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Abstract: Two modal decomposition techniques, including proper orthogonal decomposition
(POD) and dynamic mode decomposition (DMD), are used to identify the wake patterns past single
and two crossing cylinders in 60° and 90° arrangements with gap ratio G = 4. The flow is simulated
using direct numerical simulations (DNS) for Reynolds numbers Re = 100. The spatial scale of flow
decreases with increasing modal frequency from the modal analysis. Two main modes are identified
in the wake of the cylinders, namely spatially antisymmetric and symmetric modes. Antisymmetric
and symmetric modes are related to cylinders’ vortex shedding and shedding vortices” shift motion,
respectively, whose frequencies are odd and even multiples of cylinders’ lift force frequency. In
addition, a low-frequency mode concerning the shadowing effect of the downstream cylinder (DC)
in 90° arrangement is found in the wake of the DC centre.
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1. Introduction

Vortex-induced vibration (VIV) of a circular cylinder has always been of interest to
researchers due to its engineering applications (Jauvtis & Williamson 2003; Zhao et al.
2009). In particular, if the self-oscillation frequency of a downstream structure is close to
the vortex shedding frequency from the upstream circular cylinder, the structure will be
destroyed by resonance (Deng et al. 2007; Kato et al. 2012; Nguyen et al. 2012). Therefore,
the relationship between wake morphologies and flow frequencies is worth studying.

The vortex shedding from a single circular cylinder is dependent on the flow direc-
tion (Jauvtis & Williamson 2003; Zhao et al. 2009) and Reynolds number Re. Different ar-
rangements of multiple circular cylinders also affect the morphologies of the wake vorti-
ces. For two circular cylinders, parallel (including tandem, side-by-side and staggered)
and crossing arrangements make the flow past the cylinders more complex (Kato et al.
2012; Nguyen et al. 2012; Sumner 2010; Tong et al. 2015; Zhao & Lu 2018; Zhou & Mahbub
Alam 2016). For instance, if two circular cylinders are perpendicular to each other, i.e. so-
called cruciform arrangement, the morphologies of the gap flow between two cylinders
and vortex shedding are determined by the flow direction, gap-to-diameter ratio (defined
as G) and Reynolds number Re (Zhao & Lu 2018).

Flows around circular cylinders are spatiotemporally coupled results, and it isn't
easy to separate the single-frequency flows from them. Modal decomposition technolo-
gies (Taira et al. 2017), including proper orthogonal decomposition (POD, Lumley 1970)
and dynamic mode decomposition (DMD, Schmid 2010) have been proved to be powerful
methods for solving this problem and have been widely used to analyse single cylinder
wake obtained via particle image velocimetry (PIV) experiments (Sakai et al. 2015; Tu et
al. 2014; Wang et al. 2014) and numerical simulations (Bagheri 2013; Bai et al. 2019; Chen et
al. 2012; Naderi et al. 2019; Scherl et al. 2020; Zhao et al. 2019).
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For multiple cylinders in different arrangements, Zhang et al. (2014) conducted a 45
comprehensive comparison on identifying coherent structures in wake flow behind two 46
side-by-side circular cylinders of different diameters obtained by PIV. Sakai ef al. (2014) 47
employed POD and DMD to analyse the experimental and numerical flow around two 48
circular cylinders in tandem and side-by-side arrangements. Sirisup & Tomkratoke (2009) 49
performed POD on the flow around two staggered circular cylinders obtained by using 50
direct numerical simulations (DNS). Wang et al. (2020) analysed the flow around two 51
square cylinders in tandem arrangement with different G spacing ratios based on POD 52
and DMD. Noack et al. (2016) proposed a variant DMD algorithm, called recursive DMD 53
(RDMD), to analyse the wake past three rotating cylinders in staggered arrangements cal- 54
culated by DNS, and the modal results are compared with that obtained by original POD 55
and DMD methods. 56

The above investigations mainly employed POD and DMD in parallel cylinder flows, 57
but little literature has focused on applying these two modal analysis methods in crossing 58
cylinder flows. In addition, little research has been done to establish a link between POD 59
and DMD modes and cylindrical lift and drag coefficients through frequency. Therefore, 60
the main objective of our study is to explore the relationship between flow morphologies 61
and frequencies. To this end, we employ POD and DMD to analyse the wake past a single 62
circular cylinder and two crossing circular cylinders with the crossing angles f = 60° and 63
90° and G =4 (see Figure 1). This study can provide a reference for VIV in standard three- 64
dimensional cylinder configurations. 65

66

Flow\ F"“’V\ \ﬂ=90°

Figure 1 Sketch of single and two crossing circular cylinders configurations.

The paper is organised as follows. Section 2 presents the numerical simulation meth- 67
odology, and Section 3 studies the cylindrical lift force coefficient, and spatial and spectral 68
features of the wake at Re = 100. The modal decomposition results of the wake are pre- 69
sented in Section 4. Finally, the key results are summarised in Section 5. 70

2. Overview of numerical simulation 71

The governing equations for simulating the incompressible viscous fluid flow are the 72

three-dimensional Navier-Stokes (NS) equations: 73
aui -0 1
axi e ( )
ou; ou; odp 1 ou;

— Y —=—t— 2

or Y dxj 0x; Redx;ox;’ @
where xi (x1 = x, x2 =y, x3 = z) represents the Cartesian coordinates, ui is the fluid ve- 74
locity in the xi direction (u1=Ux, u2=Uy, us=Ux:), t is time and p is pressure. The Reynolds 75
number Re is defined as Re = U-D/v, where v is the kinematic viscosity of the fluid. In this 76
study, the fluid velocity is U~ =1 m/s in the x direction, the cylinder diameteris D=1m, 77



https://doi.org/10.20944/preprints202205.0137.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022 d 0.20944/preprints202205.0137

3 of 26

the fluid kinematic viscosity is chosen as v = 0.01 m?/s, and the Reynolds number is Re =
100. All cases are summarized in Table 1.

Table 1. Cases in the study.

Case Objective
Single cylinder For spectral analysis
p=60° G=4, Re=100 For spectral analysis
$=90° G=4, Re=100 For spectral analysis
B=90° G=0.5Re=>500 For comparison only

The computational domain is a rectangular box with a length of 42D and a width and
height of 40D. The length of the cylinders spans the entire computational domain. The
non-dimensional gap between the two crossing cylinders is defined as G = S/D, where S
is the spacing between two cylinders (see Figure 2). The upstream cylinder (UC) is a trans-
versal cylinder with the centre of (0, 0 ,0) for the studied three configurations. For the
crossing configurations, the centre of the downstream cylinder (DC) is (5, 0 ,0), and the
crossing angle f is defined as DC’s inclination angle concerning the line of (x/D, z/D) = (5,
0).

Figure 2 Computational mesh for the two crossing circular cylinders in 60° (@) and 90° (b) ar-

rangements with G = 4.

The effect of the mesh density on the numerical results is investigated by performing
the simulations on three meshes of different densities for two cylinders in cruciform ar-
rangement (8 = 90°) with G = 0.5 at Re = 500. The computational domain is discretised by
the snappyHexMesh mesh generator. Figure 2 shows the computational mesh near the
cylinders. The mesh information is listed in Table 2, and the comparison of mean drag
coefficient Cp within IL/D| < 3 (L is cylinder length) and time-averaged streamwise ve-
locity Ux along the x axis from x/D = 2 to 12 between coarse, medium and fine meshes are
present in Figure 3.

Table 2. Coarse, medium and fine mesh used for mesh convergence analysis.

Mesh number Thickness of first layer mesh Number of boundary layer nodes

Coarse

9 million

0.004D 48

78
79

80

81

92
93
94
95
96
97
98
99
100

101

102
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Medium 14 million 0.002D 96
Fine 22 million 0.001D 192

103

The sectional drag coefficient is defined as Cp = 2Fp/(pDUZ), where Fpis the sectional 104
drag force calculated by integrating the pressure and shear stress along the section cir- 105
cumference is parallel to the inflow direction. It is clear from Figure 3 (a) that the Cp of 106
UC calculated by the medium mesh and that of DC calculated by the fine mesh is closer 107
to the results obtained from Mesh 1 in Zhao & Lu (2018). For the wake region, the Ux 108
obtained from the medium mesh is similar to that of the fine mesh (Figure 3b). 109

Although the two largest meshes show similar convergence, we still pick up the most 110
density one as the target mesh to ensure accuracy. Finally, the mesh numbers are 18 mil- 111
lion, 22 million and 22 million for the cases of single cylinder, two crossing cylinders in 112
60° and 90° arrangements with G = 4, respectively. The y* value of each case is lower than 113

1. Based on the DNS, the time step of the transient simulation is set to d¢ = 0.005s. 114
115
(@) 2 512
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Figure 3 Comparison of mean drag coefficient («) and time-averaged streamwise velocity along

the x axis (b) between the coarse, medium and fine meshes.

3. Numerical results 116

The numerical results in this section focus on the lift coefficients, wake morphologies 117
and their spectra. 118

3.1. Lift force coefficient 119

Figure 4 shows the contours of sectional lift force coefficient Cr = 2F/(pDUZ) along 120
the cylinders, where Fris the sectional lift force and its direction is perpendicular to the 121
inflow direction. For the single cylinder, the lift force oscillates with time, and there isno 122
time shift of the lift force along the spanwise direction of the cylinder (Figure 4a). While 123
for the two crossing cylinders, the lift force at the UC centre is always ahead of that at two 124
sides of the cylinders, and the amplitude of the lift force at the UC centre is higher than 125
that at two sides of the cylinders (see Figure 40, c). This phenomenon also occurs in the lift =~ 126
force of DC in 60° arrangement and the amplitude difference is more pronounced. How- 127
ever, for the DC in 90° arrangement, the lift force at the DC centre is almost zero under 128
the influence of UC. 129

A fast Fourier transform (FFT) is further performed on the sectional lift force coeffi- 130
cient to calculate lift force's power spectral density (PSD), and the contours of the Strouhal 131
number St = f.D/U- determined by the frequency of lift force fi is shown in Figure 5. Itis 132
clear from Figure 5 that the lift force frequency is Stz = 0.16 and is not related to the incli- 133
nation angle of DC. For the DC in 60° arrangement, there is a second high-frequency of 134
Str=0.32 at the cylinder centre. 135

136
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Figure 4 Contours of sectional lift coefficient along the single cylinder (a), and UC (b, ¢) and DC

(d, e) for two crossing cylinders in 60° (middle) and 90° (right) arrangements.

137

I

0 0.06 0.12 018 0.24 0.3

(w) Single cylinder () p=60°, UC () f=90°, UC
20 20 20
15 15 15
1} 10 10
a 5 5 5
I ' "
-5 -5 -5
=10 -10 -10
-15 -15 -15
=20 =20 =20

0 0.1 0.z 0.3 0.4 s o0 0 [ 0.3 0.4 05 0 0.1 0.2 0.3 0.4 [
£V

(d) f=60°,DC (e) f=90°,DC
0 20
15 15
10 10
a 3 35
;i 1] 0
-5 -5
10 -10
15 15
=20 =20

0 ol 0.2 0.3 0.4 05 0 0.1 0.2 03 0.4 0.5
[0/ FDU

Figure 5 Contours of PSD calculated by sectional lift coefficient along the single cylinder (a),

and UC (b, c) and DC (d, e) in 60° (middle) and 90° (right) arrangements.
138

3.2. Flow field 139

Since the lift force is related to the vortex shedding from the cylinders (Tong et al. 140
2015; Zhao & Lu 2018), the wake morphologies of the single and two crossing cylinders 141
are presented by the A2 iso-surfaces (Jeong & Hussain 1995) in Figure 6. A2 is the second 142
eigenvalue of the tensor W2+ 2, where ¥ and (2 are the symmetric and the anti-symmet- 143
ric parts of the velocity-gradient tensor, respectively. 144

From a global perspective, the wake vortices shedding from the single cylinder are 145
parallel to the cylinder, and this wake morphology is called parallel (P) mode (see Figure 146
6a). For the crossing cylinders, the vortex shedding near the centre of each cylinder lags 147
the vortex shedding from two sides of the centre of the cylinder, forming inclined vortex 148
morphology, i.e. Kmode (see Figure 6b, c). 149

The vorticity magnitude lw! = | VxU| = (wi+wj+w?)Y? contours on the xz and xy 150
planes are presented in Figure 7 and Figure 8, respectively. The vorticity magnitude is 151
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calculated to consider the curl of velocity in the x, y, z directions. For the gap flow, the gap 152
ratio G is sufficiently large in this study and the vortex shedding is also generated in the 153
gap between two crossing cylinders (Figure 7b, ¢ and Figure 8). The alternating vortex 154
shedding can be found in the wake of DC in 60° arrangement, but the wake vortices of DC 155
centre in 90° arrangement remain symmetric under the influence of UC wake and DC’s 156
blockage effect (Zhao & Lu 2018). 157

158
(a) Single cylinder

(B) = 60°, =

Figure 6 Flow around the single cylinder (1) and two crossing cylinders in 60° (b) and 90° (c)

arrangements. Iso-surfaces A2=-0.2.

0 0.2 0.4 0.6 0.8 1
(a) Single cylinder

(b) § = 60°

Figure 7 Contours of vorticity magnitude on the xz plane for the flow around the single cylinder
(a) and two crossing cylinders in 60° (b) and 90° (¢) arrangements. The vorticity is normalised
by U-/D.

159
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0 5 10 15 20 0 H 10 15 20

Figure 8 Contours of vorticity magnitude on the xy plane for the flow around the two

crossing cylinders in 60° (b) and 90° (c) arrangements. The vorticity is normalised by U-/D.

A series of probes spaced at 1D interval are inserted in the wake field to record the
wake velocity, as shown by lines 1 (y/D =0, z/D =0), 2 (x/D =3, z/D =0), 3 (x/D =8, z/D =
0), 4 (x/D =8, z/y = tan60° for p = 60° case and x/D =8, y/D = 0 for p = 90° case) in Figure 6.
Based on the wake velocity, the kinetic energy KE = 0.5(u§+u§+u§) in the wake is obtained
and the PSD of KE is calculated through FFT. Figure 9 presents the energy evolution in
the wake of the single cylinder along the x axis from x/D =1 to 30, and Figure 10 shows
the flow frequencies along the spanwise direction of each cylinder at different streamwise
positions.

It is clear from Figure 9 that there are two distinct spectral peaks of Stxe= fkeD/U- =
0.32 and 0.64, which are two and four times of lift force frequency St. = 0.16 in Figure 5 (a),
respectively. The free shear layers generate the shedding vortices on left and right bound-
aries of a cylinder. Since the vortex shedding on one side corresponds to the peak lift force
and the next vortex shedding on the other side corresponds to the valley lift force, there
are two vortex shedding phenomena in one lift force period, i.e. Stxke = 0.32 =25t1. A com-
plete vortex shedding period T is approximately 6.25s.

1

0.05

0.8} 0.04

0.03

2061 0.02

Q.:, 0.01

S04 0
0.2

0 , ; i " ;
5 10 15 20 25 30

x/D

Figure 9 Contour of PSD calculated by the KE along line 1 in the wake of the single cylinder.

Similarly, multiple spectral peaks can also be found in the wake of two crossing cyl-
inders, i.e. Stke = 0.16, 0.32, 0.48 and 0.64, where Stxe = 0.16 and 0.48 are significant only
near the crossing point. However, the spectra and flow field cannot resolve the flow mor-
phologies corresponding to the above characteristic frequencies. Therefore, modal decom-
position methods are employ to solve this problem.
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Figure 10 Contour of PSD calculated by the KE along lines 2, 3 and 4 in the wake of the two

crossing cylinders in 60° (a, b, ¢) and 90° (d, e, f) arrangements.

4. Modal analysis 183
4.1. Theory 184

POD (Lumley 1970) and DMD (Schmid 2010) are the most useful modal analysis 185
methods to identify the flow characteristics through dimensionality reduction decompo- 186
sition. The fundamental theories of POD and DMD are briefly reviewed, while the details 187
can be found in the cited references. 188

4.1.1. POD 189

POD is essentially an EVD method of seeking the optimal basis functions that best 190
represent the given flow field data by solving the spatial covariance matrix R = XXT of the 191
snapshot matrix X, and is equivalent to dealing with the SVD of the snapshot matrix Xin 192
the sense of least squares (Wall et al. 2002; Kutz ef al. 2016): 193

X=UzV", (4.1)

where U = [u1, u2, ..., um] EC™m (mKn) is the left singular (POD mode) matrix, Z = 194
diag(o1, 02, ... , om) ER"™m is the singular value (energy) matrix, and V = [v1, vz, ..., 195
vm] € Cmm is the right singular matrix. The time coefficient ai(t) (i=1, 2, ..., m) of the each 196
POD mode ui can be obtained by multiplying its singular values oi with the right singular 197
vectors vi: 198

ai(t) = o', (42)

Each POD mode i is ranked according to its energy o;, namely each POD mode uiis 199
ordered by the degree to which it captures the spatial features of the flow field. The rela- 200
tive energy of each mode and the cumulative energy of the first ith modes are defined as 201

0; i

 Ef = E;. (4.3a, b)

Ei=
Z]m=1(7j k=1

4.1.2. DMD 202

The theory of DMD proposed by Schmid (2010) assumed that there is a time-invari- 203
ant linear operator A between adjacent snapshots, which can be expressed in a discrete- 204
time dynamic system as 205

X' = AX, (4.4)
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where X = [x0, x1, ..., xw1] ER™™ and X" = [x1, x2, ... , xn] ER™" are snapshot matrices 206

with snapshot vectors xi(i=0, 1, ... , m) sampled at a constant time interval Ats = tii-ti(i= 207
0,1, ..., m-1). The best-fit matrix A is given by 208
A=X'XY, (4.5)

where A€ C»", + denotes the Moore-Penrose pseudoinverse, which is equivalent to 209
seeking the best-fit solution of the matrix A in a least-squares sense. 210

Unlike the POD, the DMD assumes that the modes and dynamic information of the 211
flow field are contained in the eigenvalues and eigenvectors of operator A, respectively. 212
Since the matrix A (nxn) is generally too large, unaffordable computational resources 213
would be required if the EVD is performed directly on matrix A. Therefore, the effective 214
DMD algorithm proposed by Tu et al. (2013) is usually employed to reduce the computa- 215
tional cost. Then the spatial information (eigenvector) on each DMD mode ¢: and its ei- 216
genvalue Ai can be obtained. The growth/decay rate gi and frequency fiof each DMD mode 217

can then be denoted based on the eigenvalue Ai as 218
gi=In(Re(Ai))/Ats, (4.6)
fi=In(Re(Ai))/(2mtAtLs). 4.7)

The amplitude (energy) ai can be calculated based on the initial snapshot xo as shown 219

in Kutz et al. (2016): 220
a=[a1, az, ..., an]T = D" x, (4.8)

where o € C is amplitude vector and @ = [y, ¢o, ..., pu] EC? is DMD mode ma- 221
trix. Each original snapshot xj (j=0, 1, ..., m) can be approximately reconstructed by line- 222

arly superimposing r modes as 223
r
v=5,= ),  Pat), (4.9)
i=
where a;(t)) is the time coefficient of DMD mode ¢ at j moment. 224
4.2. Raw data 225

In this paper, the vorticity magnitude is selected for modal decomposition, consistent 226
with Chen et al. (2012), Sakai et al. 2014, Tu et al. 2014, Kutz et al. 2016, Noack et al. 2016 227
and Scherl et al. 2020. As Rowley & Dawson (2017) reported, subtracting the mean flow 228
from the snapshot datasets makes the flow field more natural but reduces the DMD to the 229
temporal discrete Fourier transform (DFT). The removal of the mean flow will result in 230
each DMD mode being distributed at a same frequency interval, undoubtedly disturbing 231
the frequencies of non-periodic modes. Therefore, the mean flow is retained in the raw 232
datasets used for modal decomposition. 233

As seen from Figure 4, the lift force remains stable from 200s onwards, thus vorticity 234
data in the last 100s (from 200 to 300s, around sixteen vortex shedding periods) are chosen 235
for modal decomposition. The snapshot data is output at the time interval of At =2dt = 236
0.01s, corresponding to the maximum sampling frequency of fm = 1/At = 100 Hz. 237

4.3. Convergence analysis 238

The modal convergence is dependent on the sampling time interval Ats and the cov- 239
erage period Ts of fully developed flow field data. The sampling time interval must be 240
sufficiently small to capture high-frequency flow features, and the coverage period must 241
be enough to capture long-period flow features. 242

According to the Nyquist-Shannon criterion (Desoer & Wang 1980), the sampling 243
frequency fs should be at least two times flow frequency f to capture flow features in the 244
range of O to f, i.e. 245


https://doi.org/10.20944/preprints202205.0137.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022

10 of 26

f=1/AL > 2f (4.10)

In addition, DMD is not sensitive to whether the dataset covers integral multiples of 246
periods or not (Chen et al. 2012), but POD may generate spurious modes when the dataset 247
does not cover integer number periods. 248

The modal convergence is determined by the root mean square error (RMSE) be- 249
tween the snapshot data and DMD reconstruction result at time m + 1, i.e. the Lanorm of 250

Xm+1 =Y, 14" 251
~ ~ 2
g - §, 1 2= \/Z?=1(xi,m+1_yi,m+1) , (4.11)
DMD can predict the next time flow field with high accuracy if all significant modes 252
are contained. 253

In this study, different sampling time intervals Ats = 3, 4, 5At = 0.03, 0.04, 0.05s (cap- 254
turing the modes in the frequency range of 0 < St = fD/U-~ < 33.3, 12.5, 10, respectively) and = 255
coverage periods Ts = 1, 2, 3, 4, 5T = 6.25, 12.5, 18.75, 25, 31.25s (covering 1 to 5 vortex 256
shedding periods, respectively) are set to investigate the effect of sampling time interval 257
and coverage period on modal convergence. Figure 11 illustrates the RMSE between the 258
snapshot data and the DMD reconstruction result for the single cylinder case. The recon- 259
struction error decreases with increasing coverage periods and the decreasing sampling 260
interval. For Ats=3At, the error reaches a plateau for Ts=4T, after which it does not change 261
significantly. Hence we consider the snapshot number m = 1042 (Ats = 0.03s, Ts=5.0016s) 262
for this study. 263

264

RMSE
S = N oW oA 0o =

T =iT

s

Figure 11 RMSE of the DMD reconstruction as a function of sampling interval with coverage
period.
265

4.2. Modal energy and spectrum statistics 266

POD provides each mode's energy and time coefficient (see Eq. (4.2)), but does not 267
directly provide the spectral information, which can be obtained by calculating the time 268
coefficient’s PSD. In contrast, the DMD provides direct access to each mode's eigenvalue 269
A, frequency fi and amplitude ai (see Egs. (4.8) and (4.9)). Statistics on these critical param- 270
eters are given as follow. 271

4.2.1. POD modes 272

Figure 12 illustrates the relative energy of the first 25 POD modes and their cumula- 273
tive energy. Overall, the energy of each mode decreases with increasing modal order. For 274
the flow around the single and two crossing cylinders in 60° and 90° arrangements, the 275
first mode has 84.55, 81.82 and 81.29% of total energy, respectively. In addition, the first 276
3, 3, 5 modes are needed to reach 90% of total energy, and the first 31, 29, 71 modes are 277
needed to reach 99% of total energy, respectively. Statistics on modal energy show that 278
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the presence or absence of DC and DC’s arrangement significantly affects the convergence 279

of the modal energy. 280
281
100 5 T T T = ——— 100
gt * PODHEEeS
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Figure 12 Relative and cumulative energy of POD modes.
282
The spectral peak distribution of the first 25 POD modes are further demonstrated in 283
Figure 13, where the spectral peak value of each mode is normalised by its maximum 284
value. Although most POD modes appear as multi-frequency coupling forms, the modal 285
frequency peaks (black pixels) follow a linear function with modal order, and the fre- 286
quency peaks of adjacent modes are the same in pairs. However, for the two crossing cyl- 287
inders in 90° arrangement case, the linear relationship between modal order and fre- 288
quency peaks is not as pronounced as the other two cases. For the studied three cases, the 289

spectral peaks of these modes are approximately integer multiples of St = 0.16. 290
291
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Figure 13 Spectral peak distribution of POD modes for the cases of the single cylinder (a) and

two crossing cylinders in 60° (b) and 90° (c) arrangements.
292

4.2.2. DMD modes 293

To avoid the interference of transient or spurious mode with a high amplitude buta 294
high decay rate, each DMD mode is sorted according to its dynamic factor, which is de- 295
fined as di = lail x| Ail1. The dynamic factor can help identify the modes that make a 29
prominent contribution to wake dynamics, similar to the sparsity-promoting DMD (SP 297
DMD, Jovanovié et al. 2014). Since the dynamic factor magnitude does not affect the anal- 298
ysis, the dynamic factor of each mode is normalised by the maximum dynamic factor in = 299
each case for the sake of consistency. The statistics of the modal frequency concerning the 300
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normalised dynamic factor are shown in Figure 14, where the zero frequency modes are 301
not considered and the first 15 modes are colored in red. 302

The spectra of DMD modes demonstrate that the modal contribution to the wake 303
dynamics decreases with increasing modal frequency, and that the contribution of modes 304
with St>1 is negligible. Similar to the POD modes’ spectra in Figure 13, the frequencies of 305
the crucial DMD mode are integer multiples of St = 0.16. However, more than one DMD 306
mode exists around integer multiples of St = 0.16, especially for two crossing cylinder 307

cases. 308
309
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Figure 14 Spectral distribution of DMD modes for the cases of the single cylinder (a) and two
crossing cylinders in 60° (b) and 90° (c) arrangements.

310

4.3. Modal results 311

This section will focus on the relationship between modal spatial patterns and fre- 312
quencies. Note that the vorticity magnitude in the three-dimensional flow field is the 313
quantity being analysed in this study, and only the spatial results on the y=0and z=0 314
slices are shown below. In addition, since the mean flow modes with zero frequency pre- 315
sent only a mean vorticity distribution but do not contribute to the flow's turbulence effect, 316

these modes are not described in detail in the following section. 317
318
4.3.1. Single cylinder 319

The spatial patterns, time coefficients and PSDs of some important POD modes for 320
the flow around the single cylinder are shown in Figure 15-Figure 17. Since adjacent POD 321
modes have the same frequency peak (Figure 13), and their spatial patterns and time in- 322
formation are similar (not shown for conciseness), the first 18 POD modes are presented 323
at intervals. 324

It is clear from Figure 17 that the 2nd, 4th, 6th, 8th, 10th, 12th, 14th POD modes have 325
a relatively prominent spectral peak, corresponding to St = 0.16, 0.32, 0.48, 0.64, 0.8, 0.96, 326
1.12, respectively. For the 16th and 17th modes, there are substantial fluctuations in their 327
time coefficients (Figure 16k, i) and these two modes have multiple spectral peaks (Figure 328
17 h, i). 329

The combination of Figure 15 and Figure 17 shows that spatial patterns of the modes 330
with a spectral peak of odd multiples of St=0.16 (St=ix0.16,i=1, 3, 5, 7) are antisymmetric 331
in space and those with a spectral peak of even multiples of St = 0.16 (St =1x0.16,i=2,4, 332
6) are spatially symmetric. 333

Because the vortex shedding frequency calculated by lift coefficient is Stz = 0.16 (see 334
Figure 5a), the antisymmetric mode with a spectral peak of St =0.16 is related to the vortex 335
shedding from the cylinder. Similar to the decomposition results of rotating flows in 336
Magionesi et al. (2018), the antisymmetric modes with a higher frequency peak (St =0.48, 337
0.8, 1.12) differ only on spatial scale with respect to the mode with a low-frequency peak 338
of St =0.16. These antisymmetric patterns with no flow along the central axis of (y/D, z/D) 339
= (0, 0) explain the absence of the St = 0.16, 0.48 signals in the KE spectrum of Figure 9. 340
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The symmetric patterns are associated with the shift motion of shedding vortices 341
during downstream evolution, and their flow signals are monitored in the KE spectrum 342
of Figure 9. Similar to antisymmetric modes, the spatial scale of symmetry modes de- 343
creases with increasing frequency. 344

Although the 16th and 17th modes also represent the shedding vortices’ shift motion 345
and vortex shedding phenomena, respectively, their flow patterns are irregular in both 346
space (Figure 15k, i) and time (Figure 16k, i) and, and they have multi-frequency charac- 347
teristics (Figure 174, 7). 348

349
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Figure 15 Contours of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), 17th
(i) POD modes on the xz plane for the flow around the single cylinder.
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Figure 16 Time coefficients of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th

(h), 17th (i) POD modes for the flow around the single cylinder.
351
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Figure 17 PSDs of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), 17th (i)

POD modes for the flow around the single cylinder.

352
DMD modes are sorted according to their corresponding dynamic factors (see Figure 353
14a), and Figure 18 and Figure 19 show the first 9 DMD modes and their corresponding 354
time coefficients, respectively. Unlike POD modes, DMD modes do not fluctuate in time, 355
and their time coefficients increase or decrease exponentially (Eq. (4.6)) or remain constant 356
over time (see Figure 19). 357
358
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Figure 18 Contours of the St = 0.1647 (a), 0.3295 (b), 0.1641 (c), 0.3282 (d), 0.4942 (¢), 0.4924 (f),
0.6591 (g), 0.6567 (h), 0.8238 (i) DMD modes on the xz plane for the flow around the single

cylinder.
359

Two DMD modes with close frequencies occur in pairs around St = 0.165, 0.33, 0.49, 360
0.66 (i.e. St = 0.1647 and 0.1641, 0.3295 and 0.3282, 0.4942 and 0.4924, 0.6591 and 0.6567), 361
and the spatial characteristics between the two modes are similar. Considering the three- 362
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dimensional numerical simulation results, when a cylinder is long, there is a small fre- 363
quency difference between the vortex shedding from two ends of the cylinder. Because 364
DMD is sensitive in identifying flow phenomena with a single-frequency characteristic, 365
similar DMD modes emerge in pairs in the three-dimensional flow around the single cyl- 366
inder in this study, while this phenomenon does not occur in the two-dimensional flow 367

case (Kutz et al. 2016). 368
The spatial patterns of DMD modes are consistent with those of POD modes, and 369
higher frequency DMD modes are no longer shown here. 370
371
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Figure 19 Time coefficients of the St = 0.1647 (a), 0.3295 (b), 0.1641 (c), 0.3282 (d), 0.4942 (e),
0.4924 (f), 0.6591 (g), 0.6567 (h), 0.8238 (i) DMD modes for the flow around the single cylinder.
372

4.3.2. Two crossing cylinders in 60° arrangement 373

For the two crossing cylinder cases, in addition to the modal contours on the xz plane, 374
the contours of modes on the xy plane are also presented to show the global wake patterns 375
of UC. The first 18 POD modes for the case of two crossing cylinders in 60° arrangement 376
are shown at intervals in Figure 20-Figure 23. 377

For the flow around the UC, it can be seen from the 2nd, 4th, 6th, 8th, 10th, 12th, 18th 378
POD modes in Figure 20 that the modal patterns in the range of 0.5<x/D<4.5 are the same 379
as that of the corresponding modes in the single cylinder case (Figure 15). When the shed- 380
ding vortices from UC centre encounter the DC, these modes’ symmetry and anti-sym- 381
metry remain unchanged (see Figure 20 and Figure 21). Furthermore, because the cross 382
section of the DC arranged at 60° on the xz plane is an ellipse, diffraction of the flow cause 383
the DC wake to expand in the z direction (Figure 20). 384

As can be seen from Figure 20(a) and Figure 21(a), for the mode with a spectral peak 385
of St =0.16, its pattern is always antisymmetric on both xz and xy planes, corresponding 386
to the unchanged lift force frequency along the spanwise direction of UC and DC (Figure 387
5b, d). As for the KE spectra in Figure 10(b, c), the spectral peaks of St = 0.16 and 0.48 388
around the crossing point of lines 3 are caused by the antisymmetric flow patterns from 389
DC centre, and those of lines 4 are caused by the antisymmetric patterns from UC centre. 390
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Figure 20 Contours of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), 18th

(i) POD modes on the xz plane for the flow around the two crossing cylinders in 60°

arrangement.
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Figure 21 Contours of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (), 12th (f), 14th (), 16th (h),
18th (i) POD modes on the xy plane for the flow around the two crossing cylinders in 60°
arrangement.
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Figure 22 Time coefficients of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (¢), 12th (f), 14th (), 16th

(h), 18th (7) POD modes for the flow around the two crossing cylinders in 60° arrangement.
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Figure 23 PSDs of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), 18th (i)

POD modes for the flow around the two crossing cylinders in 60° arrangement.

The spatial and temporal results of DMD modes are shown in Figure 24-Figure 26,
where the spatial patterns of DMD modes are similar to those of POD modes but DMD
modes have a single-frequency characteristic. Interestingly, three similar DMD modes ap-
pear around St = 0.32, and their frequencies are St = 0.3204, 0.3258, 0.3227 (see Figure 24b,
f, h and Figure 250, f, h). In addition to the frequency difference between the vortex shed-
ding from two ends of the cylinder explained above, the difference in vortex shedding
frequency between UC and DC is responsible for the appearance of more than two similar

DMD modes.
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Figure 24 Contours of the St = 0.1602 (a), 0.3204 (b), 0.4806 (c), 0.1628 (d), 0.6408 (¢), 0.3258 (f),
0.8010 (g), 0.3227 (h), 0.9613 (i) DMD modes on the xz plane for the flow around the two crossing

cylinders in 60° arrangement.
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Figure 25 Contours of the St = 0.1602 (a), 0.3204 (b), 0.4806 (c), 0.1628 (d), 0.6408 (e), 0.3258 (f),
0.8010 (g), 0.3227 (h), 0.9613 (i) DMD modes on the xy plane for the flow around the two
crossing cylinders in 60° arrangement.

407


https://doi.org/10.20944/preprints202205.0137.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022 d0i:10.20944/preprints202205.0137.v1

19 of 26

408
409
(a) St=0.1602 (b) St=0.3204 (¢) St = 0.4806
i 300 100
400 200
200 100 0
=X u :
200 -100 0
-400 200
-600 -300 =100
200 205 210 215 220 225 230 200 205 210 215 220 225 230 200 205 210 215 220 225 230
(d) St=0.1628 (e) St = 0.6408 (f) St=10.3258
150 i
100 o 50
50 20
50 =20
-100 B -50
-150 o
200 205 210 215 220 225 230 200 205 210 215 220 225 230 200 205 210 215 220 225 230
(¢) St=0.8010 (h) St=0.3227 (i) St=10.9613
60
40 “ "
20 " 5
§ 0 0 0
20 i 10
40 20
40

-60 :
200 205 210 215 220 225 230 200 205 210 215 220 225 230 200 205 210 215 220 225 230
t t t

Figure 26 Time coefficients of the St = 0.1602 (a), 0.3204 (b), 0.4806 (c), 0.1628 (d), 0.6408 (e),
0.3258 (f), 0.8010 (g), 0.3227 (h), 0.9613 (i) DMD modes for the flow around the two crossing
cylinders in 60° arrangement.

410

4.3.3. Two crossing cylinders in 90° arrangement 411

The first 18 POD modes in the two crossing cylinders in 90° arrangement case are 412
shown at intervals in Figure 27-Figure 30. The POD modes’ multi-frequency couplings are 413
more severe than that of the other two cases (Figure 30). Enhanced multi-frequency cou- 414
pling and slow energy convergence (Figure 12) are caused by the blockage of DC on the 415
shedding vortices from UC and the resulting vortex breakdown. In other words, when 416
encountering DC in 90° arrangement, large-scale wake vortices from UC centre break 417
down into numerous small-scale vortices, which is not conducive for POD to decompose 418
the flow field. 419
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Figure 27 Contours of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), 18th
(i) POD modes on the xz plane for the flow around the two crossing cylinders in 90°
arrangement.
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Figure 28 Contours of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (¢), 12th (f), 14th (), 16th (), 18th

(i) POD modes on the xy plane for the flow around the two crossing cylinders in 90°

arrangement.
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Figure 29 Time coefficients of the 2nd (a), 4th (), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th

(h), 18th (7) POD modes for the flow around the two crossing cylinders in 90° arrangement.
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Figure 30 PSDs of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (), 12th (f), 14th (g), 16th (h), 18th (i)
POD modes for the flow around the two crossing cylinders in 90° arrangement.
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Figure 31 Contours of the St = 0.1600 (a), 0.1540 (b), 0.3199 (c), 0.3101 (d), 0.4798 (e), 0.4652 (f),
0.6393 (g), 0.0148 (h), 0.6198 (i) DMD modes on the xz plane for the flow around the two crossing

cylinders in 90° arrangement.

Figure 31-Figure 33 show the first 9 DMD modes of flow around two cylinders in 90°
arrangement. Compared with POD, DMD is a practical tool in the severe destabilisation
case due to its single-frequency characteristic. For the flow around the crossing point, the
flow patterns of symmetric modes are distinctive on both xy and xz planes, e.g. St =0.3101
DMD mode (see Figure 31d and Figure 32d). But for the antisymmetric modes, the distinc-
tive flow patterns of the wake vortices from UC and DC appear on different planes. For
instance, for the St = 0.1600 DMD mode, the antisymmetric flow pattern of UC wake is
significant on the xz plane (see Figure 27a), but that of DC wake is significant on the xy
plane (see Figure 28a).
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Figure 32 Contours of the St = 0.1600 (a), 0.1540 (), 0.3199 (c), 0.3101 (d), 0.4798 (e), 0.4652 (f),
0.6393 (g), 0.0148 (h), 0.6198 (i) DMD modes on the xy plane for the flow around the two

crossing cylinders in 90° arrangement.
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Figure 33 Time coefficients of the St = 0.1600 (a), 0.1540 (b), 0.3199 (c), 0.3101 (d), 0.4798 (e),
0.4652 (f), 0.6393 (), 0.0148 (h), 0.6198 (i) DMD modes for the flow around the two crossing
cylinders in 90° arrangement.
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Although UC wake’s induction and DC’s blockage effect (Zhao & Lu 2018) cause the 438
flow around DC centre to move downstream along approximately |L/D| =1 (Figure 8c), 439
the antisymmetric vortex shedding modes and symmetric shift motion modes still exist. 440

For the antisymmetric mode with St =0.1600 (Figure 32a), the shedding vortices from 441
DC centre become narrower in the y direction due to UC wake’s interference and DC’s 442
blockage effect. For the symmetric mode with 5t =0.3199 (Figure 31c and Figure 32c), sym- 443
metric flow patterns are not found on the central axis (y/D =0, z/D = 0) in the range of x/D 444
=5.5-9 due to the blockage of DC. In addition, there is a low-frequency flow patternin the 445
wake of DC centre (see Figure 31/ and Figure 32h). The low-frequency mode is related to 446

the low-speed flow under the shadowing effect of DC. 447
5. Summary 448

This study employs modal decomposition techniques, including POD and DMD, to 449
investigate the wake patterns past single and two crossing cylinder configurations at Re= 450
100. The two crossing cylinders are arranged at 60° and 90° with a gap ratio G = 4. The 451
numerical simulation is conducted using DNS. 452

We foucus on the effect of DC’s arrangement on the wake patterns around the cross- 453
ing point. For the DC in 60 arrangement, the shedding vortices from UC centre undergo 454
diffraction after passing through the DC. However, for the DC in 90 arrangement, due to 455
the DC’s blockage effect, the wake vortices from UC centre break down when encounter- 456
ing the DC. 457

POD and DMD have their own advantages. For the stable flow, i.e. flow around the 458
single and two crossing cylinders in 60° arrangement, POD can successfully extract the 459
modes that contribute most to the wake dynamics, and these modes have a single, prom- 460
inent spectral peak. Due to the frequency sensitivity, DMD may capture the single-fre- 461
quency modes with similar frequencies, temporal information and spatial patterns. This 462
is caused by the frequency difference between the vortex shedding from two ends of the 463
cylinder, or the frequency difference between the wake of UC and DC. For the severely 464
destabilised flow, i.e. flow around two crossing cylinders in 90° arrangement, POD is not 465
practical for analysis due to the enhanced multi-frequency coupling. 466

Both POD and DMD identify spatially antisymmetric and symmetric wake patterns 467
for the studied three cases. Antisymmetric modes are associated with the vortex shedding 468
phenomenon in the flow field, and these modes’ frequencies are odd multiples of cylin- 469
ders’ lift force frequency. Symmetric modes are associated with the shift motion of shed- 470
ding vortices during downstream evolution, and these modes’ frequencies are even mul- 471
tiples of cylinders’ lift force frequency. The spatial scale of the above modes decreases 472
with increasing frequency. 473

For the flow around the DC in 90° arrangement, both symmetric and antisymmetric 474
modes have significant deformation due to the interference of the UC wake and the block- 475
age effect of DC. In addition, a low-frequency mode is found in the wake of DC centre, 476

which is related to the shadowing effect of DC. 477
For the three-dimensional flow, the cylinder length seems to affect the DMD analysis, 478
in the next work we will focus on this subject. 479
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