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Abstract. In this study, we present a numerical method for solving two–dimensional space–time
fractional partial differential equations (FPDEs), where the solutions of the FPDEs are expanded
in terms of the shifted Chebyshev polynomials. The numerical approximations are evaluated at the
Chebyshev–Gauss–Lobatto points. In the case when the FPDE is nonlinear, we employ a Newton–
Raphson approach to linearize the equation. Both the linear and nonlinear cases lead to a consistent
system of linear algebraic equations. The scheme is tested on selected FPDEs and the numerical
results show that the proposed numerical scheme is accurate and computationally efficient in terms of
CPU times. To establish the accuracy of the method, we also present an error analysis which shows
the convergence of the numerical method. These positive attributes make the proposed method a
good approach for solving two–dimensional fractional partial differential equations with both space
and time fractional orders.
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1. Introduction

Fractional partial differential equations (FPDEs) are a generalization of classical partial dif-
ferential equations to include derivatives of arbitrary order [27]. For the past three centuries,
FPDEs were considered to be of little mathematical or practical interest [21, 23]. However, in
the last few years, they have been used in applications such as fluid dynamics [5, 34], finance
[26, 33] and physics [3, 20]. Fractional partial derivatives provide an excellent instrument for
the description of physical systems with inherent memory [2, 8]. Fractional partial derivatives
are more flexible in modelling real world dynamical systems.

In many problems of interest, FPDEs have no recognized analytical solution, so approximate
and numerical techniques must be used [15]. Several numerical methods such as the finite
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difference method [24, 25], wavelet methods [17, 18], adomian decomposition method [11, 19],
predictor–corrector method [22] and spectral methods [7, 32] have been developed for FPDEs.
One of the earliest contributions to numerical solutions of FPDEs was by Lynch et al.[24],
where they applied an approach based on the L2 method proposed by Oldham and Spanier[29]
to solve an anomalous diffusion equation. In their study, the FPDEs were fractional in the
spatial dimension and the second derivative was approximated by the standard three-point
centred finite difference formula. Meerschaert and Tadjeran[28] gave a detailed study of a
one-dimensional fractional diffusion equations using the finite difference method. They used
a truncated Grunwald–Letnikov derivative evaluated on a shifted grid. Meerschaert and
Tadjeran[27] later extended the method to one-dimensional space FPDEs.

The literature on spectral methods for solving FPDEs is comparatively short, although,
interest has grown steadily in recent years. The spectral methods are an excellent tool for
computing approximate solutions of differential equations because of high-order accuracy
(see for instance Bhrawy[6] and Doha et al.[14]). With this high-order accuracy, spectral
methods are useful for both temporal and spatial discretizations of FPDEs. Using spectral
methods may significantly reduce the storage requirement because fewer time and space grid
points are needed to compute smooth solutions. The basic concept of spectral methods is
to express the solution of the differential equation as a sum of basis functions and estimate
the coefficients of expansion such that approximation error is minimized [7]. Doha et al.[12]
derived an operational matrix of the fractional derivatives and used the spectral tau method.
The study of Doha et al.[12] was later extended to the more general Jacobi polynomials by
Doha et al.[13], but was only applied to fractional ordinary differential equations.

In this study, a purely spectral based method is introduced and applied to solve (2 + 1) di-
mensional FPDEs of the initial–boundary value problems type. The solution method involve
approximating the variable and its fractional order partial derivatives in terms of the first
kind shifted Chebyshev polynomials constructed on the Chebyshev–Gauss–Lobatto quadra-
ture. In the case where the FPDE is nonlinear, we simplify using the quasilinearization
method of Bellman and Kalaba[4]. The FPDE is discretized to yield a consistent system of
linear algebraic equations. The method is tested using some FPDEs of the initial boundary
value type and the numerical results obtained are compared with the exact solutions.

2. Preliminaries and Notations

In this section, we provide some preliminary results on fractional operators and the shifted
Chebyshev polynomials of the first kind.

2.1. The fractional operators

Definition 2.2. The Riemann–Liouville fractional integral of order α > 0 is defined as [31]

0I
α
x g(x) =

1

Γ(α)

∫ x

0
(x− x̃)α−1g(x̃)dx̃, α > 0, x > 0, (1a)

0I
0
xg(x) = g(x), (1b)
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where Γ is the Euler gamma function.

The fractional integral of a power function xj is given as

Iαxj =
Γ(j + 1)

Γ(j + α+ 1)
xj+α. (2)

Definition 2.3. We defined the corresponding differential operator of order α in the Caputo
sense as [31]

0D
α
xg(x) = 0I

n−α
x

(
dn

dxn
g(x)

)
=


1

Γ(n−α)

∫ x
0

dng(x̃)
dx̃n

dx̃
(x−x̃)α+1−n , n− 1 < α < n,

dng(x)
dxn , α = n.

(3)

We also define the fractional derivative of order α of xj , which will be useful later in this
study as

0D
α
xx

j =


0 j ∈ N0, j < ⌈α⌉,

Γ(j+1)
Γ(j+1−α)x

j−α, j ∈ N0, j ≥ ⌈α⌉,
(4)

where ⌈α⌉ denotes the smallest integer greater than or equal to α.

2.4. The shifted Chebyshev polynomials

Consider the Sturm–Liouville eigenvalue problem(√
1− x2T ′

n(x)
)′

+
n2

√
1− x2

Tn(x) = 0, −1 ≤ x ≤ 1, n = 0, 1, . . . . (5)

The Chebyshev polynomials are eigenvalue solutions of the eigenvalue problem, defined as [1]

Tn(x) = cos(n arccosx), n = 0, 1, . . . , x ∈ [−1, 1], (6)

and are defined recurrently as

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, . . . , (7)

where the zeroth and first order polynomials are respectively defined as T0(x) = 1 and
T1(x) = x. We shall consider the interval x̃ ∈ [0, 1], hence we define the shifted Chebyshev
polynomials by using the affine mapping x = 2x̂ − 1. Therefore the shifted Chebyshev
polynomials can be generated through the recurring formula

T̂n+1(x̂) = 2(2x̂− 1)T̂n(x̂)− T̂n−1(x̂), 0 ≤ x̂ ≤ 1, n = 1, 2, . . . , (8)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0138.v1

https://doi.org/10.20944/preprints202205.0138.v1


4 S. Oloniiju, N. Nkomo, S. Goqo, P. Sibanda

where T̂0(x̂) = 1 and T̂1(x̂) = 2x̂− 1, and the polynomials can be expanded in series form as
(dropping the hat for brevity)

Tn(x) = n
n∑

j=0

(−1)n−j(n+ j − 1)!22j

(n− j)!(2j)!
xj . (9)

The shifted Chebyshev polynomials of the first kind satisfy the orthogonality condition∫ 1

0
Tn(x)Tm(x)w(x)dx = δmnhn, (10)

where w(x) is a weight function defined as 1/
√
x− x2 and hn = cnπ/2, with c0 = 2 and

cn = 1 for n ≥ 1. The shifted Chebyshev–Gauss–Lobatto points on which the interpolation
is performed are extrema of Tn(x) on the interval x ∈ [0, 1] defined as

xj =
1

2

(
1− cos

(
jπ

N

))
, 0 ≤ j ≤ N. (11)

The corresponding Christoffel numbers are the same as those of the standard Chebyshev–
Gauss–Lobatto quadrature and are defined as ϖj = π/cjN, 0 ≤ j ≤ N , where c0 = cN = 2
and cj = 1 for j = 1, 2, . . . , N − 1.

3. Solution method

In this section, we describe the scheme for solving a (2 + 1) dimensional fractional partial
differential equations. For conveniency, we divide this section into three subsections. In
Section 3.1, we propose the arbitrary derivative of a square integrable function in terms of
the shifted Chebyshev polynomials. The resulting fractional differentiation matrix is used
to approximate the derivatives of the dependent variable using Chebyshev–Gauss–Lobatto
quadrature. In Section 3.4, we construct a scheme for solving linear fractional partial differ-
ential equations and in Section 3.5 we describe an iterative scheme for finding the solution of
nonlinear fractional partial differential equations based on quasilinearization and Chebyshev
collocation approaches.

3.1. Function and derivatives approximations

Consider a smooth function u(x) defined on the interval [0, 1], then u(x) can be approximated
in terms of the truncated shifted Chebyshev polynomials as

u(x) ≈ UN (x) =
N∑

n=0

UnTn(x), (12)

where the coefficients Un are given to satisfy the orthogonality condition, and we write in
discrete form as

Un =
1

hn

N∑
j=0

U(xj)Tn(xj)ϖj , n = 0, . . . , N. (13)
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Therefore,

UN (xk) =
N∑
j=0

[
ϖj

N∑
n=0

1

hn
Tn(xj)Tn(xk)

]
U(xj), k = 0, 1, . . . , N. (14)

In order to approximate the arbitrary order derivative of UN (x), we first obtain the fractional
derivative of the shifted Chebyshev polynomials.

Lemma 3.2. The fractional derivative of the shifted Chebyshev polynomial is (see [12, 30])

0D
α
xTn(x) =

N∑
k=0

D
(α)
n,kTk(x), (15)

where

D
(α)
n,k = n

n∑
j=0

(−1)n−j(n+ j − 1)!22j

(n− j)!(2j)!

Γ(j + 1)

Γ(j − α+ 1)
qj,k, (16)

and qj,k is given as

qj,k =



0 j = 0, 1, . . . ⌈α⌉ − 1,

k
√
π

hk

k∑
r=0

(−1)k−r(k + r − 1)!22r

(k − r)!(2r)!

Γ(j − α+ r + 1/2)

Γ(j − α+ r + 1)
, j = ⌈α⌉, ⌈α⌉+ 1, . . . , N,

k = 0, 1, . . . , N.

(17)

Theorem 3.3. The arbitrary order derivative of u(x) is given as

0D
α
xu(xl) ≈ DαUN (xl) =

N∑
j=0

Dα
j,lU(xj) = DαU, (18)

where the entries of Dα are defined as

Dα
j,l = ϖj

N∑
n=0

N∑
k=0

1

hn
Tn(xj)D

(α)
n,kTk(xl), j, l = 0, 1, . . . , N. (19)

Proof. If we use the result of Lemma 3.2 and the expression in Equation (13), together with
the expansion in terms of the shifted Chebyshev polynomials given in Equation (12), the
theorem is proved.
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3.4. Linear FPDEs

In this section, we describe the scheme for solving linear FPDEs. We consider a linear FPDE
with variable coefficients of the form

∂αu

∂tα
= u+

∑
d=1

fd(x, y)
∂βdu

∂xβd
+
∑
e=1

ge(x, y)
∂γeu

∂yγe
+ q(x, y, t), (x, y) ∈ (0, 1)× (0, 1), t ∈ (0, 1],

(20)

where 0 < α < 1, β1 < β2 < . . ., γ1 < γ2 < . . . and d − 1 < βd < d (d = 1, 2, . . . , ),
e − 1 < γe < e (e = 1, 2, . . .). Moreover, fd(x, y) (d = 1, 2, . . . , ) and ge(x, y) (e = 1, 2, . . . , )
are functions of x and y and q(x, y, t) is dependent on all three variables. Equation (20) is
solved subject to the initial condition

u(x, y, 0) = I(x, y), (21)

and boundary conditions

u(0, y, t) = Bx
0 (y, t), u(1, y, t) = Bx

1 (y, t),

u(x, 0, t) = By
0(x, t), u(x, 1, t) = By

1(x, t), (22)

where I(x, y),Bx
0 (y, t),Bx

1 (y, t),B
y
0(x, t),B

y
1(x, t) are known functions. If α > 1, additional

initial condition will be needed to make the differential equation well–posed. We define
the fractional order derivative with respect to x approximated at the interpolation points
(xi, yj , tk) for i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny, k = 0, 1, . . . , Nt as follows

∂β

∂xβ
u(x, y, t) ≈ ∂β

∂xβ
U(xi, yj , tk) = DβUj,k, (23)

where Uj,k = [U(x0, yj , tk), U(x1, yj , tk), . . . , U(xNx , yj , tk)]
T , j = 0, 1, . . . , Ny, k = 0, 1, . . . , Nt.

Fractional order derivatives with respect to y and t are approximated in similarly manner.
Therefore, we can approximate Equation (20) in terms of the shifted Chebyshev polynomial
as

Nt∑
k=1

Ny−1∑
j=1

Dα
k,nUj,k −

Ny−1∑
j=1

[∑
e=1

GeDγe
j,m

]
Uj,k −

[∑
d=1

FdDβd

]
Uj,k − Uj,k = Qj,k,

n = 0, 1, . . . , Nt, m = 0, 1, . . . , Ny, (24)

whereQj,k = [Q(x0, yj , tk), Q(x1, yj , tk), . . . , Q(xNx , yj , tk)]
T , j = 0, 1, . . . , Ny, k = 0, 1, . . . , Nt

is the approximation of q(x, y, t) on the Chebyshev–Gauss–Lobatto points (xi, yj , tk). The
above is a linear algebraic system which when combined with the initial and boundary con-
ditions evaluated at the interpolation points as

U(x0, yj , tk) = Bx
0 (yj , tk), U(xNx , yj , tk) = Bx

1 (yj , tk), (25)

U(xi, y0, tk) = By
0(xi, tk), U(xi, yNy , tk) = By

1(xi, tk), (26)

and

U(xi, yj , t0) = I(xi, yj) (27)

yields a consistent system.
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3.5. Nonlinear FPDEs

In this section, we detail how to use the proposed method to solve nonlinear FPDEs. Consider
the nonlinear FPDE

∂αu

∂tα
= F

(
u,

∂β1u

∂xβ1
,
∂β2u

∂xβ2
, . . . ,

∂γ1u

∂yγ1
,
∂γ2u

∂yγ2
, . . .

)
+ q(x, y, t), (28)

with the initial and boundary conditions in Equations (21) and (22) and F is a nonlinear
operator. In order to solve Equation (28), we first linearize using the quasilinearization
technique of [4]. This quasilinearization method is based on the Newton–Raphson approach
and developed from the linear expansion in terms of the Taylor’s series about an initial
solution. Applying the approach on Equation (28), we obtain the iterative scheme

∂αur+1

∂tα
−
(
∂Fr

∂u

)
ur+1 −

(
∂Fr

∂Dβ1
x u

)
∂β1ur+1

∂xβ1
−
(

∂Fr

∂Dβ2
x u

)
∂β2ur+1

∂xβ2
− . . .

−
(

∂Fr

∂Dγ1
y u

)
∂γ1ur+1

∂yγ1
−
(

∂Fr

∂Dγ2
y u

)
∂γ2ur+1

∂yγ2
− . . . = Rr + q(x, y, t), (29)

where

Rr =

(
∂Fr

∂u

)
ur −

(
∂Fr

∂Dβ1
x u

)
Dβ1

x ur −
(

∂Fr

∂Dβ2
x u

)
Dβ2

x ur − . . .−
(

∂Fr

∂Dγ1
y u

)
Dγ1

y ur

−
(

∂Fr

∂Dγ2
y u

)
Dγ2

y ur − . . .− Fr, (30)

and r in this case signifies the previous iteration. Equation (29) can then be expanded
in terms of shifted Chebyshev polynomials, when combined with the initial and boundary
conditions form a consistent linear algebraic system.

4. Space of fractional derivative and convergence analysis

In this section, we establish some functional spaces of fractional derivatives and then present
a convergence analysis of the spectral method for a space–time fractional partial differential
equation of the form Equation (20). We introduce the domain Ω = Φ×Υ, where Φ = (0, 1]
and Υ = [0, 1]× [0, 1]. Define (·, ·)Ω and ∥·∥0,Ω the inner product and norm L2(Ω) respectively
and assume that u(x, y, t), fd(x, y)|d≥1, ge(x, y)|e≥1 and q(x, y, t) are defined in the space of
smooth functions.

Definition 4.1. Define the space Hm(Φ),m ≥ 0, the Sobolev space [9, 10]

Hm(Φ) =

{
u ∈ L2(Φ) :

∂ju

∂tj
∈ L2(Φ), 0 ≤ j ≤ m

}
, (31)

endowed with the respective weighted semi–norm and norm
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|u|m,Φ =

(∥∥∥∥∂mu

∂tm

∥∥∥∥2
L2(Φ)

)1/2

, ∥u∥m,Φ =

 m∑
j=0

∥∥∥∥∂ju

∂tj

∥∥∥∥2
L2(Φ)

1/2

. (32)

Definition 4.2. We define the fractional Sobolev space Hα(Φ) for any α > 0 as [9, 16]

Hα(Φ) =
{
u ∈ L2(Φ) : 0D

αu ∈ L2(Φ)
}
, (33)

such that the semi–norm and norm associated with the space are defined respectively as

|u|α,Φ = ∥0Dαu∥L2(Φ), ∥u∥α,Φ =
(
∥u∥2L2(Φ) + |u|2α,Φ

)1/2
. (34)

Lemma 4.3. For u ∈ Hα(Φ), if 0 < p < α, then there is a non–negative constant C such
that [16]

∥u∥p,Φ ≤ C∥u∥α,Φ. (35)

Lemma 4.4. Let u ∈ Hm(Φ) and TN be the expansion in terms of (N + 1) Chebyshev–
Gauss–Lobatto nodes, then the error is estimated as [10]

∥u− TNu∥l,Φ ≤ CN2l−m∥u∥m,Φ, l ≤ m (36)

∥u− TNu∥L2
w(Φ) ≤ CN−m∥u∥m,Φ. (37)

Lemma 4.5. Assume that UN,Nt , with N = (Nx + Ny + 2) be the orthogonal projection
operator of L2(Ω)) onto TN,Nt(Ω), then for all m,n ≥ 0, there exist a positive constant C not
dependent on N and Nt such that [9, 10]

∥u− TN,Ntu∥L2
w(Ω) ≤ C

(
N−m∥u∥m,0 +N−n

t ∥u∥0,n
)
. (38)

Theorem 4.6 (Convergence). Assume that u is the exact solution of Equation (20) and its
approximation is given as U , and q ∈ C(Ω) ∩H0,p2(Φ;Hp1,0(Υ)), then

∥u− U∥L2
w(Ω) → 0. (39)
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Proof. Considering the integration of Equation (20), we have

u = 0I
α
t u+

∑
d=1

fd 0I
α
t

∂βdu

∂xβd
+
∑
e=1

ge 0I
α
t

∂γeu

∂yγe
+ 0I

α
t q, (40)

and let U represents the approximation of u which uses Nx truncated Chebyshev approxima-
tion in x, Ny truncated Chebyshev expansion in y and Nt truncated expansion in t is given
as

U = 0I
α
t U +

∑
d=1

fd 0I
α
t

∂βdU

∂xβd
+
∑
e=1

ge 0I
α
t

∂γeU

∂yγe
+ 0I

α
t Q. (41)

In view of Equations (40) and (41), we obtain

∥u− U∥L2
w(Ω) ≤ ∥0Iαt (u− U)∥L2

wΩ +

∥∥∥∥∥∑
d=1

fd 0I
α
t

∂βd(u− U)

∂xβd

∥∥∥∥∥
L2
w(Ω)

+

∥∥∥∥∥∑
e=1

ge 0I
α
t

∂γe(u− U)

∂yγe

∥∥∥∥∥
L2
w(Ω)

+ ∥0Iαt (q −Q)∥L2
w(Ω) . (42)

For a Chebyshev–Gauss–Lobatto quadrature and using the properties of a Sobolev norm and
Young’s inequality, we have

|(0Iαt (q −Q))|L2
w(Ω) = |(0Iαt (q − TN,Ntq + TN,Ntq −Q))|

≤ |(0Iαt )||(q − TN,Ntq + TN,Ntq −Q)|
≤ C|(q − TN,Ntq + TN,Ntq −Q)|
≤ C(|(q − TN,Ntq)|+ |(TN,Ntq −Q)|)
≤ C(∥(q − TN,Ntq∥0 + ∥TN,Ntq −Q)∥0)
≤ C(N−p1∥q∥p1,0 +N−p2

t ∥q∥0,p2). (43)

Therefore, Equation (42) becomes

∥u− U∥L2
w(Ω) ≤

(
|0Iαt ||u− U |0 +

∣∣∣∣∣∑
d=1

fd 0I
α
t

∣∣∣∣∣ |u− U |βd
+

∣∣∣∣∣∑
e=1

ge 0I
α
t

∣∣∣∣∣ |u− U |γe

)
+ C(N−p1∥q∥p1,0 +N−p2

t ∥q∥0,p2) (44)

≤ C
(
∥u− U∥0 + ∥u− U∥βd

+ ∥u− U∥γe +N−p1∥q∥p1,0 +N−p2
t ∥q∥0,p2

)
.

(45)
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In order to estimate ∥u− U∥β, we have

∥u− U∥β ≤ ∥u− TN,Ntu∥β,0 + ∥TN,Ntu− U∥β,0
≤ N2β−m∥u∥m,0 +N−n

t ∥u∥0,n. (46)

For any βd(d = 1, 2, . . .) or γe(e = 1, 2, . . .), there exist non negative constants Cd or Ce such
that (by Lemma 4.3 )

∥u− U∥βd
≤ Cd∥u− U∥β,0 or ∥u− U∥γe ≤ Ce∥u− U∥γ,0. (47)

Therefore, we have

∥u− U∥L2
w(Ω) ≤ C

(
N−m∥u∥m,0 +N−n

t ∥u∥0,n +N2β−m∥u∥m,0 +N−n
t ∥u∥0,n

+N2γ−m∥u∥m,0 +N−n
t ∥u∥0,n +N−p1∥q∥p1,0 +N−p2

t ∥q∥0,p2
)
, (48)

where C is non–negative and not dependent on Nx, Ny and Nt.

5. Numerical examples

In this section, we applied the numerical scheme to selected linear and nonlinear two–
dimensional time–space fractional partial differential equations of the initial–boundary value
type. The accuracy and efficiency of the method is demonstrated by comparing the results
with exact solutions.

Example 5.1. We consider the two–dimensional time–space fractional diffusion equation
with variable coefficients on a finite domain

∂0.8u

∂t0.8
= f(x, y)

∂1.8u

∂x1.8
+ g(x, y)

∂1.5u

∂y1.5
+ q(x, y, t), (49)

where f(x, y) and g(x, y) are the diffusion coefficients. We investigate the case where

f(x, y) =
x1.8

Γ(3.8)
, g(x, y) =

Γ(2.5)

6
y1.5, (50)

and subject to the boundary conditions

u(0, y, t) = 0, u(1, y, t) = y3(1 + t2), 0 ≤ y ≤ 1, 0 < t ≤ 1 (51)

u(x, 0, t) = 0, u(x, 1, t) = x2.8(1 + t2), 0 ≤ x ≤ 1, 0 < t ≤ 1. (52)

The initial condition for this FPDE is given as

u(x, y, 0) = x2.8y3, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (53)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0138.v1

https://doi.org/10.20944/preprints202205.0138.v1


11

and the source term q(x, y, t) is defined as

q(x, y, t) = −2

(
t2 − t1.2

Γ(2.2)
+ 1

)
x2.8y3. (54)

The exact solution is given in [35] as

u(x, y, t) = x2.8y3(1 + t2). (55)

Example 5.2. Consider the two–dimensional generalized space–time fractional diffusion
equation with variable coefficients (see Zheng and Zhang[35])

∂αu

∂tα
= f(x, y)

∂βu

∂xβ
+ g(x, y)

∂γu

∂yγ
+ q(x, y, t), 0 < α ≤ 1, 1 < β, γ ≤ 2. (56)

In this test problem, the explicit solution is chosen as

u(x, y, t) = x2y3t2, (57)

such that when we substitute the solution into the equation, we obtain the diffusion coefficients
as

f(x, y) =
(3− 2x)Γ(3− β)

2
, g(x, y) =

(4− y)Γ(4− γ)

6
, (58)

and the source term as

q(x, y, t) =
2

Γ(3− α)
x2y3t2−α + y3t2(2x3−β − 3x2−β) + x2t2(y4−γ − 4y3−γ). (59)

The FPDE is solved subject to the initial condition

u(x, y, 0) = 0, (60)

and boundary conditions

u(0, y, t) = 0, u(1, y, t) = y3t2, 0 ≤ y ≤ 1, 0 < t ≤ 1, (61)

u(x, 0, t) = 0, u(x, 1, t) = x2t2, 0 ≤ x ≤ 1, 0 < t ≤ 1. (62)

Example 5.3. We consider the nonlinear two–dimensional space–time Fisher’s partial dif-
ferential equations [35]

∂αu

∂tα
=

∂βu

∂xβ
+

∂γu

∂yγ
+ u(1− u) + q(x, y, t), 0 < α ≤ 1, 1 < β, γ ≤ 2, (63)

with exact solution

u(x, y, t) = x2y2t. (64)
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The equation is solved subject to the boundary conditions

u(0, y, t) = 0, u(1, y, t) = y2t, 0 ≤ y ≤ 1, 0 < t ≤ 1, (65)

u(x, 0, t) = 0, u(x, 1, t) = x2t, 0 ≤ x ≤ 1, 0 < t ≤ 1, (66)

and the initial condition

u(x, y, 0) = 0. (67)

The function q(x, y, t) is defined as

q(x, y, t) =
1

Γ(2− α)
x2y2t1−α − 2

Γ(3− β)
x2−βy2t− 2

Γ(3− γ)
x2y2−γt− x2y2t

+ x4y4t2. (68)

6. Result and Discussion

This section discusses the numerical results obtained by applying the method to Examples
5.1–5.3. We focus on the accuracy of the scheme and the ease of implementation. The nu-
merical simulations were made using the python programming language run on a computer
with Intel Core i5–7200U, CPU @ 2.50 GHz, and 8 GB DDR4 installed memory. The
results show how the orders of the shifted Chebyshev polynomials in each variable affect the
accuracy of the numerical method. In order to determine the accuracy of the method, we
define the infinity error norm which measures the maximum of the absolute values of the
difference between the exact and numerical solutions

∥ε∥∞ = ∥u(xi, yj , tk)− U(xi, yj , tk)∥∞, (69)

where u and U are respectively the exact and numerical solutions. This is a good measure
for accuracy because we expect that the difference between the exact and numerical solutions
at every grid points to be close to zero.

Figure 1 shows the numerical and exact solutions for Example 5.1. It can be seen that
both solutions are in agreement. The errors presented in Tables 1 and 2 are associated with
Example 5.1. In Table 1, the number of grid points in both the spatial and temporal domains
are varied. The result show accurate results for different combinations of the numbers of grid
points and/or orders of the shifted Chebyshev polynomials. We observe that the numerical
solutions become better as the orders of the polynomials increase. The table also shows the
condition number of the matrix, as well as the computational time. The condition numbers
are obtained using the python package “numpy.linalg.cond”. Both the condition number
and the computational time increase as the combination of the grid points increases. This is
explained by the higher number of algebraic equations that need to be solved with an increase
in number of grid points. For instance, in the case when Nx = Ny = 15 and Nt = 10, there
are 2816 coupled linear algebraic equations to be solved, and when Nx = Ny = Nt = 7, there
are 512 linear algebraic equations. This well–conditioned system of equations was solved and
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accurate solutions obtained in less than 2 seconds, thus showing that the method is not only
accurate but also efficient. The high number of coupled linear algebraic equations solved in
few seconds establish the efficiency of the method. Given that fractional derivatives are non–
local, we remark that this is a fairly good result. Table 2 shows the comparison between the
exact solution and the approximate solution obtained at selected points (x, y, t). We observe
that the magnitude of the error at these selected points is small.

The numerical solutions of Example 5.2 at t = 0.5 and t = 1 are shown in Figure 2. These
solutions are in agreement with the exact solutions. In Tables 3 and 4, we present the error
norm, condition number and computational time for Example 5.2 for different combinations
of the numbers of terms in the polynomials and different combination of the fractional orders
respectively. Again, we observe accuracy in the results which is evident from the magnitude
of the error norms and efficiency, evident from the CPU time required to solve the system
of algebraic equations. Table 4 shows the accuracy for different values of α ∈ (0, 1) and
β, γ ∈ (1, 2) for fixed numbers of grid points Nx = Ny = Nt = 10. In Table 5, we present the
error norms for Example 5.3 which is a nonlinear space–time fractional differential equation.
The results presented in Table 5 are obtained after the sixth iteration. A distinctive difference
between the result obtained in Example 5.3 and that obtained in Examples 5.1 and 5.2 is
the computational time to solve the resulting system of algebraic equation in Example 5.3.
The CPU time in Example 5.3 is higher than that in Examples 5.1 and 5.2. This owes
to the fact that Example 5.3 is solved through an iterative process. Figure 3 depicts the
numerical solution and absolute error for Example 5.3 at t = 0.5 and t = 1 with α = 9/10
and β = γ = 1.9. One obvious advantage of the method over many other methods that have
been used to find solutions of FPDEs is the fact that it only requires small numbers of terms
of the shifted Chebyshev polynomials, and as a result small numbers of grid points to achieve
accuracy.

Although, we assumed that the solution u(x, y, t) must be continuously differentiable for the
approximation to be convergent. However, a closer inspection of the examples in the previous
section shows that the exact solutions may not be continuously differentiable. Nevertheless,
as it has been shown, the method converges and perform well. It is quite ubiquitous in
literature to construct approximations for equations whose solutions are non–smooth.

Table 1: Error norms of Example 5.1 for different combinations of the values of Nx, Ny,Nt.

(Nx, Ny, Nt) ∥ε∥∞ condition number CPU time(sec)

(5, 5, 5) 1.7367e− 04 1.0050e+ 03 0.0304
(7, 7, 5) 2.5291e− 05 4.9732e+ 03 0.0463
(7, 7, 7) 2.0069e− 05 5.6195e+ 03 0.0688

(10, 10, 7) 7.9423e− 06 5.1577e+ 04 0.2336
(10, 10, 10) 3.3726e− 06 5.4943e+ 04 0.2863
(15, 15, 10) 3.2808e− 06 2.2740e+ 09 1.8369
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Table 2: Comparison of the numerical and exact solutions at some random points of x, y, t:
Example 5.1 Nx = 10, Ny = 10, Nt = 10

(x, y, t) u(x, y, t) U(x, y, t) abs(u− U)

(0.50, 0.50, 0.10) 0.0181 0.0181 3.0437e− 07
(0.50, 0.90, 0.10) 0.1072 0.1072 6.4668e− 07
(0.90, 0.90, 0.10) 0.5638 0.5638 1.5162e− 07
(0.50, 0.50, 0.50) 0.0224 0.0224 3.0558e− 07
(0.90, 0.50, 0.50) 0.1180 0.1180 4.9251e− 07
(0.50, 0.90, 0.50) 0.1328 0.1328 8.2658e− 07
(0.90, 0.90, 0.50) 0.6984 0.6984 3.1169e− 06
(0.90, 0.50, 0.90) 0.1716 0.1716 1.9308e− 07
(0.50, 0.90, 0.90) 0.1932 0.1932 3.3049e− 07
(0.90, 0.90, 0.90) 1.0158 1.0158 9.3025e− 07

Table 3: Absolute error norms of Example 5.2 for different values of Nx, Ny, Nt and α =
0.7, β = 1.5, γ = 1.6

(Nx, Ny, Nt) ∥ε∥∞ condition number CPU time(sec)

(5, 5, 5) 1.4801e− 04 1.5767e+ 03 0.0248
(7, 7, 5) 6.5902e− 05 4.4287e+ 03 0.0499
(7, 7, 7) 6.2105e− 05 4.7101e+ 03 0.0713

(10, 10, 7) 3.2852e− 05 1.4321e+ 04 0.2672
(10, 10, 10) 3.2941e− 05 1.4905e+ 04 0.3124
(15, 15, 10) 9.0358e− 06 3.8865e+ 08 1.7789
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(a) Numerical solution
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(b) Exact solution

Figure 1: The numerical and exact solutions for Example 5.1 at t = 1.
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Table 4: Error norm values obtained when Example 5.2 is solved with Nx = Ny = Nt = 10
for different values of α, β, γ.

(α, β, γ) ∥ε∥∞ condition number CPU time(sec)

(0.1, 1.1, 1.2) 1.1259e− 05 8.6909e+ 03 0.2882
(0.3, 1.3, 1.4) 2.7852e− 05 9.1981e+ 03 0.2972
(0.5, 1.5, 1.6) 3.3015e− 05 1.3738e+ 04 0.3062
(0.7, 1.7, 1.8) 3.1277e− 05 2.1455e+ 04 0.3032

Table 5: Absolute error norms obtained for Example 5.3 for different values of α, β, γ after
the sixth iteration: Nx = Ny = Nt = 10.

(α, β, γ) ∥ε∥∞ condition number CPU time(sec)

(0.1, 1.1, 1.2) 3.4572e− 04 1.1729e+ 04 1.2437
(0.3, 1.3, 1.4) 1.3217e− 04 9.0201e+ 03 1.2407
(0.5, 1.5, 1.6) 1.2695e− 04 1.2389e+ 04 1.2377
(0.7, 1.7, 1.8) 1.1264e− 04 2.0124e+ 04 1.2277
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(b) t = 1

Figure 2: Numerical solutions of Example 5.2 for different t with Nt = Nx = Ny = 10,
α = 1/2 and β = γ = 3/2.
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Figure 3: Surface plots of the numerical solution and absolute error for different values of t
for Example 5.3 with Nt = Nx = Ny = 15 and α = 9/10 and β = γ = 1.9.

7. Conclusion

In this study, we presented a numerical scheme for two–dimensional space–time fractional
partial differential equations. The method is purely spectral and approximates the dependent
variable and its fractional derivative (both spatial and temporal) using shifted Chebyshev
polynomials and integrated using shifted Chebyshev–Gauss–Lobatto quadrature. In the case
of nonlinear two–dimensional space–time FPDEs, we used quasilinearization to linearize the
equation and then expanded the solution in terms of the shifted Chebyshev polynomials .
The method was described and applied to some FPDEs of the initial–boundary value type.
In the examples considered, we found that the method is accurate, reliable and efficient.
The accuracy was confirmed through an analysis of the magnitude of the error norms. The
accuracy of the method can be attributed to the fact that the approach is purely spectral,
and spectral methods are non–local in nature, they generate an approximate solution over
the entire grid points instead of using neighbouring points. The efficiency is evident in
the computational time required to solve the system of algebraic equations resulting from
the expansion in terms of shifted Chebyshev polynomials. In future, the method may be
extended to a large time domain and irregular spatial domains.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0138.v1

https://doi.org/10.20944/preprints202205.0138.v1


17

References

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with for-
mulas, graphs, and mathematical tables, volume 55. US Government Printing Office,
1948.

[2] CN Angstmann, BI Henry, and AV McGann. A fractional order recovery SIR model
from a stochastic process. Bulletin of Mathematical Biology, 78(3):468–499, 2016.

[3] Eli Barkai, Ralf Metzler, and Joseph Klafter. From continuous time random walks to
the fractional Fokker-Planck equation. Physical Review E, 61(1):132, 2000.

[4] Richard Ernest Bellman and Robert E Kalaba. Quasilinearization and nonlinear
boundary-value problems. Rand Corporation, 1965.

[5] DA Benson, SW Wheatcraft, and MM Meerschaert. Application of a fractional
advection-dispersion equation. Water Resources Research, 36(6):1403–1412, 2000.

[6] AH Bhrawy. A Jacobi–Gauss–Lobatto collocation method for solving generalized
Fitzhugh–Nagumo equation with time-dependent coefficients. Applied Mathematics and
Computation, 222:255–264, 2013.

[7] AH Bhrawy and MA Zaky. A method based on the Jacobi tau approximation for solving
multi-term time–space fractional partial differential equations. Journal of Computational
Physics, 281:876–895, 2015.

[8] Luise Blank. Numerical treatment of differential equations of fractional order. Nonlinear
World, 4:473–492, 1997.

[9] Claudio Canuto, M Yousuff Hussaini, Alfio Quarteroni, and Thomas A Zang. Spectral
methods: Fundamentals in single domains. Springer Science & Business Media, 2007.

[10] Claudio Canuto, M Yousuff Hussaini, Alfio Quarteroni, A Thomas Jr, et al. Spectral
methods in fluid dynamics. Springer Science & Business Media, 2012.

[11] Varsha Daftardar-Gejji and Hossein Jafari. Adomian decomposition: a tool for solving
a system of fractional differential equations. Journal of Mathematical Analysis and
Applications, 301(2):508–518, 2005.

[12] EH Doha, AH Bhrawy, and SS Ezz-Eldien. A Chebyshev spectral method based on op-
erational matrix for initial and boundary value problems of fractional order. Computers
& Mathematics with Applications, 62(5):2364–2373, 2011.

[13] EH Doha, AH Bhrawy, and SS Ezz-Eldien. A new Jacobi operational matrix: An
application for solving fractional differential equations. Applied Mathematical Modelling,
36(10):4931–4943, 2012.

[14] EH Doha, AH Bhrawy, MA Abdelkawy, and RA Van Gorder. Jacobi–Gauss–Lobatto
collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations.
Journal of Computational Physics, 261:244–255, 2014.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0138.v1

https://doi.org/10.20944/preprints202205.0138.v1


18 S. Oloniiju, N. Nkomo, S. Goqo, P. Sibanda

[15] M Enelund and BL Josefson. Time-domain finite element analysis of viscoelastic struc-
tures with fractional derivatives constitutive relations. American Institute of Aeronautics
and Astronatics Journal, 35(10):1630–1637, 1997.

[16] Vincent J Ervin and John Paul Roop. Variational formulation for the stationary frac-
tional advection dispersion equation. Numerical Methods for Partial Differential Equa-
tions: An International Journal, 22(3):558–576, 2006.

[17] MH Heydari, Mohammad Reza Hooshmandasl, and Fakhrodin Mohammadi. Legen-
dre wavelets method for solving fractional partial differential equations with dirichlet
boundary conditions. Applied Mathematics and Computation, 234:267–276, 2014.

[18] MH Heydari, MR Hooshmandasl, and F Mohammadi. Two-dimensional legendre
wavelets for solving time-fractional telegraph equation. Advances in Applied Mathe-
matics and Mechanics, 6(2):247–260, 2014.

[19] Hossein Jafari and Varsha Daftardar-Gejji. Solving a system of nonlinear fractional dif-
ferential equations using adomian decomposition. Journal of Computational and Applied
Mathematics, 196(2):644–651, 2006.

[20] J Klafter, A Blumen, and MF Shlesinger. Stochastic pathway to anomalous diffusion.
Physical Review A, 35(7):3081, 1987.

[21] H Kober. On fractional integrals and derivatives. The Quarterly Journal of Mathematics,
(1):193–211, 1940.

[22] Manoj Kumar and Varsha Daftardar-Gejji. A new family of predictor-corrector methods
for solving fractional differential equations. Applied Mathematics and Computation, 363:
124633, 2019.

[23] AV Letnikov. Theory of differentiation of fractional order. Mathematics S B, 3(1), 1868.

[24] VE Lynch, BA Carreras, D del Castillo-Negrete, KM Ferreira-Mejias, and HR Hicks.
Numerical methods for the solution of partial differential equations of fractional order.
Journal of Computational Physics, 192(2):406–421, 2003.

[25] Pin Lyu and Seakweng Vong. A high-order method with a temporal nonuniform mesh
for a time-fractional benjamin–bona–mahony equation. Journal of Scientific Computing,
80(3):1607–1628, 2019.

[26] F Mainardi, M Raberto, R Gorenflo, and E Scalas. Fractional calculus and continuous-
time finance II: The waiting-time distribution. Physica A: Statistical Mechanics and its
Applications, 287(3-4):468–481, 2000.

[27] Mark M Meerschaert and Charles Tadjeran. Finite difference approximations for two-
sided space-fractional partial differential equations. Applied Numerical Mathematics, 56
(1):80–90, 2006.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0138.v1

https://doi.org/10.20944/preprints202205.0138.v1


19

[28] MM Meerschaert and C Tadjeran. Finite difference approximations for fractional
advection–dispersion flow equations. Journal of Computational and Applied Mathemat-
ics, 172(1):65–77, 2004.

[29] KB Oldham and J Spanier. The Fractional Calculus. Academic Press, New York, 1974.

[30] Shina Oloniiju, Sicelo Goqo, and Precious Sibanda. A Chebyshev spectral method for
heat and mass transfer in MHD nanofluid flow with space fractional constitutive model.
Frontiers in Heat and Mass Transfer, 13, 2019.

[31] Igor Podlubny. Fractional differential equations: an introduction to fractional deriva-
tives, fractional differential equations, to methods of their solution and some of their
applications, volume 198. Elsevier, 1998.

[32] Jincheng Ren, Dongyang Shi, and Seakweng Vong. High accuracy error estimates of a
galerkin finite element method for nonlinear time fractional diffusion equation. Numerical
Methods for Partial Differential Equations, 36(2):284–301, 2020.

[33] Lorenzo Sabatelli, Shane Keating, Jonathan Dudley, and Peter Richmond. Waiting time
distributions in financial markets. The European Physical Journal B-Condensed Matter
and Complex Systems, 27(2):273–275, 2002.

[34] R Schumer, DA Benson, MM Meerschaert, and B Baeumer. Multiscaling fractional
advection-dispersion equations and their solutions. Water Resources Research, 39(1),
2003.

[35] Liancun Zheng and Xinxin Zhang. Modeling and analysis of modern fluid problems.
Academic Press, 2017.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0138.v1

https://doi.org/10.20944/preprints202205.0138.v1

