefficient of the inner product between r and s. All except one coefficient
of the proof for the modulo q inner product of two vectors is hidden using a polynomial
product proof approach (or a vector with itself). The proof can be raised to Z instead of Zq
using a low-cost, approximate range proof. A "interesting" inner product of vectors and
polynomial products automorphism is enough to allow us to prove short norms using our
methodologies.
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The proliferation of industrial IoT applications and networking services has allowed

for a tremendous increase in the number of connected devices. The application devices
can capture real-time industrial data with a dedicated sensor unit [2]. Industrial advance-
ment as well as technological guidance are behind this shift in the way systems interact
with physical and logical things Centralized architecture is used to communicate real-time
industrial data and evaluate the key components of 10T, including identity management.
A single point of failure is feasible as a result of this common technique. A major issue
with the Internet of Things (IoT) is the difficulty in maintaining and managing a large
number of connected devices. System of networks can talk to interactivity through adap-
tive self-configuration. IoT applications can be commercialised over the 6G network. A
fundamental component of the Internet of Things, the Wireless Sensor Network (WSN),
gathers and transmits physical data using a range of heterogeneous models.
This article examines how computation can be offloaded to the physical layer in a blockchain-
enabled Internet of Things (IoT) (PLS). MEC servers provide computational resources to
help sensors complete their tasks after receiving task data from the BS (backend server).
Gas providers are dissatisfied with current blockchain-based offloading schemes because
of the lack of consideration of the gas cost for compute offloading. As a result of IRS-
based wireless channels’ time-varying features, it is impossible to estimate the data upload
process’s secrecy rate with a constant value. Using gas-oriented computing offloading
to reduce sensor dissatisfaction while simultaneously reducing overall power usage is
explained in this research. It is possible to allocate computer resources via IRS-assisted PLS
transmission with ergodic secrecy. As a result of simulations, the proposed solution uses
less energy and ensures the node that pays more receives more. Gas is the most potent of
all the fuels available...

IoT Applications

Figure 1. Applications of Internet of Things.

2. Background and Related Studies

Blockchain can be used to build trust and monitor node activity in IoT networks.
Blockchain is challenging to integrate in IoT applications due to its high power consump-
tion and job outsourcing. Several blockchain-based Internet of Things (IoT) applications
have recently been created to address these concerns. These blocks can be used to delete old
transactions and blocks from blockchains without jeopardising security. Pan et al. created
an IoT resource management prototype using blockchain and smart contracts to securely
record all IoT transactions [16]. Deploying smart contracts involves evaluating the source
code, bytes of code, and execution histories, according to Angelo and Salzer [12]. This is
how we test our computer traffic analysis deployment scenario. Wang et al. [13] investi-
gated blockchain and smart contract applications in cloud storage. Pay-as-you-go is Tam et


https://doi.org/10.20944/preprints202205.0220.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 May 2022 doi:10.20944/preprints202205.0220.v1

30f21

alcar’s business model. This technology’s strengths are traceability and tamper-proof char-
acteristics. [15] Yangqi et al. created a blockchain-based publisher-subscriber model. They
designed their solution to assure data integrity in real-time IoT processing by balancing
computational resources and workload. Liu et al. delegated computationally intensive PoW
mining tasks to nearby edge servers in blockchain-enabled mobile IoT systems [18]. Chen
et al. conducted additional research. Securing biometric data for patient authentication
is a common issue. In particular, finger vein biometric data has been studied extensively.
A strong verification mechanism with high levels of reliability, privacy, and security is
required to better secure this data. Also, biometric data is difficult to replace, and any
leakage of biometric data exposes users to serious threats, such as replay attacks employing
stolen biometric data. This research offers a unique verification secure framework based on
triplex blockchain-particle swarm optimization (PSO)-advanced encryption standard (AES)
approaches for medical systems patients authentication. Discussion has three stages. First,
presents a new hybrid modelpattern based on RFID and finger vein biometrics to boost
randomness. It proposes a new merge method that combines RFID and finger vein charac-
teristics in a random pattern. Second, the suggested verification safe framework is based on
the CIA standard for telemedicine authentication using AES encryption, blockchain, and
PSO in steganography. Finally, the proposed verification secure architecture was validated
and evaluated. The combination of WSN functional activities with 6G network topologies
allows us to test a wide range of IoT application deployment models. [4] Many IoT devices
collect data using IPV6 across low-power wireless personal area networks and wearables
(6LoWPAN) [5]. The Internet of Things influences authentication and key agreement mech-
anisms (IoT). We were able to keep user data confidential with AKA'’s help. [6]. Companies
that use public cloud services and large-scale data storage systems have long prioritised
client data protection. IMSS prefers machine authentication for public clouds.

recognising the value of reliable data in decision-making Batch processing may be
required when working with huge data sets in the cloud. Even so, comparing the two
seems impossible. To safeguard user passwords, Edward et al. [7] examined privacy laws
and regulations. In real-time data communication with the Internet, dispersed mobility
management rules and smart computers’ activities are separated. Unlike real-time systems,
cryptographic algorithms establish a public/private key pair. The cloudserver can read
private cloud data by sharing a secret key [8]. Statista predicts 50 billion connected IoT
devices by 2030. As a result, the market will increase rapidly in the future. Consistently
protecting user privacy, blockchain-based trust might be used to seamlessly authenticate
(TAB-SAPP). A smart design architecture is presented for spreading device connectivity
over physical networks. The most widely used industrial automation standards are Zigbee,
Z-Wave, and Bluetooth Low Energy (BLE). The blockchain’s peer-to-peer nature allows
IoT devices to connect. Decentralized IoT devices and consensus methods generate and
store data in encrypted chain-like blocks, while smart contracts modify data and control
the system. Blockchain-enabled IoT relies on a secure security paradigm (also known as
IoT-EBT). This is possible because smart contracts retain and limit computing resources
associated with a device’s identification.

Different applications demand different levels of security, and resource scarcity plays
a factor. Finding the best encryption technique for IoT medical data protection is essential.
Electronic sensors capture medical data from patients and safely transmit it to the healthcare
system. To avoid unwanted access or needless interruptions, trust and data privacy must
be ensured from the start-sensors. Thus, data encryption from the start sensors is required,
but due to restrictions in CPU complexity, battery consumption, and transmission band-
width, using standard crypto-algorithms is impractical. Research on realistic lightweight
encryption techniques for IoT medical systems. The study compares eight cryptographic
algorithms in terms of memory usage and speed. The study determines the best candidate
algorithm for the proposed health care system balancing the ideal requirement and future
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dangers.

Both parties must authenticate to use these services safely [32-35]. The server should
require authentication to protect records from unauthorised users and ensure patient
privacy (client side). Patient authentication is required to prevent server impersonation
[32,36,37]. This proof-of-concept addresses emergency situations where a patient arrives
unconscious at the hospital and needs to access information without providing an authori-
sation key. This issue requires safe biometric identification technologies as palm vein and
iris [38-40]. In addition to providing high levels of security, usability, and dependability,
biometric technology authentication has grown in popularity [39]. For example, the finger
vein (FV) biometric is highly secure. Most modern authentication systems save biometric
patterns in a database. Authentication extracts this data as biological biometrics. Secure
biometric authentication with FV will be more resistant to security breaches and imper-
sonation attempts. The human FV is a physiological biometric used to identify people
by their blood veins” morphological characteristics. Individuals and offenders (in legal
situations) are identified using this new technology, which is more accurate than other
biometric systems [53-55].

Assuring the accuracy of verification results with low cost, time, and error rates is our
goal. However, previous research shows that the utility of FV biometrics is severely limited.
Securing the FV data inside the verification system is difficult since security breaches or
biometric data leaks pose major security threats. Using stolen biometric data, for example
[54]. This issue impairs the verification system’s reliability, preventing stakeholders from
using it. For example, when a user wants to access cloud computing or IoT services [55],
data can be intercepted between the client and server or inside the database where the
biometric data is stored. Because biometrics are permanent [56] and cannot be changed
once taken, a solution must be devised. In order to secure FV biometrics, many researchers
have used uni- or multi-biometrics, which include FV biometrics as part of the verification
system. These approaches are applied in two steps, as follows: To protect FV patterns,
researchers are trying to extract trustworthy properties from FVs, which can be used to
uniquely identify individuals. These exclusive properties from the FV junction sites and the
an-gles between veins are used to build a unique key (biokey). This key is used to encrypt
data patterns[55,57]. The observation matrix extracts patterns and features, which are then
encrypted with a random key [54]. Some researchers employed multi-biometrics to add to
existing features. These traits have been used to identify people (FV, retina and fingerprint).

Tsai and Lo created identity-based authentication with mobile devices, service providers,
and trusted third parties. Mobile devices and service providers can securely communi-
cate using long-term secret keys. It is less efficient than ours due to the usage of bilinear
pairing. Fan et al. claim that no suitable approach exists to prevent vulnerabilities. There
is a solution for [20]. Yang et al. [21] devised a safe cloud computing handover method.
It has a secret session-key. A network gateway generates and distributes a secret key
before use. Banerjee et al. [22] presented anonymous user authentication in multiserver
settings. It secures the system with ID-based cryptography. Create an authentication system
that protects user privacy while lowering computation and transmission overhead. [18]
Currently, implementing privacy protection for edge networks is tough. Park et al. [24]
developed new authentication procedures to avoid Xiong et al’s attacks. [24] Elliptic curve
and biometric cryptography. Unlike Park et al. [25], Wang et al..

3. Contribution

1. Digital applications (DApps) use a trust-aware security approach to increase security
and privacy while connecting huge IoT services.
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2. The sensing units generate industrial data across a dedicated network to concentrate
the application service structure.

3. The network architecture connects to a variety of trustworthy IoT devices to meet
6Gen enabled IoT requirements.

4. The DApp’s functions are enhanced with individual data such as biometric, video,
and speech. DApp standardises smart intelligence by combining sensors, mobile
networks, cloud resources, and service agents.

5. Edge computing is critical in 6G networks to reduce latencies [10].

4. Methodology
4.1. Proposed Algo

Algorithm 1 Attribute Based Signing Algorithm
Input: Initiate Master public key Ppub-s of domain, system parameters of domain,
message My, e's identity Ip.. and digital signature (hg, Sp)
Output: Result of verification: pass or fail

1. Convert the Value of hy to int

2. if hy € [1, N x 1] Not <, the verif fails

s Compt Valuet = g hy in GT

s Compt w= Hy(h—4, N)

5. Compt § = (r x h) mod N: if | = 0, move to sage 2)

o Compt a = H1(IDe——hid, N)

= Compt Value P = [h;]P; + Pyyps in G2

s Compt Value u = e(Sy, P) in GT

oo Compt wy =u - tin GT

w. convt the Value of wy to a bit string

1: Compt int hy = Ha(Myg——wp, N)

12 if hs = hy holds, the verification

13 Otherwise, the verification fails

1. End Compt

15 Ret O

6. End Procedure

Algorithm 2 Algorithm Method Evaluation

- Enhance Manifold Analysis Evaluation of both the PHR end

. SelectPHR device for comm

. Get acquisition, hash, electronic medical records (EMR) or PHR
1. Extract EMRFromRepository from EMR (EMR name)

5. PHR, valid SHA256 checkHash (PHR, hash)

s if EMR or PHR, wvalid is true, then

7. Get the Connect Length using Connect length (Connect)

s Generate Indications(Connect length) Generate Indications(Connect length)
o F Blockehain transaction addAnalysis(i, indications)

10: deleteLocalEMR,PHR

w end if (EMR,PHR)

12 end

13- end

W e
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Algorithm 3 Homomorphic Encryption

. Public Key

. T 4+ 0 indexed by keywords W

. Choose key Kg for Pg,

. Choose keys Kx, Ky, Kz forPg.F, *pand parse DB as (id;, Wiy, )di =1 + N
«~ F(KS.w)

s id € DB(w) d, ¢ + 1z, + F (K. ig). z  Fy(Kz wlle)

ey —xy, —le— B, (K. i)

T Ty, gF,(Kx, w)r;,andXs,, As, Uz, (y,e)totandc ¢ c+ 1

s [W] «—t

4

P

w (Ts,,. Kv) « Ts,,.Setup(T)

1 let ED.B = (.T-‘ie. ._XS«()

w2 return Ep,. K = (Kg. Kx, K;, Kz, K1)

5. Token Generation (q('w), K)

u: Client’s input is K and query g('w = (wy, ..., w,))
5. Compute stag « Tset.Getrag(Kr,w;)

1. Client sends stag to the server

o ¢ = 1,2 ... until the server stopsi =2, ... n
18: mt“k!"‘u] — ng( ’Z__i,‘_.IIHC}Fp(Kx.wi)

20: Ty — (1‘! ]:!olcen[c.n])

e e] ke le2]
2 Tokg « (s, m‘m")
s return T okq
. Searching Technique
25: ERQ —
2. t « Tset(Retrieve)(Ts,, , stag)
. Verification result: succeed or fail

o
&

».-.
4

o
5

Algorithm 4 Initialization Algorithm

i Initialize T +— ¢ indexed by keywords W

2. Select key Kg for Prp F

s Select keys Ky, Ky, Kz for Pgp F, with range
o Z = p and parse Dg as (id;, Wi di)d; = 1

s: Initialize t +— ...; and let K, +— F(Kg. w)

s for id belongs to Dg(w)d,

7. Set a counter ¢ «— 1

s: Compute x;y +— F,(K}, i4), 2 +— F,(Kz wl|c)
o Y & Tig- — le +— E,”_.(B.’mild)

w0: Set Tiag ¢— g Fp(Kx, w)xig and Xs. +— X union g
e Append (y,e)totand c+— e+ 1

2. end for

m Tlw] +— ¢

i end for

15 Set {T‘S‘e!-. I{T} — Tsu Setup{T}

w: Let Epg = (I?:.-r:XS:.-r)

w return Epg, K = (Ks, Kx, K;, Kz, Kr)

1s: Token generation (g(w), K)

19 Client’s input is A and query g(w = (w, ..., wn))
0. Computes stag «— Tg. Get Tag(Kr,wy)

2. Client sends s,,, to the server

2. for ¢ = 1,2, ... until the server stops do

w fori=2,....ndo

20 Tyopen |0 1) +— g Fy(Kz, wl||e)F,(Kx. w;)

25 end for

35 Tyoken|C] — (Ttoken[C: 2], ooy Tooken[c: 1))

27 end for

28: Tukq — (S!ug-. Ilukﬂn)

2. return T,

0. Searching technique

31: E;g,g,.,- — ...

a2 b — Is‘m[,mm,.”(r‘s‘m-.Smg)
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4.2. System Model

An industrial automation authentication system that is both trustworthy and simple
is the purpose of this section. Private keys can be tested for security using a multisig-
compatible contract, ensuring that no one else has access. Industrial automation will create
a pay-as-you-go intelligent approach to explore the computing processes of IoT gadgets.
The TAB-SAPP system is depicted in Figure 1. A multisigcompatible contract examines all
aspect of a transaction, from quality control to mechanical technique to decision-making. In
order to make independent decisions, the intelligent model makes use of traffic patterns. An
IoT device’s fundamental operational operations are analysed by a smart contract in order
to maximise overall system efficiency. Table II shows how scientists use the TAB-SAPP
notation.

Data Center

Cloud Computing

Internet

Computing

“ Fog )
ijj)

Figure 2. Application of Cloud computing .

=
|
8 ¢
= o & = Yo e ﬂ@ﬁ
P I AN & 9!
spignne | QERY - AV
)5 ! T/NT Iy
1 o—=0

Figure 3. System Model Using healthcare Systems.

Components of communication include: An external owner account can access a
billfold contract. A reliable transaction can address the different IoT devices scattered by
automation. authorities. Automation and control experts are needed to distribute and
manage large IoT devices. You can use an external owner account to warn consumers.
Consumer-owned contracts are managed via a billfold. Control agreements can ensure a
device’s security. Consumers regularly use IoT devices to transact. Sending a Web3API
transaction requires a contract state. Using a Billfold Contract, clients may securely access
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industrial assets and register large IoT devices. Control contract: The control contract al-
lows the public to inspect and approve the IoT device’s worth. In the proposed TAB-SAPP,
smart contracts handle whitelisting, IoT registration, IoT payment, key computation, and
device operation. Consumer signature uses 256-bit Keccak hash to cope with external
account (ECDSA). The control contract’s private key connects the user, IoT device, and
control contract. Here are the steps: In the first phase, an external owner account creates a
whitelist. The control contract charges a fee to indicate consumer device access. Anyone
who wants to verify a transaction on the blockchain pays a charge. The client and IoT
device are linked to the external owner account in step two. Allows for consideration of
consumer needs when fulfilling contractual responsibilities. After successful registration,
the IoT gadget pays fees. TAB-SAPP smart contracts will handle whitelisting, registration,
payment, and key computation. Encrypted elliptic curve signatures with Keccak hash
(ECDSA). The control contract’s private key addresses the consumer, IoT device, and control
contract. Here are the steps: The contract organisation maintains and updates the whitelist
using an external owner account. The consumer device control contract specifies the fee
request. Using multisignature to verify a data transaction costs each party. To complete
IoT registration, customers and devices must be linked to an external owner account. The
contract organisation can accommodate client requests. The IoT gadget then handles the
fee payment.

4.3. Elliptic Curve and Ring Signature Integration

List of Abbreviations

Symbols Purpose Symbols Purpose

Y AF H Hash Algorithm
X x-value a 248

k Constant b 008

z Dz R 012

p Prime L 016

k AD RO 020

G Bilinear Group mod 024

y?*mod g = (x° +ax +b)mod, g, (1)

where a, b, x, and y belong to g and If a point P(x, y) satisfies the equation(1), then the point
P(x, y) is a point on an elliptic curve, and the point Q(x, y) is the negative point of P(x, y)
i.e. P=Q. Let points P(x1, y1) and Q(x2, y2) be points on the elliptic curves Eq (g, b) and
Px6 =Q, the line ‘I’ passes through the points P and Q, and intersects the elliptic curve at
the point RO = (x3, y), the points of R0 symmetrical about the x-axis are R=(x3, y3) and
R=P+Q. The points on the elliptic curve Eq (g, b) and the infinite point O together form an
additive cyclic group of prime order g as

Gy = (x,y) : a,b,x,ybelong to Fy, (x,y) belong to Fy, (a, b). )
kp = P+ P + ... 4 P(kbelong to Z;), ©)]
((ui+v)xG),ifi =S, 4)

(u; G + (v; + w;)) * pk;, ifi =!S, (5)

R, = Z(”i +w;) * Ho(p xk;), ifi = s, (6)

Ry =Y _ujxHo(p ki) + (v; + w;) * L ifi =, (7)
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h = H2(ml|r), (8)
where his ..., H21is .., mis..,and ris ... .
> 1
Ci=)Y_ H1l(hLy,...Ly, Ry, .., Ry) = Y e )
i=1
Dit =Y (ui +vi)cixskj, (10)
Diy =) ujifi=s. (11)
Y;=d;xG+ci*pk, (12)
i:di*HO(Pki)+Ci*Is- (13)
= Hy(h, Y1, Yo, ..., Yy, K1, Ko, ..., Ky), (14)
B8=1
n
Y = H1(h,Y1,Y2,...; Yn,61,0,...,62), (15)
i=1
Yi=dixG+cixpki=uixG+ (v +w;) xpk; = Li(, (16)
Zi=d;* Ho(pk;) +ci* Iy = u; « Hy(pk;) + (v; + w;) x s = R;, (17)
When i = s, the conversions of (K;) and (Z;) are expressed as
Ki=dixG+cixpk, (18)
and
Zi=[(uj+v;) —cixsk]*G+c;xpki, (19)
respectively.
=uixG+v;*G, (20)
5i = dl' * HO(}? kz) +c; % L. (21)
= [(uj +v;) —ci*sk;] « HO(pk;) 4+ c; * sks x HO(pks). (22)
=u; * HO(pk;) +v; * HO(pk;). (23)

Therefore, according to the above relationship, the correctness of the ring signature
scheme proposed in this paper is verified as

= H1(h,Y1,Ys, o, Yoy ooy Y, 81, 82y oe0r Bsy vy O), (24)
= H1(h,L1,Ly, ..., Ls, .., Ly, R1, Ro, ., Rs, ., Ry, (25)

Cs=)_, (26)

i=1
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Table 2. Simulation setup, configurations, and specifications
Parameters Details
Dataset size 100 number of blocks + PHR
Hardware GPU Enabled System
Software Ethereum, Hyper-ledger Fabric
Parameters Block Height, Number of blocks, No.Transac,
No.PHR, Delay, signature creation
Performance Metric Efficiency (Average percentage of Gas, No.packets,

No.dead Nodes, No,Alive Nodes), secu-
rity(Execution time of Policies) and Cost(Execution
Time of Blocks),

Number of simulations Number of Test performed on single data set.
Number of rounds or transactions | 5000

Cloud

Fog Node
Fog Node
Consortium

. e

loT Devices

loT Devices

Q,

A

Figure 4. Proposed Framework.
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loT Devices
loT Devices

Figure 5. proposed System Architecture.

Healthcare
Devices

. 4% . -

Cloud

L oot
‘\‘/\{;/\/

Figure 6. Data Flow through Proposed Network.

Table 3. This is a table caption. Tables should be placed in the main text near to the first time they

are cited.
Serial No Parameters Description
Entry 1 Data Data
Entry 2 Data Data

Table 4. This is a wide table.

Title 1 Title 2 Title 3 Title 4
Entry 1 Data Data Data
Entry 2 Data Data Data !

1 This is a table footnote.
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Access
Patient Smanzonta Control EHR
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Figure 7. Timeline execution through Proposed Framework.

4.4. Mathematical Modeling
4.4.1. Phase 1: System Setup

Setup(a): Input security parameter («)

let (Gy) and (Gy) be two multiplicative cyclic groups with generators p. (28)
Assume (g1), (g2) are two generators of (Gy). (29)

Lete: (G1) [1(G1) = (Gz) be an admissible bi linear map.The system randomly
selectsa, B € Z*xp,computesga2,g B2, g p (xl) .Select four hash functions H1: 0,1
—Zxp

H2: Gy (Z*p)

H3:Zxp— G2

H4:G2—0,1 *.

The system parameters PP = (p, e, 1,82, g2 2,882,g B («) 1, G1,Gy, Hy, Hy, H3, Hy)

Master secret key msk keeps secret msk = (a, B)

4.4.2. Encryption

The transaction was encrypted using attribute-based encryption techniques. We used
ring signature instead of group signature or AES (Asymmetric Encryption System) for the
key exchange. It protects against collusion assaults.

[(24+n)K+1]Cex + (2K+1)Cp + (2K +1)Cypy (30)
ﬁx—xj/xi—xj. (31)
x=0

4.4.3. Decryption

The recipient decrypts the message using both the public and private keys. A user
with the appropriate attributes can decrypt the ciphertext. In the proposed framework,
authorised users exchange keys via CA. The decryption time complexity equation is as
follows: Where K is the number of certificate authorities, n is the message size, and C is the
ciphertext.

[(n+1)K+1]Cp +nKCe + [3+ (24 n)K|Cp, (32)
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X = Qk € ICe(Cy, Dy, u),Y = e(Cs, D1k, u) (33)
Sk = Quk,j € AymeCy, j, D]'k, uéak, j, A jm(0) (34)
m=C1X/YQk € ICs. (35)

5. Results

In this section we present the simulations results carried out through this research
paper. The data set were used which is publicly available from UNSW.

6. Experimental setup

The performance of our proposed framework was compared to benchmark models.
We utilised a Raspberry Pi and Python. Moreover, Section 1 focuses on communication
overhead in private information retrieval with varying appointment allocation mechanisms.
Patients are charged a communication overhead (in bytes) while retrieving data from
blockchain nodes. FIG. 8 depicts the communication overhead in private information
retrieval, with several appointment allocation algorithms available in each cell. It can
handle the required retrievals by storing in the B+-Tree indexing data structure. SHealth,
MedRec, and ECC-Smart solution methods have higher communication overhead than the
suggested architecture.

A communication overhead for retrieving private information from multiple blockchain
nodes is shown in Fig. 9. Even if the number of blockchain nodes increases, the suggested
framework scheme’s communication overhead decreases because Redis cache-based in-
dexing eliminates variables that impede retrieval of users’ private information by service
providers. How many blockchain nodes does the proposed strategy require to retrieve
private information? The suggested approach is compared to the bench-marked (MBO)-
SMS, (CB)-SMS, and ECC-SMS approaches in terms of communication overhead in private
information retrieval with varying parking allotment in each cell and number of blockchain
nodes accessible.

—8— Permisionless
—=&— Private
—&— Proposed

120 S

100 ~

80

Count

60

40

20 +

Number of Nodes

Figure 8. Simulations results based on number of nodes versus number of counts.
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Figure 9. Classification of Users based on the behaviour and Interaction with the System Model.
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Figure 10. Simulations results based on the number of sensors output w.r.t number of nodes.
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Figure 11. Comparative analysis of the proposed framework versus benchmark model based on the

speed and number of nodes.
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Figure 12. Comparative analysis with the proposed framework versus benchmark model based on

the latency and number of nodes.

In Fig.11 the simulations results are based on number of rounds versus latency.
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Figure 13. Comparative analysis based on number of nodes versus encryption time.

The comparative analysis based on the number of number of nodes and encryption
time with the benchmark models. The proposed framework are compared with the the
benchmark models which are mentioned on Fig.12. The text continues here. Proofs must
be formatted as follows:

70
—&— Proposed
- —®— WEAR
1 |—~—Rpa
—¥ —EDA

50
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E
=
-
e
=
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=
S 30
(&)

20

10

X T : T u T X T : T
0 2000 4000 6000 8000 10000

Average Network Delay
Figure 14. Comparative Analysis based on average network delay versus computing time.

Fig.13 reveal the simulations results based on number of average network delay versus
computational time. The proposed protocol are compared with the WEAR, RDA and EDA
protocol.
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Figure 16. Comparative analysis based on d2d distance versus number of transactions.
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In Fig.14 simulations results represent the comparative analysis of the proposed
framework versus benchmark models. The comparison are based on no.transaction and
d2d distance. Moreover, for the same number of distance between peer nodes the number
of transactions varies. The proposed

7. Conclusions

This study analyses a privacy-preserving authentication system for industrial IoT
applications. To reduce processing and communication expenses, TAB-SAPP uses hash
evaluation and MAC verification. Massive IoT devices and cloud servers use service de-
niability to safeguard base-station access and user identities even when linked to open
networks. It looked at the transaction’s authenticated data blocks randomly. For example,
TABSAPP’s transmission rate is faster than existing TABSAPP due to faster calculation,
connectivity, and mobility. As a result, the security and performance of computing, com-
munication, and packet delivery can be improved.
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