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Abstract: Motor control, movement impairment and postural control recovery targeted in rehabili-

tation could be affected by pain. The main objective of this comprehensive review is to provide a 

synthesis of the effect of experimental and chronic pain on postural control throughout the available 

literature. After presenting the neurophysiological pathways of pain, we demonstrated that pain, 

preferentially localized at low back or in the leg induced postural control alteration. While proprio-

ceptive and cortical excitability seems modified with pain, spinal modulation assessment might pro-

vide new understanding of the pain phenomenon related to postural control. Literature highlight 

that the motor control of trunk muscles in patient presenting with low back pain could be dichoto-

mized in two populations, where the first one over-activate trunk muscles, the second one under-

activate trunk muscles, and both generating increase of tissues loading. Taking account all this find-

ings, will help clinician to provide adapted treatment for managing both pain and postural control. 
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1. Introduction 

Chronic pain is defined by the International Association for Study of Pain (IASP) as 

« an unpleasant sensory and emotional experience associated with, or resembling that as-

sociated with, actual or potential tissue damage » [1] lasting more than 3 months [2]. By 

affecting more than 30% of population worldwide [3], chronic pain leads to economic bur-

den and has dramatic impact on biological, psychological, sociological factors resulting in 

poor quality of life [4-6]. While medical care focused in pain perception, psychological 

and functional disability should be considered [6]. It has been clearly demonstrated that 

pain interferes with sensorimotor control [7-11], and more especially with postural control 

[12-20].  

Postural control, either in static or dynamic conditions, is an essential requirement to 

perform daily activities [21]. The upright standing human body, classically represented 

by an inverted pendulum model, is intrinsically unstable as reflected by the movement of 

the centre of mass (CoM) [22]. To maintain upright standing, the postural system requires 

efficient functioning of the sensorimotor mechanisms and the ability to detect body sways 

through reliable sensory systems integrating these sensory cues provided by the visual, 

vestibular, proprioceptive and exteroceptive systems [23-29]. The integration of sensory 

information appears to be dynamically regulated related the available sensory infor-

mation depending on environmental conditions, a process referred to as sensory re-

weighting [30-33]. When one (or more) of the sensory systems is altered, the Central Nerv-
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ous System regulates balance by attributing a higher weight to the remaining afferent in-

formation [30]. Both, sensory integration and reweighting are used by the neural control 

system to generate a corrective torque at the ankle to resist the deviations of the human 

body from an upright reference position [34]. Balance control, commonly assessed by 

measuring center of pressure (COP) displacement, could represent one of the sensorimo-

tor control signatures observed in patients with chronic pain.  

The main aim of this comprehensive review is to provide a synthesis of the effect of 

experimental and chronic pain on postural control by combining knowledge from the lit-

erature and identifying potential impact of pain on the sensorimotor mechanisms in-

volved in postural control. This review also summarize evidence supporting the im-

portance of including postural control in the clinical assessment of patient suffering from 

chronic pain. Improving knowledge of pain interference on postural control could help 

for developing new and adapted therapeutic approaches for patients presenting chronic 

pain. 

 2. From nociception to pain 

 The process leading to pain starts with stimulation of nociceptors [35]. There are two 

main classes of nociceptors. The first comprises myelinated afferents of medium diameter 

(Aδ) which mediate acute and well-localized “first” or rapid pain. The second class of 

nociceptor consists of small diameter unmyelinated “C” fibers that transmit poorly local-

ized “secondary” or slow pain [36]. Myelinated Aδ nociceptors respond to mechanical 

and thermal stimuli, while unmyelinated C-fiber polymodal nociceptors generally re-

spond to mechanical, thermal, or chemical stimulation. Specific nociceptors are only ex-

cited when stimulus intensities reach the noxious range, suggesting that they possess bi-

ophysical and molecular properties allowing them to selectively detect and respond to 

harmful stimuli [36]. Ion channels on peripheral nociceptors can be activated by direct 

stimulation or by molecules released at a site of inflammation (bradykinin, prostaglan-

dins, histamine, serotonin, and others), leading to depolarization of small primary afferent 

of the first order neurons expressing these channels [37]. Action potentials, with a fre-

quency proportional to the intensity of the stimulus, propagate along the axons of mye-

linated or unmyelinated nociceptive fibers through the dorsal root ganglion (DRG) to the 

axonal endings of the spinal cord, which are organized into anatomically and electrophys-

iologically distinct laminae [35]. 

 The nociceptive Aδ and C fibers surround the outermost layer of the dorsal horn. 

They enter the dorsal horn and end in the superficial layers (called Rexed Laminae I and 

II) or extend into the deep layers (Lamina V) probably via interneurons [36]. The lamina 

II plays a key role in the modulation of pain in the spinal cord [38, 39]. The lamina II, also 

known as the substantia gelatinosa system, acts as an inhibitory mechanism on central 

transmission cell (T)-cells. Stimulation of nociceptive Aδ and C fibers inhibits the substan-

tia gelatinosa cells, reducing the output and their inhibitory action on the (T)-cells, leading 

to an increase in their activity. The reduction in the ability of (T)-cells to receive or respond 

to the stimuli, is the hallmark of the gate control theory at the spinal level [40]. As a re-

minder, the (T)-cells are located in the dorsal horn of the spinal cord. They receive a bal-

anced input of large of Aβ and small Aδ and C fibers activity in the peripheral nerves. 

Inhibitory interneurons, located in the substantia gelatinosa, can be activated by large af-

ferents and can modulate the transmission of pain by projection to small fibers and central 

transmission cells [40]. 

 Because pain is a complex multifactorial subjective experience, a large brain network 

is engaged during nociceptive processing. Numerous central nervous system structures 

(e.g., the anterior cingulate cortex, thalamus, and insula) consistently respond to transient 

nociceptive stimuli causing pain. Activation of this pain matrix or pain signature has been 

related to perceived pain intensity, both within and between individuals [2013]. Following 

integration into the dorsal horn, nociceptive information is conducted via two phyloge-

netically distinct systems, the medial and the lateral systems, to the higher centers of 
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brainstem and brain. The medial system is involved in the affective and cognitive dimen-

sion of pain, pain memory, and autonomic responses [42, 43]. This medial pathway pro-

jects directly to the higher brain structures and mainly includes the spinoreticular tract, 

the spinomesencephalic tract, the spinoparabrachial tracts, the spinohypothalamic tract 

and the spinothalamic tract fibers. A component of the spinoreticular tract projects to the 

lateral reticular formation involved in motor control. The other component projects to the 

medial, pontomedullary reticular formation and, from there, to the thalamocortical cir-

cuits. A major target of the spinomesencephalic tract is the parabrachial nucleus of the 

pons, a region involves in the integration of the cardiovascular, autonomic and motiva-

tional response to pain. Other collaterals of the spinohypothalamic pathway project at the 

thalamus and also innervate the medulla and pons of the brainstem, sites of origin of the 

descending modulatory pathways [for review, please see 39]. The lateral system provides 

information on the location and duration of pain and plays an important role in the sen-

sory-discriminating component of pain. This lateral system is formed by the spinocervical 

pathway, which projects to the lateral cervical nucleus at the C1-C3 level, and the nuclei 

of the dorsal column, which project to the cuneate and gracile nuclei of the dorsal column 

of the spinal cord. From the lateral cervical nucleus, information travels by the cervicotha-

lamic tract to several thalamic nuclei, including the ventroposterior and posterior nucleus 

groups, and by a cervicomesencephalic pathway to the midbrain, including the peria-

queducal grey and superior colliculus. With regard to the nuclei of the dorsal column, the 

output neurons project by the medial lemniscus to the ventroposterior and posterior 

groups of thalamic nuclei and to the superior colliculus [for review, see Millan, 39]. 

3. Interaction between pain and postural control 

Experimental pain has been used to determine the potential impact of pain on bal-

ance control. By inducing heat pain on the lower leg muscle (45°C), Blouin et al. [15] 

showed a significant increase in COP velocity in comparison with the non-pain condition 

(i.e., heat stimulation at 40°C). Similarly, other studies have reported that unilateral hy-

pertonic saline injection at infrapatellar fat pad [18], thigh [17] or leg muscles [16] led to 

significant increase in body sways and muscle activities. In addition, it has been reported 

that pain induced by electrical stimulation on the dorsum of the feet caused larger COP 

displacement [14]. By inducing different level of pain (weak, moderate, extreme), the au-

thors observed that the COP displacement scaled with the level of pain. Furthermore, they 

reported that pain induced at the hand did not change COP displacement, showing spec-

ificity of the pain location related to postural control interference. The authors concluded 

the painful stimulation affects postural control via the sensorimotor mechanisms rather 

than cognitive processes related to perception of pain. 

Even though some studies did not observed improvement in balance control in indi-

viduals with LBP compared healthy counterparts [45, 46], a systematic review, including 

16 studies, reported that low back pain results in COP parameters alteration (e.i., increase 

of COP velocity and sway in anteroposterior direction) [19, 20]. Pain influences sensorimo-

tor response in individuals with LBP, delaying and reducing the COP displacement on 

unstable surfaces [47], as well as increasing postural sway in the antero-posterior and me-

dio-lateral direction in open eyes [21, 48] , closed eyes [49] conditions, and in a single leg 

support [50]. Considering all of these result, pain may alter the sensorimotor components 

of the postural system controlling balance [51-55]. Pain and impaired postural control of-

ten imply reduced muscle strength [56], physical inactivity [57] and depression [58]. Mus-

culoskeletal pain is also associated with an increased the risk of falling [12, 13, 59]. Results 

from various studies also highlighted reduced trunk movements [60] and trunk stiffness 

[61]. These alterations likely cause postural instability [50] and may an indicator of dys-

functional postural control strategies [61, 62].  

 Some studies also reported a decreased in proprioceptive acuity, that is, patients with 

back or neck pain have less accurate positions sense [63, 64] suggesting impairment in 

body sway perception. More specifically, Popa et al. [65] suggested that the deterioration 
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of proprioceptive information of the lower limbs and the trunk determines a reduced ac-

curacy in the sensory integration process and thus a more imprecise internal estimate of 

the center of mass (CoM) position in individuals with chronic low back pain (CLBP). Con-

sequently, the motor controller needs to increase the safety margin of the CoP shifts with 

respect to the predicted oscillation of the CoM, reflected by a greater sway. Individuals 

with CLBP might set ankle stiffness at a higher level in order to compensate for sensory 

deterioration [66], as already demonstrated by reducing plantar sole sensitivity [24, 25]. 

Reweighting of proprioceptive input by increasing the gain at the ankle joints (increasing 

loading of ankle extensors by leaning more forward) may enhance sensory discrimination 

and help maintaining a critical level of sensory information to adequately cope with pos-

tural perturbations [65]. Overall, these sensorimotor changes may alter postural control 

[67]. Balance disorders may be associated with specific clinical findings, such as reduced 

muscle strength, impaired cognition, sensory or motor deficits, lower-extremity myofas-

cial trigger points [68] or change in flexibility and coordination [69]. Patients with chronic 

pain syndrome, such as fibromyalgia, reported larger body sway than healthy controls 

[70], and balance impairment represents one of the top 10 most debilitating symptoms 

[71]. It was proposed that fibromyalgia likely affects dynamic balance control because of 

altered somatosensory inputs to central nervous system, including abnormal perception 

of pain with light somatosensory stimulation [68].  

 Persistent pain also alters cognitive processes. As cognition contributes to balance 

control [72-74], it is crucial to assess the relationship between pain intensity, cognition and 

balance control. Individuals with severe pain showed less effective executive functioning 

[75]. Such cognitive deficits are associated with impaired physical functioning including 

gait speed, balance performance, sit-to-stand and trunk rotation [76]. Because pain alters 

the sensorimotor mechanisms involve in balance control [77, 78], clinical evaluation 

should assess balance control. 

4. Mechanisms of action of pain and potential mechanisms involved in postural con-

trol alteration in pain condition 

Pain is intimately linked to the activation of a complex cerebral network as men-

tioned above, and involves cortical reorganization. Results from studies inducing pain 

confirmed a causal relationship between pain and cortical changes [10, 79-82]. Experi-

mental pain studies showed increase of the primary motor cortex (M1) activity [83-85]. 

Using electroencephalography (EEG), Stancák et al. [86] reported that short-lasting pain-

ful heat stimuli on the hand decreased beta (β: 15-30 Hz) activity within the sensorimotor 

cortex. Given the inhibitory role that β oscillations has on the motor cortex [87], the de-

crease in primary motor cortex (M1) activity suggests that a brief nociceptive stimulus 

could alter (reduction of the inhibition) the motor region, possibly to facilitate withdrawal 

responses [88]. In a recent systematic review and meta-analysis, Rohel et al. [10] confirm 

the inhibitory effect of pain on corticospinal excitability. More specifically, Billot et al. [9] 

reported that heat pain applied at the tibialis anterior muscle significantly reduced corti-

cospinal excitability either during active muscle contraction or at rest. These results pro-

vide evidence that nociceptive sensory input can impact corticospinal excitability at the 

lower limb. Incoming research, using transcranial magnetic stimulation of the lumbar 

erector spinae muscles [89], will help to delineate corticospinal excitability modulation 

with pain. 

Using neuroimaging and neurostimulation, numerous studies showed that patients 

with chronic pain, such as complex regional pain syndrome (CRPS) [90] or phantom limb 

pain [91], presented cortical reorganization at the M1 level, with a smaller corticomotor 

representation of the affected limb, compared to pain-free participants. A normalization 

of the cortical changes was observed in CRPS patients after treatment over 1 to 6 months 

consisting of graded sensorimotor retuning [92], once pain subsided [92, 93], underlying 

the fact that cortical reorganization may play a major role in the physiopathology of 

chronic pain [92, 93]. These results support a causal relationship between pain and cortical 
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changes. The cerebrum works as an integrated system of circuits and certain brain areas, 

other than those classically involved in pain perception and modulation, can be affected 

by nociceptive stimulations [88].  

 At a lower anatomical level, spinal control may likewise be affected by pain condi-

tions. To date, experimental pain studies failed to provide strong evidence in a potential 

inhibitory or facilitatory effect at the spinal level. Farina et al. [94] did not support any 

modification of H-reflex of the flexor carpi radialis muscle while inducing tonic pain by 

applied capsaicin cream. Investigating the influence of pain (hypertonic saline into biceps 

brachii) at cortical and spinal levels, Martin et al. [95] showed cervicomedullary motor 

evoked potentials increase at rest for both biceps and triceps brachii, and for agonist mus-

cle during constant EMG elbow flexion (biceps) and extension (triceps). In another hand, 

Le Pera et al. [54] reported H-reflex amplitude reduction in the recovery period after re-

lated-pain induced by hypertonic saline injection in the flexor carpi radialis. The authors 

interpreted this delayed H-reflex depression by inhibition of the spinal motoneurones ex-

citability that overlap the cortical inhibition observed by motor evoked potential ampli-

tude (corticospinal excitability) decrease. In addition to spinal excitability, pain induces 

steady variations in spinal transmission that could alter motor strategies [52]. For instance, 

prolonged exposure to nociceptive stimulations from the skin or sore muscles induced 

large errors in a torque-matching task [96]. The authors reported that participants overes-

timated the torque level generated by a limb affected by pain. In addition, pain could 

induce a distortion of the body image, leading to a biased estimation of the body position 

in space [55]. 

 Assessment of motor control in patients presenting with CLBP considers three main 

classes of motor tasks, evaluating control of the trunk in steady-state condition (posture 

and movement) or challenging by predictable or unpredictable perturbations [97]. Re-

garding the first condition, literature provided inconsistent lumbar extensor muscle activ-

ity through 30 studies by reporting higher, no difference, or lower muscle activity [7]. The 

results may differs depending on anatomical specificity of the muscle, with deeper mus-

cles were more systematically inhibited and superficial muscles activity were preferen-

tially augmented [7]. Likewise, by investigating anticipatory activation of the trunk mus-

cles occurred after expected or unexpected perturbations in CLBP patients, studies re-

ported late activation of the transversus abdominis and multifidus muscles [98-103], no 

modification [104], or earlier activation [105, 106] In line with these results, the trunk 

movement alteration observed in CLBP patients may result from proprioception defi-

ciency [107, 108]. Far from placing all these results in opposition, van Dieen et al. [97] 

propose to dichotomize patients profil/phenotype, where one phenotype includes pa-

tients with tight trunk control associated with over-activation of trunk muscle due to ex-

citability increase and causing tissue loading increase, and the second phenotype includes 

patients with lose control associated with excessive spinal movements due to excitability 

decrease and causing tissue loading increase. Thereby, in a nutshell, patients suffering 

from CLBP presents abnormal loading of the tissues in the low back originated from dif-

ferent mechanisms. 

5. Conclusions 

There is no doubt that pain modify movement and motor control, illustrated by pos-

tural control alteration. This review showed that both experimental and chronic pain lead 

to postural control impairments. While the cortical modification has been largely investi-

gated with pain localized at the upper limb, cortical and spinal modulation focusing on 

spine and lower limb muscles have to be determined. Finally, different phenotype of mo-

tor control by tight or loose trunk control should be considered to provide adapted treat-

ment for managing both pain and postural control in patients presenting with chronic low 

back pain. 
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