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1 Abstract: The paper continues the study of efficient algorithms for the computation of zeta func-
2 tions over the complex plane. We aim to apply the modifications of algorithms to the investigation
3 of underlying fractal structures associated with the Riemann zeta function. We discuss the compu-
4 tational complexity and numerical aspects of the implemented algorithms based on series with
s binomial-like coefficients.

s Keywords: Riemann zeta function; fractal structures; numerical algorithms

7 1. Introduction

s In this paper, we continue the study of efficient algorithms for the computation

» of the Riemann zeta function over the complex plane, introduced by Borwein [7]
10 and extended by Belovas [1], Belovas and Sabaliauskas [4], Belovas, Sakalauskas and
u  Starikovicius [5]. Slezeviciené [14], Vepstas [16] and Coffey [8] applied this methodology
12 for the computation of Dirichlet L-functions, Hurwitz zeta function and polylogarithm.
13 Belovas [1], Belovas and Sabaliauskas [4] obtained limit theorems, which allowed the
1a  introduction of asymptotic approximations for the coefficients of the series of the algo-
15 rithms. A preliminary presentation of computational aspects of the approach has been
16 presented in [5]. Theoretical aspects of the approach (as well as more subtle proofs of
17 the limit theorems) have been discussed in [2] and [3].

18 Fractal geography of the Riemann zeta function (and other zeta functions) was
10 addressed by King [11]. Woon [17] and Tingen [15] computed Julia and Mandelbrot sets
2 of the Riemann zeta function and Hurwitz zeta function, respectively, and studied the
xn properties of these fractals. Recently Blankers et al. [6] investigated the analogs of Julia
22 and Mandelbrot sets for dynamical systems over the hyperbolic numbers. In the present
2 study, we enhance algorithms for the calculation of the Riemann zeta function, proposed
24 in [4] and [5]. We specify the convergence rate to the limiting distribution for the
= coefficients of the series, identify the error term and discuss computational complexity.
26 The algorithms are compared against the recently proposed Zetafast algorithm [9] and
=z are applied for the investigation of underlying fractal structures associated with the
2 Riemann zeta function.

20 The paper is organized as follows. The first part is the introduction. In Section
30 2, we describe algorithms and present theoretical results. Section 3 is devoted to the
a1 visual investigation of the underlying fractal background of the Riemann zeta function.
52 Pseudocodes of the algorithms for the computation and the visualization are given in
33 Section 4. Section 5 and Section 6 are devoted to presenting the results and conclusions,
;s respectively.
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Throughout this paper, we denote by ®(x) the cumulative distribution function
of the standard normal distribution, and by ®(x) we denote the corresponding tail
distribution ®(x) = 1 — ®(x). I'(s), B(x,y) and W(x) denote the gamma function, the
beta function and the Lambert W function respectively. I (a, b) stands for the regularized
incomplete beta function,

_ 1 Y14 b1
Ix(a,b)—B(a,b)/Ot (1—1)dr.

CK are the binomial coefficients. | x| and [x] stand for the floor function and the ceiling
functions respectively. A X B stands for the Cartesian product of two sets A and B. All
limits in the paper, unless specified, are taken as n — oc.

2. MB- and BLC-algorithms for the computation of the Riemann zeta function
MB-algorithm
In [5] Belovas et al. proposed a modification of Borwein'’s efficient algorithm (MB-

algorithm) for the Riemann zeta function [7]. The algorithm applies to complex numbers
s = 0 + it with ¢ > 1/2 and arbitrary t. Let us denote, along with Proposition 1 from [5],

(n+k—1)14k (1) Hy
_ —1-_ 2k <k<
Linax argorgl?gxn TR and Cok 1 H,’ neN, 0<k<sn (1)

here
Hy =Hj_1+exp(T; =Ty, + (I = lnax)log4), Hy=exp(Ty— T, — lmaxlog4),

- észri)S(;l)l — To=—logn, 1<l<n. ¥

T =T_1 +log

Under these notations (case j = 1 in c](j 3{ corresponds MB-series) the Riemann zeta

function is )
1 n—1 (—l)kc(])

= ) (s). ©)
() === o ey T

The algorithm is nearly optimal in the sense that there is no sequence of n-term
exponential polynomials that converge to the Riemann zeta function much faster than of
the algorithm (see Theorem 3.1 in [7]).

BLC-algorithm

This algorithm, introduced in [4], also uses series (3) (case j = 2), but with different
binomial-like coefficients,

=Lk +1,n—k+1). 4)

(/)

The error terms 7, (s) of these methods are discussed in the following subsection.

Error terms and computational complexity

First we formulate an auxiliary lemma, aiming to investigate the behaviour of the
series in the neighbourhoods of critical points sy (note that 1 —2!~% = 0 if and only if
t =2mnk/log2,k € Zand o = 1).

Lemma 1. Let rg = 3 and

sy = 14 2irtk/ log2, k € Ny. 5)
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Let wy be the circle
wr={s: [s—sk| =p >0}
Then, for f(s) = 1/(1 —2'"%) and p < r¢/ log2,
(5)] < 1= ©
naxlfO < 7%=

Proof of Lemma 1. Parametrizing the complex function f(s) for the circle wy, we obtain

g((P) _ f(sk —l—pei(p) _ 1/(1 _ p—2irmtk/ log 2—p(cos p-+isin (p)). @)
=u(g)

Next,

lu(@)| = |1 —27P?(cos(plog2sin ¢) — isin(plog2sin ¢))]
= (1 —217P59 cos(plog2sin @) + 2720 59)1/2, 8)

=0(p)

The function v(¢) is periodic with period 27t and symmetric with respect to ¢ = 7
(indeed, v(r — @) = v(7r + ¢). Hence the statement of the lemma reduces to solving

Og}gﬂv(qv)-

Differentiating v(¢), we getfor 0 < ¢ < 7

o' (¢) = 217PPplog2
X (27 % sin ¢ — sin ¢ cos(p log 2 sin ¢) + cos @ sin(plog2sin¢)) > 0.

=w(p)>0

s Indeed, with r = plog2 and
19 (r,9) € (0,79) x (0, 71/2), we have

w(g) =e "*?sin ¢ — sin ¢ cos(rsin ¢) + cos ¢ sin(r sin @)
> <1 —rcos ¢+ %(rcos ¢)* — é(rcosgo)3) sin ¢
1 . 2 1 . 4 . . 1 . 3
—(1—z(rsing)”+ —(rsing)* | sing+( rsing — —(rsin @)’ | cos ¢
2 24 Ny, 6 N
>0 >0
= ir2 sincp(lz — 4r cos ¢ — r* sin* (p) >0
24 '
20, For (r,9) € (0,79) x (71/2, 1), we have
w(g) = e "% sin ¢ — sin ¢ cos(r sin ¢) + cos ¢ sin(r sin @)
> (1 —rcos ¢+ ;(rcosgo)z) sin ¢
[ SR S VA .
— (1= Z(rsing)”+ —(rsing)* | sin ¢ +rsin ¢ cos ¢
2 24 N N
>0 <0

_ 1o 2.4
=" sm(p<12—r sin q))>0.
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Note that w(7t/2) > 0, thus the function v(¢) is monotonically increasing and

Vin = min_v(g) =0(0) = (1-27°7%,

with (7) and (8) yielding us the statement of the lemma. O

The error term and the computational complexity are closely linked to the problem
of the selection of the minimal number of terms in the series (3). Let us formulate the
following proposition.

Proposition 1. Let 0 > 1/2,t > 0,e > 0and |s — si| > ¢, then

(i) the error term of the series (3) is
/2
cl) (cosh 7tt)!
I (s)| < Gy T2 )
(ii) the series (3) to compute the Riemann zeta-function with d decimal digits of accuracy,

require a number of terms
) = [BYt+ B d+ V), (10)
with coefficients of expressions (9) and (10) presented in Table 1.

Table 1. Coefficients of expressions (9) and (10).

j G]g]) BE]) Bé]) Cs(])
2 /2 log 10 log2—log(1-27%)
(3+v8)"  log(3+Vv8)  log(3++/8) log(3+/8)
2 1 /2 log 10 —log2—log(1-27¢)
2n+1 log2 log2 log2

Proof of Proposition 1. Let us start with MB-series. The error term of the series (3) is
(cf. Alg. 2in [7])

2 1 —logx)
I (s)] < / M (11)

@+vﬂnu—ﬂsur ] T+x
=I(0)
Considering the function I(c), we have
1
1(0) < / (—log )" ldx = [(0). (12)
0

By a product representation of the gamma function (cf. 8.326.1 in [10]),

The product is decreasing by o, hence (cf. 8.332.2 in [10]),

’F(U)
r(s)

Mo) o TG _ V& o (13)

1
2
| ( )| |F(2 +Zt)| \/ coshrft
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Hence,

2 v/cosh 7tt

(1) <
[7rn” (s)] < (3+\/§)n |1—21-s|

(14)

In view of (14), to compute the Riemann zeta-function with d decimal digits of accuracy,
the approach requires a number 7 of terms not less than

_ log2+dlog10+ 3 logcosh 7t — log 1 — 21|

B log(3 + /8)

_ mtt+log(1+e ™) +log2 +2dlog 10 — 2log |1 — 2' | (15)
2log(3 +V/8)

it +2dlog 10 — 2log |1 — 21 75| + 2log 2

2log(3+V/8)

Nd((?', t)

<

19 Let |o — 1| > e. We have

7t +2dlog 10 — 2log |1 — 2177| +21og 2
21og(3 + V/8)
< /2 . log 10 J log2 —log(1 —2_5).
log(3++8)  log(3+ /8) log(3 +V/8)

Ny(o,t) <

(16)

20, Let |s — s¢| > eand |0 — 1| < . By applying the maximum modulus principle and
Lemma 1, we receive

Ny(o,t) < mtt + 2dlog 10 — 2log |1 — 27¢| + 2log 2
d 7 X

21og(3+V/8)
_ /2 log 10 i log2 —log(1 —27°¢) (17)
log(3++/8)  log(3+v/8) log(3 + v/8)
=BV =B{" ct

ss thus concluding the proof. The deduction for BLC-series is analogical. [

Corollary 1. Under the conditions of Proposition 1, for e = 10™™, m € N, the series (3) to
compute the Riemann zeta-function with d decimal digits of accuracy, requires the number of

terms ‘ ) )
nli) = [B%J)t+B£])(d+m)1+2—j. (18)
Proof of Corollary 1. The result (18) follows immediately, if we notice that for e — 0 we
have
log(1 —27¢) =loge + loglog2+o(1).
57 D

ss N A-modifications of M B- and BLC-algorithms

50 Limit theorems for coefficients of M B- and BLC-series enable us to derive a normal
s approximation for coefficients c](j 2{ (cf. (24) in [5]). We can formulate the following
e1 proposition.

Proposition 2. Coefficients cfj 3( of the series (3) satisfy

) .
cn]){:d>< U(;” >+o<\/ﬁ). (19)
n
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Coefficients yg,j ) and Uy(lj ) are presented in Table 2.

Table 2. Coefficients of the expression (19).

—

=
=
—
{
=

jou I
1

V2 V32
2 3 ¥

Proof of Proposition 2. Let us start with M B-series coefficients. Suppose A, is an inte-
gral random variable with the probability mass function

u
P(Ay=k)=="% k=0,...,n 20
( n ) Z;l:(] un,j ( )
Here (cf. (1) in [5])
(n+k—1)14*
=-n--— <k<n.
Uy k n(n—k)!(Zk)!' neN, 0<k<n (21)
Thus,
k
) _ . ijo Up,j
=1 7}1:0 un,j. (22)

Let F,(x) be the cumulative distribution function of the random variable A, (20), then
(cf. Theorem 3 in [3])

Fu(oiVx+ pu) = o(x) + o(\;ﬁ), xeR (23)

Note that the cumulative distribution function

1 1 Upj
A(ded)= T
j<t7y(,1)x+pl;(11) j=0 "1

Denoting k = |0,x + j1, | and taking into account (22) and (23), we obtain

(1)
_ ) g k= 1 )
1 Cok CD( 0151) )—i—O(\/ﬁ .

The first part of the proposition follows. Similar result for BLC-coefficients 551212 has been
provenin [4]. O

Proposition 2 allows us to choose the number of terms n) for the series (3),

) = () + 2001, (24)

for n large enough. Here z; = ®~1(1 — 10~%). Note that

W~ i t, n(2) ~ T t,
2v/2log(3 + V/8) 4log?2
‘\/—/
=0.630... =1.133...

for fixed o and d. The refined version of NA-modification based methodology is sum-
marized in Algorithm 2 (see Section 4).
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Empirical insights for N A-modifications

While performing practical computations using N A-algorithms, we have noticed
that the values produced were significantly more accurate than otherwise implied by d in
the analytic estimate (10). In order to increase the performance and to have a clear course
for future theoretical refinements, we propose empirical formulae for the minimum
number of terms in the series (3) to compute the Riemann zeta-function with 4 decimal
digits of accuracy.

In [12] Kuzma proposed the following empirically-based estimate for the number
of terms for the BLC-series (d = 6),

n©) = [0.67658827t + 113.26486067]. (25)

In the present section we offer an improvement to this estimate.

5751
8201
5701

7901

v T T T T T 0 v u T T T T
1000 1010 1020 1030 1040 1050 1000 1010 1020 1030 1040 1050

(a) NA-algorithm (b) BLC-algorithm
Figure 1. Periodic peaks of the minimum number of terms in series (3) for d = 6 digits of accuracy
at (o,t) € 1/2 x [1000, 1050].

Figure 1 displays the minimum # required to calculate the Riemann zeta function with
d = 6 digits of accuracy using NA- and BLC-algorithms at ¢ = 1/2, t € [1000, 1050]
(the blue curve). The curves has clearly visible periodic peaks (marked by red vertical
lines). The peaks have a period of A = 271/ log 2, which correspond s special points of
Proposition 1. Since we are interested in the upper bound of this empirical curve, for the
following calculations we use the points t = Ak, k € N.

5000 70004

6000 1

4000

5000 1

3000 1
4000 -

20004 3000

2000

1000
1000

6 ZdDO 40‘00 5600 BObO 10600 6 ZdDO 4000 6000 8000 10000

(a) N A-algorithm (b) BLC-algorithm
Figure 2. Regression models (26) for the minimum number of terms in series (3).

Figure 2 shows regression models

) — [amt + DV + C(j)] (26)
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s1 derived for d € [1,10] using the points (¢, ) € 1/2 x (0,10000). Each graph represents
sz a fitted curve for a different d value.

0.45024 4.0
4.0 1
3.5 1
0.45022
3.5
3.0 1
0.45020
3.0 A 2.5
a b C
0.45018 i
25 2.0
1.5
0.45016 2.0
1.0
0.45014 1.51
0.5
5 10 5 10 5 10
d d d

Figure 3. Coefficients of the regression models a(!), b(!) and c¢(!) plotted against the decimal digits
of accuracy.

es Figure 3 illustrates fluctuations of the coefficients of the regression models (26) by d.
ss Here we can clearly see that a(!) has no correlation with d while b(1) and ¢(!) does.

85 Fitting b\) with b) = x+/d + y and () with c") = xd + y we obtain the following
ss coefficients for (26) (see Table 3):

Table 3. Coefficients of the regression model (26).

i ad) p() o

1 0451 1.407vd—0245 0.371d + 0.195
2 0637 2.026V/d—0272 1.602d —0.026

sz 3. Visualizations of fractal structures associated with the Riemann zeta function
s Methods of the visualization

In this study we employ two methods to reveal the Riemann zeta function underly-
ing nature. The first heuristic method (F H-method) calculates RGB colors of the graph
of the Riemann zeta function, using a composition of special functions. Suppose we
have a function f : (R*,C) — Ny:

|xlog|z|], if z#0,

27
0, if z=0. @7)

-

Now we can define functions f, f2, fa:

filx,z) = fa,8(s),  falx,2) = f(b,R((s)),  f3(x,2) = f(e,3((s))).  (28)

Next, we calculate (R, G, B) colors of each pixel of the graph of the Riemann zeta function
using polynomial functions of f; (see Table 4):

R=3g"(fi, fo, f3) mod 256,
G= 8;1) (f1, f2, f3) mod 256,
B =g\ (fi, fo fs) mod 256.


https://doi.org/10.20944/preprints202205.0122.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022

d0i:10.20944/preprints202205.0122.v1

9 of 20

89

20

91

22

93

294

95

926

Table 4. List of g,((l) functions.

0 0 )

! 81 8 83
1 A f f3
2 255-fifofs fofs 25— fo
2 A f2 3
4 fifs fa f3
5 fifs fofs f3

The second approach (second fractal heuristic (SFH) method) is based on the
application of the Mandelbrot set to the visualization of the Riemann zeta function.
Suppose we aim to visualize { (o + it) for (o, t) € (01,02) x (t1,t2). First, we introduce
the log-transformation for each point (x, y) of the graph,

{x = LR (e +it), 29)
y=L(S(C(c+it))),
thus obtaining the set Q = (X, Yimin) X (Xmax, Ymax ). Here
_ Jloglx|, ifx #0,
L(x) = {0, if x = 0. (30)

Next we linearly transform Q into the subset S of the complex plane,

(x,y) € Q— (x*,y*) €8S.

We take S = (—2,0.47) x (—1.12i,1.12i), where the Mandelbrot set is defined. Then we
use an algorithm to generate the Mandelbrot set, setting the start position at zg = 0 and
z¥ = (x*,y%):

Zjy1 — 22 + 27 (31)

Suppose that k € N, k < vy indicates the number of iterations (31), required to
ascertain that z* does not belong to the Mandelbrot set, with

|zki1] <2 and  k < Vpax.

For k = vy, it is unclear if z* does not belong to the Mandelbrot set. Now let kg = |50k .
We calculate RGB color for the z* point by the following rule:

o, 0, 0), ik = Omax,

RCp _ ) (255 255, ko mod 256), if510 < ko < Oy,
(100, ko mod 256, 255), if255 < ko < 510,
(0, 0, ko mod?256), ifky< 255.

Visual investigations

The first visualization (see Figure 4) reveals the underlying structures in the "center"
S1 C C of the Riemann zeta function, received by two different methods (the color
visualization and the fractal visualization). Here S; = (—20,8) x (—14,14). Figure 4a
is obtained using FH-method with color parameters 2 = 100 and b = ¢ = 8. The color
transform g,((l) is linear (see Table 4). Figure 4b is obtained using SFH-method. Note
small bright fractal feature on the right-hand side, calling for in-depth investigation (see

Figure 6).
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(a) Method 1: Color visualization (b) Method 2: Fractal visualization
Figure 4. The structures of the "center" of the Riemann zeta function, (¢, t) € (—20,8) x (—14,14),
received by SH and SFH methods. Note small fractal feature on the right-hand side of Fig. 4b.

o7 Figure 5 presents zoom-in frames of S, region for the Riemann zeta function. Here
ss  Sp = (—5,6) x (B,a+ p), with four shifted in § intervals (see Table 5 for the ranges). The
9o frames were received using F H-method with color parameters 2 = 100 and b = ¢ = 8.
wo The color transform g,(cl) is linear (see Table 4). Note nontrivial zeros of the Riemann zeta
w1 function (blue disks, marked with arrows in Fig. 4a and 4b).

(@ (b)

Figure 5. FH-based zoomed-in frames of the Riemann zeta function (see Table 5 for the ranges).

(D
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Table 5. Ranges of the sets of Figure 5: (c,t) € Sy, & = 50.

Figure 8 Sy
5a 0 (—5,6) x (0,50)
5b 500  (—5,6) x (500,550)
5¢ 1000 (—5,6) x (1000,1050)
5d 5000 (—5,6) x (5000,5050)

Figure 6 (obtained by SFH-method) extends the investigation of the fractal feature,
associated with the Riemann zeta function, observed in Figure 4b. The frame 6a repre-
sents zoomed-in image of the feature in the range (0.2,2.2) x (—1.6,1.6). The frame 6b
is the next magnification step, belonging to the range (0.95,1.05) x (—0.08,0.08). Fractal
structures received in 6b are examined further in Figure 7.

~
>

(@ (b)

Figure 6. Fractal features of the Riemann zeta function in the pole area (see Table 6 for the ranges).

Table 6. Ranges of the sets of Figure 6, (0, t) € S3.

Figure S3

6a  (0.20,2.20) x (—1.60,1.60)
6b  (0.95,1.05) x (—0.08,0.08)

Figure 7a displays zoomed-in frame of the fractal border presented in Figure 6b.
The next five frames (each of them corresponds to a colored rectangle in 7a) uncover
some aesthetically pleasing features of fractal structures associated with the Riemann
zeta function. Note snowflake-shaped fractals in Figure 7c, as well as pinwheel-shaped
ones in Figure 7d and Figure 7e, resembling discs of spiral galaxies. Clockwise spinning
7e reminds us of the grand design spiral galaxy NGC 4254 in Coma Berenices. Counter-
clockwise rotating 7d resembles the Pinwheel Galaxy NGC 5457 in Ursa Major. Invariant
features of fractal geometry generated from images provide a good set of descriptive
values for the recognition of regions and objects, e.g., fractal signatures of galaxies are
examined with the aim of classifying them (cf. [13]). Figure 7 is received by SFH-method.
The ranges of the sets are given in Table 7.
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(c) (d)

¥ . T 4 o
& 3 2, FOWE i T u&’i&‘ s
(e)

Figure 7. Fractal structures associated with the near-pole region of the Riemann zeta function.

Frames 7b- 7f are zoomed-in rectangles of 7a. Ranges of the sets are given in Table 7.
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Table 7. Ranges of the frames of Figure 6.
Figure o] o) f tr
7a 1.30000 1.04000 -0.034000 -0.024000
7b 1.03730  1.03925 -0.029875 -0.027925
7c 1.03730  1.03925 -0.029875 -0.027925
7d 1.03385 1.03550 -0.033200 -0.031550
7e 1.03410 1.03485 -0.026000 -0.025250
7f 1.03035 1.03150 -0.032850 -0.031700
118 Figure 8 illustrates other facets of the geography of the Riemann zeta function.

10 Graphs for the range (—30,10) x (—14, 16) are obtained using four different non-linear

120 color transformations g,(cl), where ggl) # f1or gél) # f3or gél) # f3. Color parameters

121 are given in Table 8.

(a)

(©) (d)
Figure 8. Four non-linear color maps of the Riemann zeta function for (c,t) € (—30,10) x
(—14,16). Color parameters are given in Table 8.

Table 8. Color parameters of Figure 8.

Figure a b ¢ g,((

8 10 1 2 g
8b 90 17 50 glES
8¢ 9 7 5 glf‘1
8d 1 2 1 g
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4. Computation and visualization algorithms

This section gives pseudocodes of the algorithms described in Sections 2 and 3.

Computation algorithms

The first algorithm outlines M B- and BLC-approaches (cf. Proposition 1 and Corol-
lary 1) with the corresponding empirical modifications (26) for the calculation of multiple
values of the Riemann zeta functions while ¢ is fixed.

Algorithm 1 This algorithm will return multiple values of the Riemann zeta function for
fixed t and array {o;}. Note that L, = logk stand for precalculated logarithms.

1: procedure ZETA.M(c : array [1..N] of real numbers; d, m, j : natural numbers; ¢ : real

number) > (see Table 9)
[((e/2)t+ (d + m)Lio) /10g (3 + V)| +1, j=1,
2 n« [((n/z)t+(d+m)L10)/Lz]l j=2
[a<f—4>t + 09 VE+ c(f—ﬂ, j=50rj=6

3 if jis odd then > MB!- and EMB-block
4: To + —Lu,  lyax LTI/\/EJ
5: for! € {1.n} do
6: Ty <~ Tj1+Ly—141+Lypi—1 —Loyy—1 — Ly
7: end for
8: HO — EXP(TO — Tlmax — lmﬂxL4)
9: for! € {1.n} do
10: H; < Hj 1 +exp(T; — T + (I = Lyax)Ly)
11: end for
12: fork € {0..n} do
13: ¢U) + (1~ Hy/Hy)(cos(tLys1) — isin(tLys1))
14: end for
15 else > BLC?- and EBLC® block
16: fork € {0.n} do
17: 61(1]3( < (cos(tLyy1) —isin(tLg4q))betainc(k+1,7n —k+1,0.5)
18: end for
19: end if

200 A< 2(cos(tLy) —isin(tLy))
21: forr € {1.N} do » Calculation of MB- or BLC-series for the corresponding o

22: S50, p+-1

23 fork € {0..n} do

24: p+ —p

25: S+ S5+ PCA;%( exp(—oyLgyq)

26 end for

27: Sy S/(1—Aexp(—oyLp))

28: end for

29: return S > Returns the array S[1..N] of the Riemann zeta function values

30: end procedure

The second algorithm outlines N A-modifications of MB- and BLC-methods. These
approaches are more suitable for the calculation of specific values of the Riemann zeta
function.

Results of numerical experiments with Algorithm 1 and Algorithm 2 are presented
in Section 5.
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Algorithm 2 This algorithm will return values of the Riemann zeta function obtained by
N A-modifications of MB- or BLC-method. Note that L; = logk and ¢ > 103.

1: function ZETA.NA(c, t : real numbers; d, m, j : natural numbers)

2 n< (m/2)t+ (d+m)ly, z<+ ®1(1-10"9)

3 if j = 1 then > N AMB-block
4: n(—(n+L2—logL2)/log(3+\/§), yn<—n/ﬁ, op — 1/ V32

5: else > NABLC-block
6 n< (n—Ly—logLy)/Ly, pin < n/2, 0y <4 /n/2

7 end if

8 ko < [pn +2z0ou], ki < pn — zoy

9: function C(n,k : nonnegative integers)

10: if k < kq then

11: C+1

12: else

13: C«1—((k—pn)/on)

14: end if

15: end function

16: S5+0, p+-1
17. fork € {0.ko} do

18: p —p
19: S < S+ pC(n, k)exp(—oLgyq)(cos(tLgyq) —isin(tLisq))
20: end for

21: return S/ (1 — 2exp(—oLy)(cos(tLy) —isin(tLy)))
22: end function

Visualization algorithms

The third algorithm, corresponding the first heuristic method (FH-method), cal-
culates RGB colors of the graph of the Riemann zeta function, using a composition of
special functions.

Algorithm 3 This algorithm will return a colored image of Riemann zeta function for
(0,t) € (Tmin, Omax) X (tmin, fmax). Other parameters: a, b, c - color parameters, g1, $2, 3
- polynomial functions of f1, f>, f3 (see Table 4), w - width in pixels of output image img.

1: procedure FH(0min, Omax, fmin, fmax, 4, b, ¢ : real numbers; w : natural number)

2: h  |w - (tmax — tmin)/ (Fmax — Omin) |

3 img <[]

4 forje {0.h—1}do

5: row < [ ]

6: t 4 tmin +j : (tmax - tmin)/(h - 1)

7: fork € {0.w—1} do

8 0 < Omin + k- (U'max - Umin)/(w - 1)
9: z + (o +it)

10: f1 < |alog |z||

11: fa < |blog |R(2)]]

12: f3 < [clog |3(2)]]

13: 81 < &1(f1, f2, f3)

14: 82 < &2(f1,.f2, f3)

15: 83 < 83(f1, f2, f3)

16: RGB « [g1 mod 256, ¢o mod 256, g3 mod 256]
17: row < row + RGB

18: end for

19: img < img + row
20: end for

21: end procedure
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The fourth algorithm, corresponding the second fractal heuristic method (SFH-
method), employs the Mandelbrot set to visualize the Riemann zeta function.

Algorithm 4 This algorithm will return fractalized image of Riemann zeta function
for (0,t) € (Omin, Omax) X (tmin, fmax). Here m stands for max iterations to get more
precise fractal image, w - width in pixels of output image img. The output image utilizes
yellow-black-blue color palette.

1: procedure SFH(0min, Omax, fmin, fmax : real numbers; w, m : natural numbers)
2: h Lw : (tmax - tmin)/(UmaX - Umin)J

3 img < []

4 w1 < 2.47/ (Cmax — Omin)

5: (1% (0-47‘7min + 2(Tmax)/((Tmin - Umax)

6: w3 — 2-24/(tmax — tmin)

7 Wy 1'12(tmin + tmax)/(tmin - tmax)

8 forj € {0.h—1} do

9

row <— [ |
10: t < tmin+7J- (tmax — tmin)/(h — 1)
11: fork € {0.w—1} do
12: 0 4 Omin + k- (0max — Omin) / (w — 1)
13: z < (o +it)
14: z* + wysign(R(z)) log |R(z)| + wa + (w3sign(I(z)) log |I(z)| + wa)i
15: z+0
16: n++0
17: while |z| <2andn < m do
18: z 4+ 224 2*
19: n<n+1
20: end while
21: RGB « [0, 0, 0]
22: if |z| > 2 then
23: I+ |50n]
24: if [ > 510 then
25: RGB « [255, 255, I mod 256]
26: else if [ > 255 then
27: RGB < [100, I mod 256, 255|
28: else
29: RGB « [0, 0, I mod 256]
30: end if
31: end if
32: row < row + RGB
33: end for
34: img < img + row

35: end for
36: end procedure

5. Numerical experiments

We have performed numerical experiments with seven methods and modifications
listed in Table 9.
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Table 9. List of algorithms under examination.

j Abbreviation Algorithm

1 MB modification of Borwein’s efficient algorithm

2 BLC series with binomial-like coefficients algorithm

3 NAMB normal approximation-based modification of MB-algorithm
4 NABLC normal approximation-based modification of BLC-algorithm
5 EMB empirical modification of MB-algorithm

6 EBLC empirical modification of BLC-algorithm

7 ZF Zetafast algorithm

First numerical experiment

The first numerical experiment deals with normal approximation-based modifi-
cations (cf. Algorithm 2). Using NAMB (j = 3), NABLC (j = 4) and Zetafast G=7)

methods we generate sequences of values of the Riemann zeta function {g Lp } 1<I<N,

N = 10°, taking as arguments uniformly distributed SLp € S; ). Here
(1) _ —
Sp = (0.5,1.52 X (Sk,, +P1/Sk(p+1) 01), (32)

v t

where ;. stand for critical points (5) with k, = 2P0 1 < p < 3,and p; = 107! Thus we
obtain 9 sequences overall (3 algorithms x 3 sets of arguments). Using Zetafast algorithm

as a benchmark we calculate the accuracy (5,5, /) and the relative performance 6; ),

5;(7] = max )g,,p G;j) = Trgj)/f(7), 3<j<4, (33)

1<IKN

where r;f ) is the processing time of jth sequence {C,(]; },1 <1 < N, for fixed p. The

results of the first numerical experiment are presented in Table 10.
Table 10. Results of the first numerical experiment: accuracy (55] ) and relative performance Gl(gj ) ,
for d = 6, m = 1. The last line of the table shows the performance of ZF-algorithm (sec).

Method st sV sV
1.80-10"11 1.60- 1011 2.90-10~1
NAMB 3 ey 0088 T o127 TTToas T
1.82-10° 11 1.74-10" 11 3.35-10~11
NABLC 4 o227 T2 04 T
ZF 7 86.72 121.04 172.95

Second numerical experiment

The second numerical experiment aims to verify the accuracy of the algorithms
on fixed horizontal lines, close to critical points. Using MB (j = 1) and BLC (j = 2)
methods, their empirical modifications (j = 5 and j = 6) and Zetafast method (j = 7),

we generate (cf. Algorithm 1) sequences of values of the Riemann zeta function {{ l(j; 1,

(2)

1<I<N,N =105, taking as arguments uniformly distributed SLp € Sy’ Here

2
$) = (0515)xty,  ty=s,+p, k=2, 1<p<3 (34
g

Thus we obtain 15 sequences overall (5 algorithms x 3 sets of arguments). Using Zetafast
()

algorithm as a benchmark we calculate the accuracy 6" and the relative performance

Gl(,j ) (cf. (33)). The results of the second numerical experiment are presented in Table 11.


https://doi.org/10.20944/preprints202205.0122.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2022 doi:10.20944/preprints202205.0122.v1

18 of 20

() ()

Table 11. Results of the second numerical experiment: accuracy J;/* and relative performance ¢,
on fixed lines t,, for d = 6, m = 1. The last line shows the performance of ZF-algorithm (sec).

Method | s s e
C10-11 .10~ 11 .10~ 11
MB ! 168032 11 """ 14?)015%11 """ 26?)017(2)311
BLC 2 1770110 ........... 1550112 ........... .2.-.6.4.('.).;9 ........
T
TR e
ZF 7 86.64 121.29 173.14

The numerical experiments have been performed on Intel® Core™ i7-8750H 2.2GHz
(boosted to 4.0 GHz) processor with 16GB DDR4 RAM. The code has been compiled
with g++ 11.2.0 compiler using O3 optimization. C++ Boost library has been used for
the implementation of the incomplete beta function for BLC-algorithm.

6. Discussion and concluding remarks
Discussion of the results

We have refined the error terms and the expressions for the minimal number of
terms in MB- and BLC-series of efficient algorithms for the computation of the Riemann
zeta function, taking into account the behavior of the series in the neighborhoods of
critical points. Proposition 1 shows that MB-based algorithms converge faster than

BLC-based algorithms. Indeed, M B-coefficient of the error term G,Sl) = 0(0.172") while

G,(qz) = 0(0.5") (cf. (9)). However, BLC-approach has its advantages that might be useful
in analytical research (cf. (4)). Note that this deficiency of MB-algorithm is solved by the
introduction of N A-modification (19).

The results of the numerical experiments (see Table 10 and Table 11) show that MB
and BLC methods, along with their normal and empirical modifications, allow fast and
accurate calculations of the Riemann zeta function for large values of argument t. The
results demonstrate that the introduced modifications accelerate computations of the
Riemann zeta function, compared to Zetafast method. These versions of algorithms are
well-suited for distributed computations and grid computing.

Findings of visual investigations of fractal structures, associated with the Riemann zeta function

The illustrations obtained using FH-method clearly show the arrangement of trivial
and non-trivial zeros of the Riemann zeta function in the complex plane (see Figures 5a,
5b). In addition to these points, we can also see dark 2D curves that satisfy the conditions
R(C(c+it)) = 0and J((c +it)) = O (see Figure 4a). The SFH-method distributes
deformed copies of the Mandelbrot set in the complex plane, thus relating the values of
the Riemann zeta function to the fractal structure. This allows for a visual assessment
of essential changes in the Riemann zeta function values. Next, SF H-approach reveals
notable symmetric fractals characterizing the neighborhood of the pole of the Riemann
zeta function (see Figure 6 and Figure 7).

Future research directions

Numerical experiments with empirical formulas indicate that the theoretical se-
lection of the number of terms of the series n can be reduced. Next, the accuracy of
the normal approximation-based modifications of MB and BLC algorithms might be
refined by employing the theory of large deviations. The figures presented in this work
reveal areas of the complex plane where the modulus of the Riemann zeta function
exhibits very volatile values. This allows us to investigate the complex plane regions of
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1ss  R(s) = I¢(s), thus enabling us to locate non-trivial zeros’ positions visually. In future
1sz works, these visual instruments could be refined.
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10s  Abbreviations

100 Abbreviations
200 The following abbreviations are used in this manuscript:

201
MB  Modification of Borwein’s algorithm

BLC  Binomial-like coefficients

NA Normal approximation

FH First heuristic

SFH  Second fractal heuristic

NGC New General Catalogue of Nebulae and Clusters of Stars
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