
Article 

Spatiotemporal Modeling of Zoonotic Arbovirus Transmission 

in Northeastern Florida using Sentinel Chicken Surveillance 

and Earth Observation Data 

Lindsay P Campbell 1,*, Robert P Guralnick 2 , Bryan V Giordano 1, Mohamed F Sallam 3, Amely M Bauer 1, Yasmin 

Tavares 1, Julie M Allen 3, Caroline Efstathion 4, Suzanne Bartlett 5, Randy Wishard 6, Rui-De Xiu 7, Benjamin Allen 
6, Miranda Tressler 5, Whitney Qualls 7, Nathan D Burkett-Cadena 1 

1 Florida Medical Entomology Laboratory, Department of Entomology & Nematology, IFAS, University of 

Florida; 200 9th St SE, Vero Beach, FL, 32962, USA;  lcampbell2@ufl.edu, nburkettcadena@ufl.edu; 

b.giordano@ufl.edu 
2 Department of Natural History, Florida Museum of Natural History, University of Florida; Dickinson Hall, 

University of Florida, Gainesville, FL 32611, USA; rguralnick@flmnh.ufl.edu  
3  Department of Biology, University of Nevada, Reno; 1664 N. Virginia Ave.  Reno, NV 89557, USA; 

msallam@unr.edu, jallen23@unr.edu 
4    Vector Disease Control International; 1320 Brookwood Drive, Suite H, Little Rock, AR 72202, USA; 

caroline.efstathion@rentokil.com 
5    Volusia County Mosquito Control; 801 South Street, New Smyrna Beach, FL 32168, USA; 

sbartlettpear@gmail.com, mtressler@volusia.org 
6  City of Jacksonville, Jacksonville Mosquito Control, Jacksonville, Florida 32218, USA; RWishard@coj.net, 

BenjaminA@coj.net 
7  Anastasia Mosquito Control; St. Augustine, Florida 32092, USA; xueamcd@gmail.com; wqualls@amcdfl.org 

 

* Correspondence: lcampbell2@ufl.edu; Tel.: 772-226-6666 

 

Abstract  

The irregular timing and spatial variation in zoonotic arbovirus spillover from 

vertebrate hosts to humans and livestock present challenges to predicting their occurrence 

from year to year and within their broader geographic range, compromising effective 

prevention and control strategies. The objective of this study was to quantify effects of 

landscape composition and configuration and dynamic temperature and precipitation 

values on the 2018 spatiotemporal distribution of eastern equine encephalitis virus (EEEV) 

(Togaviridae, Alphavirus) and West Nile virus (WNV) (Flaviviridae, Flavivirus) sentinel 

chicken seroconversion in northeastern Florida using Earth Observation (EO) data and a 

modeling framework that incorporated joint spatial and temporal effects. We investigated 

environmental effects using Bernoulli generalized linear mixed effects models (GLMMs) 

including a site level random effect, and then added spatial random effects and 

spatiotemporal random effects in subsequent runs. Models were executed using 

integrated nested Laplace approximation (INLA) and a stochastic partial differential 

equation (SPDE) approach in R-INLA. GLMMs that included a spatiotemporal random 

effect performed better relative to models that included only spatial random effects and 

better than non-spatial models. Results indicated strong spatiotemporal structure in 

seroconversion for both viruses, but EEEV exhibited more punctuated and compact 

structure at the beginning of the sampling season, while WNV exhibited more gradual 

and diffuse structure across the study area toward the end of the sampling season. 

Percentage of cypress/tupelo wetland land cover within 3500 m of coop sites and edge 

density of forest land cover within 500 m had a strong positive effect on EEEV 

seroconversion, while the best fitting model for WNV was the intercept only model with 

spatiotemporal random effects. Lagged temperature and precipitation variables included 

in our study did not have a strong effect on seroconversion for either virus when 
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accounting for temporal autocorrelation, demonstrating the utility of capturing this 

structure to avoid Type I errors. Predictive accuracy on out-of-sample data for EEEV 

seroconversion demonstrates the potential to develop a temporally dynamic framework 

to predict arbovirus transmission. 

Keywords: spatiotemporal modeling; arbovirus transmission; remote sensing; eastern equine 

encephalitis virus, West Nile virus 

1. Introduction 

Zoonotic vector-borne pathogens are a leading cause of morbidity and mortality 

in humans and animals across the globe [1, 2]. The irregular timing and spatial variation 

in zoonotic arbovirus spillover from vertebrate host species to humans and livestock 

present challenges to developing effective prevention and control strategies or to 

developing a basis for predictive modeling. One key advance that may be particularly 

valuable for predicting zoonotic arbovirus spillover is connecting dense vector and host 

monitoring data with the widespread availability of multi-scale remotely sensed (RS) 

environmental data [3, 4].  However, best use of RS data to make linkages to potential 

spillover has been challenging given the complexity of modeling the spatiotemporal 

dynamics of these systems [5]. Advances in ecological statistics capable of capturing spatial 

and temporal covariance and the computational capacity to fit such models [5] provides 

new opportunities to investigate environmental correlations with zoonotic arbovirus 

transmission, with the potential to make effective risk predictions and even forecast risk 

based on future scenarios.  

Despite maturity in the tools needed to understand underlying environmental 

drivers of spatiotemporal dynamics of zoonotic disease risk, empirical applications are still 

limited, and modeling frameworks are not fully mature. Here we utilize a robust 

monitoring dataset from efforts by Florida Mosquito Control Districts or Programs and the 

Florida Department of Health (FDOH) to investigate spatiotemporal environmental 

correlations with two zoonotic arboviruses of major human and veterinary health 

importance in the United States; eastern equine encephalitis virus (EEEV) (Togaviridae, 

Alphavirus) and West Nile virus (WNV) (Flaviviridae, Flavivirus) [6]. Each virus is 

maintained in an enzootic cycle primarily between mosquito vectors and passerine 

amplifying hosts with occasional epizootic transmission resulting in incidental infections, 

or spillover events, in humans, equines, and other animals [7, 8]. Although symptoms in 

humans are relatively rare, implications can be severe. Approximately 5% of persons 

infected with EEEV develop neuroinvasive disease, which can result in lasting 

neurological symptoms and has a mortality rate of ~30% (CDC 2019), and approximately 

1 in 150 people infected with WNV develop neuroinvasive disease with a mortality rate of 

approximately 10%. Impacts on unvaccinated equines from EEEV and WNV are also 

severe in animals that develop neuroinvasive disease with fatality rates of 50-70% [9] and 

30-40% [10], respectively. These factors, combined with recent geographic expansion of 

EEEV in the northeastern U.S. [11], and continued epidemics of WNV in multiple regions, 

demonstrate the need to use methods that can leverage dynamic Earth Observation (EO) 

data to quantify and predict transmission across space and time to help inform vector 

control and public health efforts. 

While both EEEV and WNV amplify in mosquito-songbird transmission cycles, 

the mosquito species that are important for vectors for these viruses differ substantially. 

The primary enzootic mosquito vector of EEEV is Culiseta melanura, which breeds in and 

around freshwater hardwood swamp environments in the Atlantic and Gulf Coast states 

and the Great Lakes region, and the principal arthropod bridge vectors for transmission to 

humans or to horses are Aedes, Coquillettidia, and Culex species [7]. West Nile virus is 

maintained primarily between Culex mosquitoes [8, 12] and passerine birds, with multiple 

primary vectors that vary in distribution by region, habitat, and season [12]. In Florida, 
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Culex quinquefasciatus and Culex nigripalpus are considered primary vectors of WNV with 

habitats ranging from irrigated agriculture fields to polluted artificial containers in urban 

areas [13] and multiple bridge vectors competent to transmit WNV to humans and horses 

are distributed throughout the state [12].  

In Florida, EEEV and WNV can exhibit year-round transmission [14]. Multiple 

studies have incorporated RS environmental data to investigate landscape correlations 

with EEEV and WNV in the state, including development of a risk index based on EEEV 

equine cases and surrounding habitats [15, 16], generation of ecological niche models 

investigating mosquito vectors and sentinel chicken seroconversion at local to state-wide 

scales [17, 18], and habitat identification for sentinel chicken placement [19]. In addition, 

seasonality of EEEV sentinel chicken seroconversion was quantified using wavelet 

analyses with results indicating annual periodicity in seroconversion across Florida and 

within northern and north central regions [20]. A study quantifying WNV transmission 

patterns in humans and sentinel chickens found that increased drought conditions 

followed by wet conditions was correlated with increased human cases and sentinel 

chicken seroconversion [21]. More recently, researchers found that precipitation, cooling 

degree days, and El Niño Southern Oscillation Index values were correlated with monthly 

EEEV equine case counts in the state using distributed lagged non-linear models [22]. 

These studies all show that climatic and environmental factors likely impact spillover 

incidence, but they also point to the challenges of accounting for spatiotemporal 

structuring and dynamics of both observations and covariates to calculate accurate and 

precise predictions. More complete understanding of environmental drivers of spillover 

are likely to require direct incorporation of underlying spatiotemporal structure into 

modeling frameworks, rather than treating spatial and temporal aspects as fully 

independent. 

In 2018, multiple human and equine cases of EEEV and WNV occurred in 

northeastern Florida with 1 EEEV human case, 14 WNV human cases, 4 EEEV equine cases, 

and an EEEV infected emu flock [23]. The objective of this study is to quantify effects of 

landscape composition and configuration and dynamic temperature and precipitation 

values on the 2018 spatiotemporal distribution of EEEV and WNV sentinel chicken 

seroconversion in Duval, St. Johns, and Volusia Counties in northeastern Florida. We use 

a framework that allows a direct way to model spatial and temporal effects, as well as their 

interactions, which promises to more fully capture the underlying system dynamics. We 

expect to find higher EEEV seroconversion at chicken coops surrounded with greater 

percentages and higher edge densities of cypress/tupelo or forested habitats associated 

with the known habitat of Culiseta melanura mosquitoes. We also expect to find that chicken 

coops surrounded with greater percentages and higher edge densities of semi-urban 

landscapes will have a strong positive effect on WNV sentinel chicken seroconversion. 

With regards to seasonal climate factors, we expect to find positive effects of lagged 

temperature values on sentinel chicken seroconversion for both viruses. Precipitation 

patterns may have an even stronger effect given results from previous studies, with a 

positive effect of lagged precipitation values on EEEV seroconversion, and a positive effect 

of lagged precipitation values near the date of sampling on WNV seroconversion and a 

negative effect of cumulative precipitation values at distance lags further from the 

sampling date [21].   

 

2. Materials and Methods 

Duval, St. Johns, and Volusia Counties span the northeastern Atlantic Coast of 

Florida (Figure 1). Developed land cover is distributed along the coastal areas of each 

county and in a large area in western Volusia County and across most of Duval County 

(City of Jacksonville). Rural areas are predominantly forest and wetland land cover, 

interspersed with pastures and cropland. The region’s climate is categorized as humid 
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subtropical [24]. Average temperatures increase with decreasing latitude, with average 

annual maximum temperatures in the range of 25°C to 29°C and average annual minimum 

temperatures in the range of 13°C to 17°C. The majority of annual precipitation occurs 

during the rainy season, typically from May to October, with annual averages ranging 

from approximately 1150 mm to 1400 mm [25]. 

  
Figure 1. Proportion and abundances of 2018 EEEV and WNV positive 

seroconverions at sentinel chicken coops across the study area. 

Enzootic EEEV and WNV transmission in Florida is detected throughout the early 

spring to late autumn through an extensive sentinel chicken program, with testing 

conducted by the Florida Department of Health and participating mosquito control 

districts across the state, providing site-level and temporally dynamic information about 

zoonotic pathogen transmission in each area [26, 27]. As part of this effort, dozens of 

districts in Florida maintain sentinel chicken flocks, which are tested weekly for flavivirus 

and alphavirus seroconversion, including WNV and EEEV.  

Georeferenced 2018 weekly sentinel chicken seroconversion data was cleaned, 

formatted, and collated across City of Jacksonville Mosquito Control (COJMC) in Duval 

County, Anastasia Mosquito Control District (AMCD) in St. Johns County, and Volusia 

Mosquito Control (VMC) districts in northeastern Florida. Data were checked for 

completeness, including gaps in surveillance across districts and at individual chicken 

coops. We considered a flock positive for EEEV and a flock positive for WNV if at least one 

chicken in the flock tested positive for a given week, and we coded the chicken coop as 1 

(present) or 0 (absent) for the virus for that week. Sentinel chicken 2018 seroconversion 

varied across the three counties (Figure 1). The data set included 27 sentinel chicken coop 

locations, sampled for 28 consecutive weeks between May 1st and November 12th, for a 

total of 763 observations. A total of 35 sentinel chicken coops tested positive for EEEV and 

58 coops tested positive for WNV over the 2018 sampling season.  
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Land Cover Data 

September 2018 Cooperative Land Cover data acquired from the Florida Fish and 

Wildlife Conservation Commission served as the land cover data for this project [28]. The 

land cover data set is available at a 10 m spatial resolution. We chose to aggregate classes, 

given our relatively small study area and limited number of sampling sites because of the 

large number of fine-scale classes present in the data set and included a total of 11 land 

cover classes in our analyses (Figure 2).  

 
Figure 2. Aggregated land cover classes across each county in the study area. 

Landscape metrics quantify the composition and configuration of the landscape 

or specific land cover type in an area [29]. We chose two landscape metrics for our analyses: 

percent land cover type for each of our 11 land cover classes within a 500 m, 1000 m, 2000 

m, 3500 m, and 5000 m buffer distances from a sentinel chicken site and edge density for 

multiple land cover classes within these buffer distances from a sentinel chicken site. These 

metrics define the overall presence of a specific land cover type, while providing 

information about potential fragmentation, connectivity, or edge habitat in an area [30]. 

All data were processed using ArcMap v10.6 software program and using the ‘landscape 

metrics’ package in R v3.5.1 [31, 32]. Resulting values served as predictor variables in the 

spatiotemporal GLMM analyses presented below. 

Compound topographic wetness index values provide an indication of whether 

water may pool in a specific geographic area during a precipitation event. Wetness index 

values are derived from digital elevation models, incorporating the slope of the terrain and 

a measure of flow direction and accumulation calculated across the study area [33]. We 

downloaded 30 m resolution ASTER GDEM data from the NASA Earth Data Repository 

and calculated a compound topographic wetness index using functions available in 

ArcMap v10.6 software program. Wetness index values were extracted within a 1 km 

buffer distance of georeferenced sentinel chicken sites, and the mean, maximum, and 

minimum wetness index values were identified using the ‘Zonal Statistics’ function in 

ArcMap.  

Climate Data 
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National Oceanic and Atmospheric Administration (NOAA) NCEP Stage 4 

Rainfall 2018 daily data was downloaded for the study area [34]. The data are at a 4 km 

spatial resolution and were formatted and reprojected to Geographic WGS 84 using the 

‘Model Builder’ application in ArcMap v10.6. Daily precipitation values at georeferenced 

sentinel chicken sites were extracted before calculating weekly cumulative precipitation 

values at 9 weekly time lags prior to the sentinel chicken sampling date. Moderate 

Resolution Imaging Spectroradiometer (MODIS) Terra v6 Land Surface Temperature 

(LST) 8-day mean composites [35] were downloaded at a 1 km spatial resolution from 

NASA Earth Data repository (https://earthdata.nasa.gov/). Data were formatted, 

mosaicked, and reprojected using the MODIS Reprojection Tool, before masking to the 

study area. Resulting files were filled temporally for missing values, before converting 

values from Kelvin to Celsius. Land surface temperature values were extracted to 

georeferenced sentinel chicken sites, and temperature lags (1 - 4 weeks) prior to sentinel 

chicken sampling served as predictor variables. 

Variable Reduction 

We performed a conditional random forest executed in the ‘caTools’ package in R 

to identify variable importance for EEEV and for WNV seroconversion with the objective 

of variable reduction prior to generalized linear mixed effects model (GLMM) 

implementation [36]. Two sets of conditional random forests, one for EEEV and one for 

WNV, were run with weekly 2018 virus presence/absence serving as the response variable 

and all landscape metrics at all buffer distances, wetness index values, temperature lags, 

and precipitation lags serving as the predictor variables. We ranked predictor variables 

using variable importance values and identified the top six ranking variables for each virus 

response variable to include in GLMM analyses. 

Candidate Sets and Model Runs 

We calculated a Pearson’s correlation matrix to identify variables that were highly 

correlated with one another (± 0.6) to construct environmental variable sets for candidate 

models. We used a Bernoulli generalized linear mixed effects model (GLMM) with a logit 

link function and individual sentinel chicken coops serving as a site level random effect 

[37]. Parameters were estimated using maximum likelihood. Covariates were 

standardized prior to model execution because of varying units across individual 

variables. Initial models were executed in the ‘glmmTMB’ package in R [38], and we 

implemented the ‘dredge’ function in the MuMIN package to investigate all combinations 

of variables [39]. We used a model selection approach for evaluation, ranking models from 

lowest to highest Akaike’s Information Criterion (AIC) scores [40], calculated AIC weights, 

and identified the set of models comprising 95% of the cumulative sum of AIC weights as 

our confidence set for each virus [41].  

 

    Bayesian Modeling 

 

We reran the models comprising the 95% confidence set using integrated nested 

Laplace approximation (INLA) in the ‘INLA’ package in R [42] to ensure consistency in 

parameter estimates with the glmmTMB parameter estimates, and then subsequently 
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added a spatial random effects term and then spatiotemporal random effects for a total of 

three sets of models for each virus. INLA is a computationally efficient approach for 

approximate Bayesian inference, where the posterior marginals of individual parameters 

(e.g. mean and precision) are approximated, rather than the joint posterior distribution of 

the model parameters [43, 44]. The spatial random effects were fit using a Gaussian 

Markov random field using a stochastic partial differential equation (SPDE) approach 

modeled using a Matérn covariance function [45], and we fit the temporal random effect 

using a first order autoregressive term (AR1). The SPDE is constructed using constrained 

Delauney triangulation and we created a convex hull based on sentinel chicken coop 

locations to define the extent of the triangulation mesh (Supplementary Figure 1). All 

models were run with default priors, which was a Gaussian prior with mean 0 and 

precision 0 for the intercept and a Gaussian prior with mean 0 and precision 0.001 for the 

regression parameters. The SPDE was assigned a multivariate normal prior with mean 0 

and penalized complexity priors [46] were estimated for the range and variance with the 

probability of values being lower than 10,000 for the range set to 0.5 and the probability of 

the variance being lower than 0.5 set to 0.5.  

We ranked models from lowest to highest WAIC and DIC values [47] to identify 

the best model or set of models, and we observed credible interval values for variables 

included in top ranking models to determine whether the data supported a predictor 

variable having a strong effect on EEEV or WNV sentinel chicken seroconversion. A 

random sample of 30% (n=219) of the seroconversion data was then withheld and the best 

performing model was rerun with the remaining 70% (n = 534) of the data for out-of-

sample prediction. Predictive performance was evaluated by calculating the area under 

the curve (AUC) of the receiver operating characteristic (ROC) in the ‘cutpointr’ package 

in R [48].  

An important component in our models was the estimation of Gaussian Markov 

Random Fields (GMRF) that accounted for spatial and then spatiotemporal structure in 

our observations [45], and we plotted these values across the study area to provide a 

visualization for spatiotemporal structure for each week and for each virus during the 2018 

sampling season (28 weeks total for each virus). Inclusion of spatial or spatiotemporal 

terms in the modeling process provides information about the spatiotemporal structure of 

the observations and can provide clues about environmental variables that may be 

contributing to an observed process. Additionally, inclusion of these terms can help to 

reduce Type I errors, owing to residual dependence in space and time between 

observations in a data set [5, 49]. 

3. Results 

Conditional random forest variable importance values identified a combination of 

forest and cypress/tupelo wetland land cover and edge densities as top-ranking variables 

for EEEV, along with weekly cumulative precipitation at a lag of 1 week and 9 weeks. For 

WNV, the top six variables included a combination of wetland edge density values at 

multiple buffer distances, and cumulative precipitation values at 1, 3, and 7-week lags. 

Wetness index values representing the potential for water pooling across the landscape 

and mean composites of daily temperature values at multiple lag times were not included 

as candidate variables.  

Initial GLMMs using all combinations of candidate model sets using the top 6 

variables from the conditional random forest output resulted in 34 models for each virus, 
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and each virus model set included 8 models that comprised the 95% confidence set based 

on the sum of the cumulative AIC weights (Supplementary Tables 1 & 2). For EEEV, these 

8 models included percent forest within 3500 m and 5000 m, edge density of forest within 

500 m, cumulative precipitation lags at 1 and 9 weeks, and percent cypress/tupelo wetlands 

within 3500 m. For WNV, these 8 models included edge density of wetland within 2000 m, 

3500 m, and 5000 m distances and cumulative precipitation at 1, 3, and 7 weekly time lags. 

WAIC and DIC results from non-spatial, spatial, and spatiotemporal model runs 

in the R-INLA environment indicated that all spatiotemporal models performed better 

than spatial and non-spatial models for EEEV and for WNV (Table 1 & 2). For EEEV, WAIC 

and DIC scores ranked the spatiotemporal model that included forest edge density within 

500 m, cypress/tupelo wetland land cover within 3500 m of sentinel chicken sites, and 

weekly cumulative precipitation at 9 weeks prior to chicken sampling as the “best” model 

(Table 5). 

Table 1. 95% confidence set of models for EEEV based on the cumulative sum of the WAIC 

weights. An “X” present in a column cell indicates that the corresponding variable was not 

included in the model. 

Intercept 3500m 

percent 

forest 

3500 m 

percent 

cypress / 

tupelo 

wet land 

500 m 

edge 

densit

y 

forest 

5000 

m 

percen

t 

forest  

Weekl

y 

cumul

ative 

precip 

t-1 

Weekl

y 

cumul

ative 

precip 

t-9 

DIC WAIC delta 

WAIC 

Relati

ve log 

likelih

ood 

WAIC 

w 

Sum 

of the 

cumul

ative 

WAIC 

w 

-5.465 X 0.755 0.851 X X 0.139 189.455 178.48 0 1 0.672 0.672 

-5.406 X 0.765 0.782 X 0.309 0.168 192.175 180.441 1.961 0.375 0.252 0.924 

-5.199 X 0.531 X 0.456 X 0.082 197.896 184.323 5.843 0.054 0.036 0.96 

  

WAIC and DIC scores ranked the spatiotemporal intercept-only model as the “best” 

model for WNV (Table 2). 

Table 2. 95% confidence set of models for WNV based on the cumulative sum of the 

WAIC weights. An “X” present in a column cell indicates that the corresponding variable 

was not included in the model. 

Intercept 2000 m 

edge 

density 

wet 

land 

Weekly 

cumula

tive 

precip 

t-1 

Weekly 

cumula

tive 

precip 

t-3 

3500 

edge 

density 

wet 

land 

5000 

edge 

density 

wet 

land 

Weekl

y 

cumul

ative 

precip 

t-7 

DIC WAIC delta 

WAIC 

rel LL WAIC 

w 

Sum 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2022                   doi:10.20944/preprints202205.0209.v1

https://doi.org/10.20944/preprints202205.0209.v1


 

-3.687 X X X X X X 303.483 298.005 0 1 0.740 0.740 

-3.721 X 0.001 -0.110 X X X 308.149 302.301 4.296 0.117 0.086 0.827 

-3.710 -0.128 -0.005 -0.120 X X X 309.626 304.053 6.048 0.049 0.036 0.863 

-3.717 X -0.002 -0.120 -0.100 X X 309.840 304.188 6.182 0.045 0.034 0.896 

-3.717 X -0.002 -0.120 X -0.100 X 309.840 304.188 6.182 0.045 0.034 0.930 

-3.717 X 0.011 -0.100 X X 0.088 310.417 304.342 6.336 0.042 0.031 0.961 

 

Credible intervals designated between 0.025 and 0.975 indicate that there is a 95% 

probability that the parameter estimate is within the interval [44]. Credible intervals for variables 

included in models in the EEEV 95% confidence set indicated that forest edge density within 500 

m of sentinel chicken sites, percent forest within 5000 m, and percent cypress/tupelo wetland 

coverage within 3500 m had a positive effect on EEEV seroconversion in the study area (Table 3 

& Figure 3). Credible intervals indicated that precipitation at lag periods of 1 and 9 weeks did 

not have a strong effect on EEEV seroconversion, when accounting for spatiotemporal structure, 

despite these variables being contained within the 95% confidence sets of the non-spatial and 

spatial model runs (Supplementary Table 3). Results for non-spatial, spatial, and spatiotemporal 

EEEV INLA models are available in the Supplementary Table 3. Best model results including 

credible intervals for random effects are available in Supplementary Table 4, and density curves 

for regression parameters and random effects are available in Supplementary Figure 2. 

Table 3. Credible intervals for EEEV 95% confidence set (Model Ranks 1 -3). 

Variables in bold indicate the data support a strong effect on EEEV seroconversion. The 

sign of the mean indicates positive or negative effect If values cross zero between the 0.025 

quant and the 0.975 quant, the variable is not important to seroconversion.  

  

Model Rank: 1 (best) 

  mean 
0.025 
quant 0.975 quant 

Intercept -5.4651 -9.5433 -1.3903 

Weekly cumulative 
precip t - 9 0.1386 -0.6905 0.9670 

3500 m percent 
cypress / tupelo 
wetland 0.7552 0.3056 1.2045 

500 m edge density 
forest 0.8507 0.2203 1.4806 

 

Model Rank 2 
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  mean 0.025 quant 0.975 quant 

Intercept -5.406 -8.958 -1.856 

Weekly cumulative 
precip t - 9 0.168 -0.662 0.999 

500 m edge density 
forest 0.782 0.136 1.426 

3500 percent cypress / 
tupelo wetland 0.765 0.299 1.231 

Weekly cumulative 
precip t - 1 0.309 -0.246 0.864 

 

Model Rank 3 

value mean 0.025 quant 0.975 quant 

Intercept -5.199 -8.257 -2.144 

Weekly cumulative 
precip t - 9 0.082 -0.680 0.843 

5000 m percent forest 0.456 -0.141 1.051 

3500 m percent 
cypress /tupelo 
wetland 0.531 0.005 1.057 
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Figure 3. Effect curves of model parameters for environmental variables in the best-fitting 

EEEV model; credible intervals that do not cross zero indicate a strong positive or negative 

effect on EEEV seroconversion. 

The area under the curve (AUC) of the ROC value for the best EEEV model was 0.948, 

indicating the potential for accurate prediction (Figure 4). An optimal cutpoint value of 0.157 

identified using the ‘minimize_metric function’  in ‘cutpointR’ indicated that the model was 

more accurate at predicting true negative values than true positive values with 2 false 

negatives and 14 false positives out of 229 records total.   
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Figure 4. AUC of the ROC for the best EEEV model. 

Credible intervals for variables included in the WNV 95% confidence set indicated that 

none of the variables included in the models had a strong effect on the WNV seroconversion, 

after accounting for spatiotemporal structure (Table 4). Results for non-spatial, spatial, and 

spatiotemporal WNV INLA models are available in Supplementary Table 5. 

Table 4. Credible intervals for WNV 95% confidence set. No variables had a strong effect on 

WNV seroconversion. The sign of the mean indicates a positive or negative effect. If values cross 

zero between the 0.025 quant and the 0.975 quant, the variable has no effect on seroconversion. 

  

Model Rank 1 (best) 

Value mean 
0.025 
quant 0.975 quant 

Intercept -3.687 -6.468 -0.909 

 

Model Rank 2 

Value mean 
0.025 
quant 0.975 quant 

Intercept -3.721 -6.542 -0.902 

Weekly cumulative precip t - 1 0.001 -0.591 0.591 

Weekly cumulative precip t - 3 -0.111 -0.670 0.447 

 

Model Rank 3 

  mean 
0.025 
quant 0.975 quant 

Intercept -3.710 -6.420 -1.002 

2000 m edge density wetland -0.128 -0.476 0.219 

Weekly cumulative precip t - 1 -0.005 -0.595 0.585 

Weekly cumulative precip t - 3 -0.117 -0.676 0.441 
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Model Rank 4 

  mean 0.025 quant 
0.975 
quant 

Intercept -3.717 -6.469 -0.968 

3500 m edge density wetland -0.100 -0.438 0.237 

Weekly cumulative precip t - 1 -0.002 -0.593 0.587 

Weekly cumulative precip t - 3 -0.115 -0.673 0.444 

 

Model Rank 5 

  mean 
0.025 
quant 0.975 quant 

Intercept -3.717 -6.469 -0.968 

5000 m edge density wetland -0.100 -0.438 0.237 

Weekly cumulative precip t - 1 -0.002 -0.593 0.587 

Weekly cumulative precip t - 3 -0.115 -0.673 0.444 

 

Model Rank 6 

  mean 0.025 quant 
0.975 
quant 

Intercept -3.717 -6.574 -0.862 

Weekly cumulative precip t - 1 0.011 -0.587 0.608 

Weekly cumulative precip t - 3 -0.101 -0.663 0.460 

Weekly cumulative precip t - 7 0.088 -0.376 0.552 

 

Weekly plots of GMRF demonstrated variation in spatiotemporal structure for EEEV and 

for WNV across the 28-week study period (Figure 5 & 6). Weekly GMRFs for EEEV showed 

strong spatiotemporal structure at the beginning of the study period, with strongest areas 

located in St. Johns County and in the southern-central portion of Volusia County (Figure 5). On 

approximately July 3rd, the spatiotemporal structure began to weaken and dissipate across the 

remainder of the study period before slight negative spatiotemporal structure developed in the 

study area.  
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Figure 5. Weekly plots of spatiotemporal Gaussian Markov random fields (GMRF) for weeks 18 - 45 2018 EEEV sentinel 

chicken seroconversions.  A convex hull was generated to create the GMRFs, and GMRFs were clipped to the coastline 

for visualization. ESRI background imagery was used to map the first plot (May 1 - May 7). 

Plots of weekly GMRFs for WNV seroconversion (Figure 6) indicated strong 

spatiotemporal structure toward the end of the sampling season, moving from a northwest to 

southeastern direction. Starting ~ July 17th, gradual spatiotemporal structure began in the 

northwestern corner of the study area building in intensity, and expanding from the northwest 

in a southwestern direction, before encompassing the entire study area in the week of November 

6th.  
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Figure 6. Weekly plots of spatiotemporal Gaussian random fields (GRF) for week 18 - 45 2018 WNV sentinel chicken 

seroconversions. A convex hull was generated to create the GRFs, and GRFs were clipped to the coastline for 

visualization. ESRI background imagery was used to map the first plot (May 1 - May 7).  

4. Discussion 

This study provides new insight into the landscape and climate factors most explanatory 

of EEEV and WNV sentinel chicken seroconversion in northeastern Florida. In particular, our 

approach demonstrates the utility of incorporating underlying spatiotemporal structure in 

model building to improve results. Disease mapping often assumes that disease dynamics 

remains static across time, even though tools now exist to incorporate spatiotemporal 

transmission and environmental variables in modeling efforts. Static assumptions are likely 

unrealistic [50], and the approach we implemented here attempts to account for the joint 

dependence structure in both space and time. Inclusion of spatiotemporal GMRFs contributed 

to improved model fits across both virus response variables and demonstrated the need to 

account for residual spatiotemporal autocorrelation when inferring contributions of 

environmental variables, in this case cumulative precipitation, to virus ecology.  

Model results for EEEV seroconversion were particularly informative, indicating a 

strong positive effect of cypress/tupelo wetland habitats surrounding chicken coop sites within 

3500 m and a strong positive effect of forest edge density within 500 m of coop sites. These results 

are consistent with the observed breeding habitats of Cs. melanura and with previous 
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investigations of landscape contributions to EEEV. For example, in the northeastern U.S., Cs. 

melanura increased with deciduous or evergreen forested wetlands that had low connectivity to 

streams and decreased with shrub/scrub wetlands, and higher Cs. melanura abundances were 

strongly associated with higher EEEV infection in mosquito pools [51]. In addition, greater edge 

density of forest habitat within closer proximities to coop locations suggests that fragmented 

forest areas may be conducive to dispersal of Cs. melanura and/or EEEV bridge vectors, and these 

results corroborate findings from a previous study in the Florida Panhandle indicating a positive 

effect of coniferous tree plantations within close proximity to chicken coops on EEEV 

seroconversion [15].  

Strong support for the most parsimonious model (WAICw = 0.67), a low number of 

models comprising the 95% confidence set (n = 3), and the consistent inclusion of cypress/tupelo 

wetland habitats and forest edge habitats across models indicated that these variables, along 

with the inclusion of the spatiotemporal GMRFs, have the potential to be predictive of EEEV 

seroconversion in this area. Results from the ROC analysis reported strong accuracy when 

predicting presence/absence on out-of-sample data, although closer investigation showed 

greater accuracy predicting absences than presences. The inclusion of additional sampling data 

has the potential to improve predictive accuracy, including the ability to predict seroconversion 

across larger geographic areas and different time periods.  

The environmental variables included in our models were less informative for WNV 

seroconversion than for EEEV. The most parsimonious model was the spatiotemporal intercept 

only model without covariates, which had strong support (WAICw = 0.74), and credible intervals 

across models included in the 95% confidence set indicated that the data did not support a strong 

effect of any of the covariates on sentinel chicken seroconversion to WNV. Although we expected 

to find some correlation with the landscape variables included in our analyses, this result was 

not altogether surprising given often contradictory results from previous WNV landscape 

studies in other regions of the U.S. [52, 53]. For example, correlations between WNV and urban 

and semi-urban environments have been found in multiple U.S. states [17, 54-56] while 

simultaneously agricultural landscapes have also been indicated [17, 52, 57-60]. Although 

landscape correlations with WNV are less studied in Florida, the presence of multiple vector 

species inhabiting a broad range of landscape habitats may be reflected in our model results [12].  

To our surprise, the data did not support a strong effect of any of the lagged temperature 

or precipitation variables included in our analyses, despite the spatiotemporal GMRFs showing 

clear structure in seroconversion across the study period for each virus and previous studies 

suggesting the importance of precipitation to observed virus transmission [21, 22]. Although 

temperature is known to be important to mosquito vector development and can affect virus 

extrinsic incubation periods [61], the 8-day mean land surface temperature values included in 

our study were not identified as important variables during the initial variable reduction step 

for either virus seroconversion. The 9-week lagged cumulative precipitation was included in the 

95% confidence set for the non-spatial and spatial EEEV GLMMs, but credible intervals for this 

variable no longer indicated a strong effect on EEEV seroconversion in the spatiotemporal 

GLMM, which accounts for temporal autocorrelation. Although not uncommon when working 

with temporally structured data, this result demonstrates the importance of accounting for 

residual spatiotemporal autocorrelation to avoid making inferences derived from spurious 

correlations [49].  

Gaussian Markov random field plots provided a visualization of the spatiotemporal 

structure of EEEV and WNV sentinel chicken seroconversion across the study period and 
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highlighted differences in patterns between seroconversion of the two viruses. Plots indicated 

elevated EEEV seroconversion at the very start of the sampling season, with more punctuated 

and tightly formed structure indicating a smaller effective range compared to the gradual and 

more diffuse structure of WNV seroconversion at the end of the sampling season. Sampling 

earlier in the season would likely have captured a more complete distribution of EEEV 

seroconversion, as well as sampling later in the season for WNV. Climate associations may be 

stronger towards seasonal onset and offset of infections, arguing for longer sampling periods 

that can capture those dynamics. 

Comparisons of the GMRF plots to FDOH Arbovirus Surveillance Reports of emu, 

human, and equine cases in the study area [23] suggested potential overlap between active EEEV 

sentinel chicken seroconversion and the report of an EEEV positive emu flock during the week 

of May 8 - May 14 in Volusia County in the southernmost region of the study area and also with 

an equine case during the week of May 25th in St. Johns County (Figure 5). Additional EEEV 

equine cases occurred in Volusia County during the weeks of June 16th, June 21st, and August 

1st. However, these reports did not appear to coincide with active transmission in sentinel 

chickens in Volusia County during this time period. In addition, a human EEEV case during the 

week of July 24th in Duval County in the northernmost region of the study area did not appear 

to coincide with active transmission in sentinel chickens in this area during the week of July 24th, 

despite activity to the south in St. Johns County. The spatiotemporal GMRF plots for WNV 

sentinel chicken seroconversion does however suggest potential overlap between the 

spatiotemporal structure of WNV seroconversion and human cases in the study area. In Duval 

County (Figure 6), 14 human cases of WNV infection were reported over the study period, with 

5 cases reported in August, 3 in September, 4 in October, and 2 in November. Sentinel chicken 

WNV seroconversion exhibited strong spatiotemporal structure in Duval County beginning in 

the first week of August and remained relatively strong throughout the remainder of the study 

period coinciding with the temporal distribution of human cases in the county.  

Although we utilized a robust modeling framework, study limitations exist. Specifically, 

EEEV seroconversion was truncated at the beginning of the sampling season and WNV 

seroconversion was truncated at the end of the sampling season, preventing the full distribution 

of transmission events for each virus from being included in the model. Future investigations 

would benefit from a longer sampling season and the inclusion of additional districts to quantify 

effects of environmental variables on sentinel chicken seroconversion across broader geographic 

areas. In addition, the inclusion of spatiotemporal mosquito abundance data in conjunction with 

environmental variables has the potential to provide important information toward 

understanding transmission dynamics. Despite these limitations, the use of spatiotemporal 

modeling frameworks with EO data show significant promise in providing effective means to 

both map zoonotic arbovirus transmission and understand the environmental drivers (or lack 

thereof) of transmission risk.   

Supplementary Materials:  

Supplementary Table 1. Results for EEEV glmmTMB non-spatial models identifying 95% confidence set 

Supplementary Table 2. Results for WNV glmmTMB non-spatial models identifying 95% confidence set 
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Supplementary Table 3. Results for EEEV non-spatial, spatial, and spatiotemporal random effects INLA models (excel 

file) 

Supplementary Table 4. Results for EEEV best model including credible intervals for random effects (excel file) 

Supplementary Table 5. Model results for WNV non-spatial, spatial, and spatiotemporal random effects INLA models 

(excel file) 

 

Supplementary Figure 1. Convex hull mesh created for SPDE calculation of spatial covariance matrix. 
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Supplementary Figure 2. Density plots from the best EEEV model for fixed effects and random effects; random effects 

include the spatial random effects denoted as “Range for w” in the upper right panel and the spatiotemporal random 

effect denoted as “GroupRho for w”in the lower right panel. 
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