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Abstract: The paper continues the study of efficient algorithms for the computation of zeta func-1

tions over the complex plane. We aim to apply the modifications of algorithms to the investigation2

of underlying fractal structures associated with the Riemann zeta function. We discuss the compu-3

tational complexity and numerical aspects of the implemented algorithms based on series with4

binomial-like coefficients.5
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1. Introduction7

In this paper, we continue the study of efficient algorithms for the computation8

of the Riemann zeta function over the complex plane, introduced by Borwein [7]9

and extended by Belovas [1], Belovas and Sabaliauskas [4], Belovas, Sakalauskas and10

Starikovičius [5]. Šleževičienė [14], Vepštas [16] and Coffey [8] applied this methodology11

for the computation of Dirichlet L-functions, Hurwitz zeta function and polylogarithm.12

Belovas [1], Belovas and Sabaliauskas [4] obtained limit theorems, which allowed the13

introduction of asymptotic approximations for the coefficients of the series of the algo-14

rithms. A preliminary presentation of computational aspects of the approach has been15

presented in [5]. Theoretical aspects of the approach (as well as more subtle proofs of16

the limit theorems) have been discussed in [2] and [3].17

Fractal geography of the Riemann zeta function (and other zeta functions) was18

addressed by King [11]. Woon [17] and Tingen [15] computed Julia and Mandelbrot sets19

of the Riemann zeta function and Hurwitz zeta function, respectively, and studied the20

properties of these fractals. Recently Blankers et al. [6] investigated the analogs of Julia21

and Mandelbrot sets for dynamical systems over the hyperbolic numbers. In the present22

study, we enhance algorithms for the calculation of the Riemann zeta function, proposed23

in [4] and [5]. We specify the convergence rate to the limiting distribution for the24

coefficients of the series, identify the error term and discuss computational complexity.25

The algorithms are compared against the recently proposed Zetafast algorithm [9] and26

are applied for the investigation of underlying fractal structures associated with the27

Riemann zeta function.28

The paper is organized as follows. The first part is the introduction. In Section29

2, we describe algorithms and present theoretical results. Section 3 is devoted to the30

visual investigation of the underlying fractal background of the Riemann zeta function.31

Pseudocodes of the algorithms for the computation and the visualization are given in32

Section 4. Section 5 and Section 6 are devoted to presenting the results and conclusions,33

respectively.34
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Throughout this paper, we denote by Φ(x) the cumulative distribution function
of the standard normal distribution, and by Φ(x) we denote the corresponding tail
distribution Φ(x) = 1−Φ(x). Γ(s), B(x, y) and W(x) denote the gamma function, the
beta function and the Lambert W function respectively. Ix(a, b) stands for the regularized
incomplete beta function,

Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt.

Ck
n are the binomial coefficients. bxc and dxe stand for the floor function and the ceiling35

functions respectively. A× B stands for the Cartesian product of two sets A and B. All36

limits in the paper, unless specified, are taken as n→ ∞.37

2. MB- and BLC-algorithms for the computation of the Riemann zeta function38

MB-algorithm39

In [5] Belovas et al. proposed a modification of Borwein’s efficient algorithm (MB-
algorithm) for the Riemann zeta function [7]. The algorithm applies to complex numbers
s = σ + it with σ > 1/2 and arbitrary t. Let us denote, along with Proposition 1 from [5],

lmax = arg max
06k6n

(n + k− 1)!4k

(n− k)!(2k)!
and c(1)n,k = 1− Hk

Hn
, n ∈ N, 0 6 k 6 n, (1)

here

Hl = Hl−1 + exp(Tl − Tlmax + (l − lmax) log 4), H0 = exp(T0 − Tlmax − lmax log 4),

Tl = Tl−1 + log
(n− l + 1)(n + l − 1)

(2l − 1)(2l)
, T0 = − log n, 1 6 l 6 n.

(2)

Under these notations (case j = 1 in c(j)
n,k corresponds MB-series) the Riemann zeta

function is

ζ(s) =
1

1− 21−s

n−1

∑
k=0

(−1)kc(j)
n,k

(k + 1)s + γ
(j)
n (s). (3)

The algorithm is nearly optimal in the sense that there is no sequence of n-term40

exponential polynomials that converge to the Riemann zeta function much faster than of41

the algorithm (see Theorem 3.1 in [7]).42

BLC-algorithm43

This algorithm, introduced in [4], also uses series (3) (case j = 2), but with different
binomial-like coefficients,

c(2)n,k = I1/2(k + 1, n− k + 1). (4)

The error terms γ
(j)
n (s) of these methods are discussed in the following subsection.44

Error terms and computational complexity45

First we formulate an auxiliary lemma, aiming to investigate the behaviour of the46

series in the neighbourhoods of critical points sk (note that 1− 21−s = 0 if and only if47

t = 2πk/log 2, k ∈ Z and σ = 1).48

Lemma 1. Let r0 = 3 and

sk = 1 + 2iπk/ log 2, k ∈ N0. (5)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0122.v1

https://doi.org/10.20944/preprints202205.0122.v1


3 of 20

Let ωk be the circle
ωk = {s : |s− sk| = ρ > 0}.

Then, for f (s) = 1/(1− 21−s) and ρ 6 r0/ log 2,

max
s∈ωk
| f (s)| 6 1

1− 2−ρ . (6)

Proof of Lemma 1. Parametrizing the complex function f (s) for the circle ω0, we obtain

g(ϕ) = f (sk + ρeiϕ) = 1/(1− 2−2iπk/ log 2−ρ(cos ϕ+i sin ϕ)︸ ︷︷ ︸
:=u(ϕ)

). (7)

Next,

|u(ϕ)| = |1− 2−ρ cos ϕ(cos(ρ log 2 sin ϕ)− i sin(ρ log 2 sin ϕ))|
= (1− 21−ρ cos ϕ cos(ρ log 2 sin ϕ) + 2−2ρ cos ϕ︸ ︷︷ ︸

:=v(ϕ)

)1/2. (8)

The function v(ϕ) is periodic with period 2π and symmetric with respect to ϕ = π
(indeed, v(π − ϕ) = v(π + ϕ). Hence the statement of the lemma reduces to solving

min
06ϕ6π

v(ϕ).

Differentiating v(ϕ), we get for 0 < ϕ < π

v′(ϕ) = 21−ρ cos ϕρ log 2

× (2−ρ cos ϕ sin ϕ− sin ϕ cos(ρ log 2 sin ϕ) + cos ϕ sin(ρ log 2 sin ϕ))︸ ︷︷ ︸
:=w(ϕ)>0

> 0.

Indeed, with r = ρ log 2 and49

10. (r, ϕ) ∈ (0, r0)× (0, π/2), we have

w(ϕ) = e−r cos ϕ sin ϕ− sin ϕ cos(r sin ϕ) + cos ϕ sin(r sin ϕ)

>
(

1− r cos ϕ +
1
2
(r cos ϕ)2 − 1

6
(r cos ϕ)3

)
sin ϕ

−
(

1− 1
2
(r sin ϕ)2 +

1
24

(r sin ϕ)4
)

sin ϕ︸ ︷︷ ︸
>0

+

(
r sin ϕ− 1

6
(r sin ϕ)3

)
cos ϕ︸ ︷︷ ︸
>0

=
1

24
r2 sin ϕ

(
12− 4r cos ϕ− r2 sin4 ϕ

)
> 0.

20. For (r, ϕ) ∈ (0, r0)× (π/2, π), we have

w(ϕ) = e−r cos ϕ sin ϕ− sin ϕ cos(r sin ϕ) + cos ϕ sin(r sin ϕ)

>
(

1− r cos ϕ +
1
2
(r cos ϕ)2

)
sin ϕ

−
(

1− 1
2
(r sin ϕ)2 +

1
24

(r sin ϕ)4
)

sin ϕ︸ ︷︷ ︸
>0

+r sin ϕ cos ϕ︸ ︷︷ ︸
<0

=
1

24
r2 sin ϕ

(
12− r2 sin4 ϕ

)
> 0.
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Note that w(π/2) > 0, thus the function v(ϕ) is monotonically increasing and

vmin = min
06ϕ6π

v(ϕ) = v(0) = (1− 2−ρ)2,

with (7) and (8) yielding us the statement of the lemma.50

The error term and the computational complexity are closely linked to the problem51

of the selection of the minimal number of terms in the series (3). Let us formulate the52

following proposition.53

Proposition 1. Let σ > 1/2, t > 0, ε > 0 and |s− sk| > ε, then54

(i) the error term of the series (3) is

|γ(j)
n (s)| 6 G(j)

n
(cosh πt)1/2

|1− 21−s| , (9)

(ii) the series (3) to compute the Riemann zeta-function with d decimal digits of accuracy,
require a number of terms

n(j) =
⌈

B(j)
1 t + B(j)

2 d + C(j)
ε

⌉
, (10)

with coefficients of expressions (9) and (10) presented in Table 1.55

Table 1. Coefficients of expressions (9) and (10).

j G(j)
n B(j)

1 B(j)
2 C(j)

ε

1 2
(3+
√

8)n
π/2

log(3+
√

8)
log 10

log(3+
√

8)
log 2−log(1−2−ε)

log(3+
√

8)

2 1
2n+1

π/2
log 2

log 10
log 2

− log 2−log(1−2−ε)
log 2

Proof of Proposition 1. Let us start with MB-series. The error term of the series (3) is
(cf. Alg. 2 in [7])

|γ(1)
n (s)| 6 2

(3 +
√

8)n

1
|1− 21−s|

1
|Γ(s)|

∫ 1

0

(− log x)σ−1

1 + x
dx︸ ︷︷ ︸

:=I(σ)

. (11)

Considering the function I(σ), we have

I(σ) 6
∫ 1

0
(− log x)σ−1dx = Γ(σ). (12)

By a product representation of the gamma function (cf. 8.326.1 in [10]),∣∣∣∣Γ(σ)Γ(s)

∣∣∣∣2 =
∞

∏
n=0

(
1 +

t2

(σ + n)2

)
,

The product is decreasing by σ, hence (cf. 8.332.2 in [10]),

Γ(σ)
|Γ(s)| 6

Γ( 1
2 )

|Γ( 1
2 + it)|

=

√
π√
π

cosh πt

=
√

cosh πt. (13)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2022                   doi:10.20944/preprints202205.0122.v1

https://doi.org/10.20944/preprints202205.0122.v1


5 of 20

Hence,

|γ(1)
n (s)| 6 2

(3 +
√

8)n

√
cosh πt
|1− 21−s| .

(14)

In view of (14), to compute the Riemann zeta-function with d decimal digits of accuracy,
the approach requires a number n of terms not less than

Nd(σ, t) =
log 2 + d log 10 + 1

2 log cosh πt− log |1− 21−s|
log(3 +

√
8)

=
πt + log(1 + e−2πt) + log 2 + 2d log 10− 2 log |1− 21−s|

2 log(3 +
√

8)

6
πt + 2d log 10− 2 log |1− 21−s|+ 2 log 2

2 log(3 +
√

8)
.

(15)

10. Let |σ− 1| > ε. We have

Nd(σ, t) 6
πt + 2d log 10− 2 log |1− 21−σ|+ 2 log 2

2 log(3 +
√

8)

6
π/2

log(3 +
√

8)
t +

log 10
log(3 +

√
8)

d +
log 2− log(1− 2−ε)

log(3 +
√

8)
.

(16)

20. Let |s− sk| > ε and |σ− 1| 6 ε. By applying the maximum modulus principle and
Lemma 1, we receive

Nd(σ, t) 6
πt + 2d log 10− 2 log |1− 2−ε|+ 2 log 2

2 log(3 +
√

8)

=
π/2

log(3 +
√

8)︸ ︷︷ ︸
:=B(1)

1

t +
log 10

log(3 +
√

8)︸ ︷︷ ︸
:=B(1)

2

d +
log 2− log(1− 2−ε)

log(3 +
√

8)︸ ︷︷ ︸
C(1)

ε

, (17)

thus concluding the proof. The deduction for BLC-series is analogical.56

Corollary 1. Under the conditions of Proposition 1, for ε = 10−m, m ∈ N, the series (3) to
compute the Riemann zeta-function with d decimal digits of accuracy, requires the number of
terms

n(j) =
⌈

B(j)
1 t + B(j)

2 (d + m)
⌉
+2− j. (18)

Proof of Corollary 1. The result (18) follows immediately, if we notice that for ε→ 0 we
have

log(1− 2−ε) = log ε + log log 2 + o(1).

57

NA-modifications of MB- and BLC-algorithms58

Limit theorems for coefficients of MB- and BLC-series enable us to derive a normal59

approximation for coefficients c(j)
n,k (cf. (24) in [5]). We can formulate the following60

proposition.61

Proposition 2. Coefficients c(j)
n,k of the series (3) satisfy

c(j)
n,k = Φ

(
k− µ

(j)
n

σ
(j)
n

)
+ O

(
1√
n

)
. (19)
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Coefficients µ
(j)
n and σ

(j)
n are presented in Table 2.62

Table 2. Coefficients of the expression (19).

j µ
(j)
n σ

(j)
n

1 n√
2

√
n

4√32

2 n
2

√
n

2

Proof of Proposition 2. Let us start with MB-series coefficients. Suppose An is an inte-
gral random variable with the probability mass function

P(An = k) =
un,k

∑n
j=0 un,j

, k = 0, . . . , n. (20)

Here (cf. (1) in [5])

un,k = n
(n + k− 1)!4k

(n− k)!(2k)!
, n ∈ N, 0 6 k 6 n. (21)

Thus,

c(1)n,k = 1−
∑k

j=0 un,j

∑n
j=0 un,j

. (22)

Let Fn(x) be the cumulative distribution function of the random variable An (20), then
(cf. Theorem 3 in [3])

Fn(σ
(1)
n x + µ

(1)
n ) = Φ(x) + O

(
1√
n

)
, x ∈ R. (23)

Note that the cumulative distribution function

Fn

(
σ
(1)
n x + µ

(1)
n

)
= ∑

j6σ
(1)
n x+µ

(1)
n

unj

∑n
j=0 unj

.

Denoting k = bσnx + µnc and taking into account (22) and (23), we obtain

1− c(1)n,k = Φ

(
k− µ

(1)
n

σ
(1)
n

)
+ O

(
1√
n

)
.

The first part of the proposition follows. Similar result for BLC-coefficients c(2)n,k has been63

proven in [4].64

Proposition 2 allows us to choose the number of terms n(j) for the series (3),

n(j) = dµ(j)
n + zdσ

(j)
n e, (24)

for n large enough. Here zd = Φ−1(1− 10−d). Note that

n(1) ∼ π

2
√

2 log(3 +
√

8)︸ ︷︷ ︸
=0.630...

t, n(2) ∼ π

4 log 2︸ ︷︷ ︸
=1.133...

t,

for fixed σ and d. The refined version of NA-modification based methodology is sum-65

marized in Algorithm 2 (see Section 4).66
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Empirical insights for NA-modifications67

While performing practical computations using NA-algorithms, we have noticed68

that the values produced were significantly more accurate than otherwise implied by d in69

the analytic estimate (10). In order to increase the performance and to have a clear course70

for future theoretical refinements, we propose empirical formulae for the minimum71

number of terms in the series (3) to compute the Riemann zeta-function with d decimal72

digits of accuracy.73

In [12] Kuzma proposed the following empirically-based estimate for the number
of terms for the BLC-series (d = 6),

n(0) = d0.67658827t + 113.26486067e. (25)

In the present section we offer an improvement to this estimate.74

1000 1010 1020 1030 1040 1050
t

550

555

560

565

570

575

n

(a) NA-algorithm

1000 1010 1020 1030 1040 1050
t

780

790

800

810

820

n

(b) BLC-algorithm
Figure 1. Periodic peaks of the minimum number of terms in series (3) for d = 6 digits of accuracy
at (σ, t) ∈ 1/2× [1000, 1050].

Figure 1 displays the minimum n required to calculate the Riemann zeta function with75

d = 6 digits of accuracy using NA- and BLC-algorithms at σ = 1/2, t ∈ [1000, 1050]76

(the blue curve). The curves has clearly visible periodic peaks (marked by red vertical77

lines). The peaks have a period of λ = 2π/ log 2, which correspond sk special points of78

Proposition 1. Since we are interested in the upper bound of this empirical curve, for the79

following calculations we use the points t = λk, k ∈ N.80

0 2000 4000 6000 8000 10000
t

0

1000

2000

3000

4000

5000

n

(a) NA-algorithm

0 2000 4000 6000 8000 10000
t

0

1000

2000

3000

4000

5000

6000

7000

n

(b) BLC-algorithm
Figure 2. Regression models (26) for the minimum number of terms in series (3).

Figure 2 shows regression models

n(j) =
⌈

a(j)t + b(j)
√

t + c(j)
⌉

(26)
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derived for d ∈ [1, 10] using the points (σ, t) ∈ 1/2× (0, 10000). Each graph represents81

a fitted curve for a different d value.82

5 10
d

0.45014

0.45016

0.45018

0.45020

0.45022

0.45024

a

5 10
d

1.5

2.0

2.5

3.0

3.5

4.0

b

5 10
d

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

c

Figure 3. Coefficients of the regression models a(1), b(1) and c(1) plotted against the decimal digits
of accuracy.

Figure 3 illustrates fluctuations of the coefficients of the regression models (26) by d.83

Here we can clearly see that a(1) has no correlation with d while b(1) and c(1) does.84

Fitting b(j) with b(j) = x
√

d + y and c(j) with c(1) = xd + y we obtain the following85

coefficients for (26) (see Table 3):86

Table 3. Coefficients of the regression model (26).

j a(j)
n b(j) c(j)

1 0.451 1.407
√

d− 0.245 0.371d + 0.195
2 0.637 2.026

√
d− 0.272 1.602d− 0.026

3. Visualizations of fractal structures associated with the Riemann zeta function87

Methods of the visualization88

In this study we employ two methods to reveal the Riemann zeta function underly-
ing nature. The first heuristic method (FH-method) calculates RGB colors of the graph
of the Riemann zeta function, using a composition of special functions. Suppose we
have a function f : (R+,C)→ N0:

f (x, z) =

{
bx log |z|c, if z 6= 0,
0, if z = 0.

(27)

Now we can define functions f1, f2, f3:

f1(x, z) = f (a, ζ(s)), f2(x, z) = f (b,<(ζ(s))), f3(x, z) = f (c,=(ζ(s))). (28)

Next, we calculate (R, G, B) colors of each pixel of the graph of the Riemann zeta function
using polynomial functions of fk (see Table 4):

R = g(l)1 ( f1, f2, f3) mod 256,

G = g(l)2 ( f1, f2, f3) mod 256,

B = g(l)3 ( f1, f2, f3) mod 256.
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Table 4. List of g(l)k functions.

.

l g(l)1 g(l)2 g(l)3

1 f1 f2 f3
2 255− f1 f2 f3 f2 f3 255− f2
2 f1 f2 f 2

3
4 f1 f3 f2 f3
5 f1 f3 f2 f3 f3

The second approach (second fractal heuristic (SFH) method) is based on the
application of the Mandelbrot set to the visualization of the Riemann zeta function.
Suppose we aim to visualize ζ(σ + it) for (σ, t) ∈ (σ1, σ2)× (t1, t2). First, we introduce
the log-transformation for each point (x, y) of the graph,{

x = L(<(ζ(σ + it))),
y = L(=(ζ(σ + it))),

(29)

thus obtaining the set Q = (xmin, ymin)× (xmax, ymax). Here

L(x) =

{
log |x|, if x 6= 0,
0, if x = 0.

(30)

Next we linearly transform Q into the subset S of the complex plane,

(x, y) ∈ Q→ (x∗, y∗) ∈ S.

We take S = (−2, 0.47)× (−1.12i, 1.12i), where the Mandelbrot set is defined. Then we
use an algorithm to generate the Mandelbrot set, setting the start position at z0 = 0 and
z∗ = (x∗, y∗):

zk+1 ← z2
k + z∗. (31)

Suppose that k ∈ N, k 6 vmax indicates the number of iterations (31), required to
ascertain that z∗ does not belong to the Mandelbrot set, with

|zk+1| 6 2 and k < vmax.

For k = vmax, it is unclear if z∗ does not belong to the Mandelbrot set. Now let k0 = b50kc.
We calculate RGB color for the z∗ point by the following rule:

RGB =


(0, 0, 0), if k = vmax,
(255, 255, k0 mod 256), if 510 < k0 < vmax,
(100, k0 mod 256, 255), if 255 < k0 6 510,
(0, 0, k0 mod 256), if k0 6 255.

Visual investigations89

The first visualization (see Figure 4) reveals the underlying structures in the "center"90

S1 ⊂ C of the Riemann zeta function, received by two different methods (the color91

visualization and the fractal visualization). Here S1 = (−20, 8)× (−14, 14). Figure 4a92

is obtained using FH-method with color parameters a = 100 and b = c = 8. The color93

transform g(1)k is linear (see Table 4). Figure 4b is obtained using SFH-method. Note94

small bright fractal feature on the right-hand side, calling for in-depth investigation (see95

Figure 6).96
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(a) Method 1: Color visualization (b) Method 2: Fractal visualization
Figure 4. The structures of the "center" of the Riemann zeta function, (σ, t) ∈ (−20, 8)× (−14, 14),
received by SH and SFH methods. Note small fractal feature on the right-hand side of Fig. 4b.

Figure 5 presents zoom-in frames of S2 region for the Riemann zeta function. Here97

S2 = (−5, 6)× (β, α + β), with four shifted in β intervals (see Table 5 for the ranges). The98

frames were received using FH-method with color parameters a = 100 and b = c = 8.99

The color transform g(1)k is linear (see Table 4). Note nontrivial zeros of the Riemann zeta100

function (blue disks, marked with arrows in Fig. 4a and 4b).101

(a) (b) (c) (d)
Figure 5. FH-based zoomed-in frames of the Riemann zeta function (see Table 5 for the ranges).
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Table 5. Ranges of the sets of Figure 5: (σ, t) ∈ S2, α = 50.

Figure β S2

5a 0 (−5, 6)× (0, 50)
5b 500 (−5, 6)× (500, 550)
5c 1000 (−5, 6)× (1000, 1050)
5d 5000 (−5, 6)× (5000, 5050)

Figure 6 (obtained by SFH-method) extends the investigation of the fractal feature,102

associated with the Riemann zeta function, observed in Figure 4b. The frame 6a repre-103

sents zoomed-in image of the feature in the range (0.2, 2.2)× (−1.6, 1.6). The frame 6b104

is the next magnification step, belonging to the range (0.95, 1.05)× (−0.08, 0.08). Fractal105

structures received in 6b are examined further in Figure 7.106

(a) (b)
Figure 6. Fractal features of the Riemann zeta function in the pole area (see Table 6 for the ranges).

Table 6. Ranges of the sets of Figure 6, (σ, t) ∈ S3.

Figure S3

6a (0.20, 2.20)× (−1.60, 1.60)
6b (0.95, 1.05)× (−0.08, 0.08)

Figure 7a displays zoomed-in frame of the fractal border presented in Figure 6b.107

The next five frames (each of them corresponds to a colored rectangle in 7a) uncover108

some aesthetically pleasing features of fractal structures associated with the Riemann109

zeta function. Note snowflake-shaped fractals in Figure 7c, as well as pinwheel-shaped110

ones in Figure 7d and Figure 7e, resembling discs of spiral galaxies. Clockwise spinning111

7e reminds us of the grand design spiral galaxy NGC 4254 in Coma Berenices. Counter-112

clockwise rotating 7d resembles the Pinwheel Galaxy NGC 5457 in Ursa Major. Invariant113

features of fractal geometry generated from images provide a good set of descriptive114

values for the recognition of regions and objects, e.g., fractal signatures of galaxies are115

examined with the aim of classifying them (cf. [13]). Figure 7 is received by SFH-method.116

The ranges of the sets are given in Table 7.117
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(a) (b)

(c) (d)

(e) (f)
Figure 7. Fractal structures associated with the near-pole region of the Riemann zeta function.
Frames 7b- 7f are zoomed-in rectangles of 7a. Ranges of the sets are given in Table 7.
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Table 7. Ranges of the frames of Figure 6.

Figure σ1 σ2 t1 t2

7a 1.30000 1.04000 -0.034000 -0.024000
7b 1.03730 1.03925 -0.029875 -0.027925
7c 1.03730 1.03925 -0.029875 -0.027925
7d 1.03385 1.03550 -0.033200 -0.031550
7e 1.03410 1.03485 -0.026000 -0.025250
7f 1.03035 1.03150 -0.032850 -0.031700

Figure 8 illustrates other facets of the geography of the Riemann zeta function.118

Graphs for the range (−30, 10)× (−14, 16) are obtained using four different non-linear119

color transformations g(l)k , where g(l)1 6= f1 or g(l)2 6= f3 or g(l)3 6= f3. Color parameters120

are given in Table 8.121

(a) (b)

(c) (d)
Figure 8. Four non-linear color maps of the Riemann zeta function for (σ, t) ∈ (−30, 10) ×
(−14, 16). Color parameters are given in Table 8.

Table 8. Color parameters of Figure 8.

Figure a b c g(l)k

8a 10 1 2 g(2)k
8b 90 17 50 g(3)k
8c 9 7 5 g(4)k
8d 1 2 1 g(5)k
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4. Computation and visualization algorithms122

This section gives pseudocodes of the algorithms described in Sections 2 and 3.123

Computation algorithms124

The first algorithm outlines MB- and BLC-approaches (cf. Proposition 1 and Corol-125

lary 1) with the corresponding empirical modifications (26) for the calculation of multiple126

values of the Riemann zeta functions while t is fixed.

Algorithm 1 This algorithm will return multiple values of the Riemann zeta function for
fixed t and array {σr}. Note that Lk = log k stand for precalculated logarithms.

1: procedure ZETA.M(σ : array [1..N] of real numbers; d, m, j : natural numbers; t : real
number) . (see Table 9)

2: n←


⌈
((π/2)t + (d + m)L10)/log(3 +

√
8)
⌉
+1, j = 1,⌈

((π/2)t + (d + m)L10)/L2

⌉
, j = 2,⌈

a(j−4)t + b(j−4)
√

t + c(j−4)
⌉

, j = 5 or j = 6

3: if j is odd then . MB1- and EMB5-block
4: T0 ← −Ln, lmax ← bn/

√
2c

5: for l ∈ {1..n} do
6: Tl ← Tl−1 + Ln−l+1 + Ln+l−1 − L2l−1 − L2l
7: end for
8: H0 ← exp(T0 − Tlmax − lmaxL4)
9: for l ∈ {1..n} do

10: Hl ← Hl−1 + exp(Tl − Tlmax + (l − lmax)L4)
11: end for
12: for k ∈ {0..n} do
13: ĉ(j)

n,k ← (1− Hk/Hn)(cos(tLk+1)− i sin(tLk+1))

14: end for
15: else . BLC2- and EBLC6 block
16: for k ∈ {0..n} do
17: ĉ(j)

n,k ← (cos(tLk+1)− i sin(tLk+1))betainc(k + 1, n− k + 1, 0.5)
18: end for
19: end if
20: λ← 2(cos(tL2)− i sin(tL2))
21: for r ∈ {1..N} do . Calculation of MB- or BLC-series for the corresponding σr
22: S← 0, p← −1
23: for k ∈ {0..n} do
24: p← −p
25: S← S + pĉ(j)

n,k exp(−σrLk+1)

26: end for
27: Sr ← S/(1− λ exp(−σrL2))
28: end for
29: return S . Returns the array S[1..N] of the Riemann zeta function values
30: end procedure

127

The second algorithm outlines NA-modifications of MB- and BLC-methods. These128

approaches are more suitable for the calculation of specific values of the Riemann zeta129

function.130

Results of numerical experiments with Algorithm 1 and Algorithm 2 are presented131

in Section 5.132
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Algorithm 2 This algorithm will return values of the Riemann zeta function obtained by
NA-modifications of MB- or BLC-method. Note that Lk = log k and t > 103.

1: function ZETA.NA(σ, t : real numbers; d, m, j : natural numbers)
2: n← (π/2)t + (d + m)L10, z← Φ−1(1− 10−d)
3: if j = 1 then . NAMB-block
4: n← (n + L2 − log L2)/ log(3 +

√
8), µn ← n/

√
2, σn ←

√
n/ 4
√

32
5: else . NABLC-block
6: n← (n− L2 − log L2)/L2, µn ← n/2, σn ←

√
n/2

7: end if
8: k0 ← dµn + zσne, k1 ← µn − zσn
9: function C(n,k : nonnegative integers)

10: if k < k1 then
11: C ← 1
12: else
13: C ← 1−Φ((k− µn)/σn)
14: end if
15: end function
16: S← 0, p← −1
17: for k ∈ {0..k0} do
18: p← −p
19: S← S + pC(n, k) exp(−σLk+1)(cos(tLk+1)− i sin(tLk+1))
20: end for
21: return S/(1− 2 exp(−σL2)(cos(tL2)− i sin(tL2)))
22: end function

Visualization algorithms133

The third algorithm, corresponding the first heuristic method (FH-method), cal-134

culates RGB colors of the graph of the Riemann zeta function, using a composition of135

special functions.

Algorithm 3 This algorithm will return a colored image of Riemann zeta function for
(σ, t) ∈ (σmin, σmax)× (tmin, tmax). Other parameters: a, b, c - color parameters, g1, g2, g3
- polynomial functions of f1, f2, f3 (see Table 4), w - width in pixels of output image img.

1: procedure FH(σmin, σmax, tmin, tmax, a, b, c : real numbers; w : natural number)
2: h← bw · (tmax − tmin)/(σmax − σmin)c
3: img← [ ]
4: for j ∈ {0..h− 1} do
5: row← [ ]
6: t← tmin + j · (tmax − tmin)/(h− 1)
7: for k ∈ {0..w− 1} do
8: σ← σmin + k · (σmax − σmin)/(w− 1)
9: z← ζ(σ + it)

10: f1 ← ba log |z|c
11: f2 ← bb log |<(z)|c
12: f3 ← bc log |=(z)|c
13: g1 ← g1( f1, f2, f3)
14: g2 ← g2( f1, f2, f3)
15: g3 ← g3( f1, f2, f3)
16: RGB← [g1 mod 256, g2 mod 256, g3 mod 256]
17: row← row + RGB
18: end for
19: img← img + row
20: end for
21: end procedure

136
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The fourth algorithm, corresponding the second fractal heuristic method (SFH-137

method), employs the Mandelbrot set to visualize the Riemann zeta function.

Algorithm 4 This algorithm will return fractalized image of Riemann zeta function
for (σ, t) ∈ (σmin, σmax) × (tmin, tmax). Here m stands for max iterations to get more
precise fractal image, w - width in pixels of output image img. The output image utilizes
yellow-black-blue color palette.

1: procedure SFH(σmin, σmax, tmin, tmax : real numbers; w, m : natural numbers)
2: h← bw · (tmax − tmin)/(σmax − σmin)c
3: img← [ ]
4: w1 ← 2.47/(σmax − σmin)
5: w2 ← (0.47σmin + 2σmax)/(σmin − σmax)
6: w3 ← 2.24/(tmax − tmin)
7: w4 ← 1.12(tmin + tmax)/(tmin − tmax)
8: for j ∈ {0..h− 1} do
9: row← [ ]

10: t← tmin + j · (tmax − tmin)/(h− 1)
11: for k ∈ {0..w− 1} do
12: σ← σmin + k · (σmax − σmin)/(w− 1)
13: z← ζ(σ + it)
14: z∗ ← w1sign(<(z)) log |<(z)|+ w2 + (w3sign(=(z)) log |=(z)|+ w4)i
15: z← 0
16: n← 0
17: while |z| 6 2 and n < m do
18: z← z2 + z∗

19: n← n + 1
20: end while
21: RGB← [0, 0, 0]
22: if |z| > 2 then
23: l ← b50nc
24: if l > 510 then
25: RGB← [255, 255, l mod 256]
26: else if l > 255 then
27: RGB← [100, l mod 256, 255]
28: else
29: RGB← [0, 0, l mod 256]
30: end if
31: end if
32: row← row + RGB
33: end for
34: img← img + row
35: end for
36: end procedure

138

5. Numerical experiments139

We have performed numerical experiments with seven methods and modifications140

listed in Table 9.141
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Table 9. List of algorithms under examination.

j Abbreviation Algorithm

1 MB modification of Borwein’s efficient algorithm
2 BLC series with binomial-like coefficients algorithm
3 NAMB normal approximation-based modification of MB-algorithm
4 NABLC normal approximation-based modification of BLC-algorithm
5 EMB empirical modification of MB-algorithm
6 EBLC empirical modification of BLC-algorithm
7 ZF Zetafast algorithm

First numerical experiment142

The first numerical experiment deals with normal approximation-based modifi-
cations (cf. Algorithm 2). Using NAMB (j = 3), NABLC (j = 4) and Zetafast (j = 7)
methods we generate sequences of values of the Riemann zeta function {ζ(j)

l,p}, 1 6 l 6 N,

N = 105, taking as arguments uniformly distributed sl,p ∈ S(1)
p . Here

S(1)
p = (0.5, 1.5)︸ ︷︷ ︸

σ

× (skp + ρ1, sk(p+1)
− ρ1)︸ ︷︷ ︸

t

, (32)

where skp stand for critical points (5) with kp = 2p+6, 1 6 p 6 3, and ρ1 = 10−1. Thus we
obtain 9 sequences overall (3 algorithms× 3 sets of arguments). Using Zetafast algorithm
as a benchmark we calculate the accuracy δ

(j)
p and the relative performance θ

(j)
p ,

δ
(j)
p = max

16l6N

∣∣∣ζ(j)
l,p − ζ

(7)
l,p

∣∣∣, θ
(j)
p = τ

(j)
p /τ

(7)
p , 3 6 j 6 4, (33)

where τ
(j)
p is the processing time of jth sequence {ζ(j)

l,p}, 1 6 l 6 N, for fixed p. The143

results of the first numerical experiment are presented in Table 10.144

Table 10. Results of the first numerical experiment: accuracy δ
(j)
p and relative performance θ

(j)
p ,

for d = 6, m = 1. The last line of the table shows the performance of ZF-algorithm (sec).

Method j S(1)
1 S(1)

2 S(1)
3

NAMB 3
1.80 · 10−11

0.088
1.60 · 10−11

0.12
2.90 · 10−11

0.18

NABLC 4
1.82 · 10−11

0.22
1.74 · 10−11

0.32
3.35 · 10−11

0.45
ZF 7 86.72 121.04 172.95

Second numerical experiment145

The second numerical experiment aims to verify the accuracy of the algorithms
on fixed horizontal lines, close to critical points. Using MB (j = 1) and BLC (j = 2)
methods, their empirical modifications (j = 5 and j = 6) and Zetafast method (j = 7),
we generate (cf. Algorithm 1) sequences of values of the Riemann zeta function {ζ(j)

l,p},

1 6 l 6 N, N = 105, taking as arguments uniformly distributed sl,p ∈ S(2)
p . Here

S(2)
p = (0.5, 1.5)︸ ︷︷ ︸

σ

×tp, tp = skp + ρ1, kp = 2p+6, 1 6 p 6 3. (34)

Thus we obtain 15 sequences overall (5 algorithms × 3 sets of arguments). Using Zetafast146

algorithm as a benchmark we calculate the accuracy δ
(j)
p and the relative performance147

θ
(j)
p (cf. (33)). The results of the second numerical experiment are presented in Table 11.148
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Table 11. Results of the second numerical experiment: accuracy δ
(j)
p and relative performance θ

(j)
p

on fixed lines tp, for d = 6, m = 1. The last line shows the performance of ZF-algorithm (sec).

Method j S(2)
1 S(2)

2 S(2)
3

MB 1
1.68 · 10−11

0.04
1.46 · 10−11

0.055
2.65 · 10−11

0.078

BLC 2
1.77 · 10−11

0.1
1.55 · 10−11

0.15
2.64 · 10−11

0.2

EMB 5
6.43 · 10−7

0.024
5.62 · 10−7

0.032
5.51 · 10−7

0.044

EBLC 6
7.07 · 10−7

0.034
7.78 · 10−7

0.048
7.84 · 10−7

0.065
ZF 7 86.64 121.29 173.14

The numerical experiments have been performed on Intel® CoreTM i7-8750H 2.2GHz149

(boosted to 4.0 GHz) processor with 16GB DDR4 RAM. The code has been compiled150

with g++ 11.2.0 compiler using O3 optimization. C++ Boost library has been used for151

the implementation of the incomplete beta function for BLC-algorithm.152

6. Discussion and concluding remarks153

Discussion of the results154

We have refined the error terms and the expressions for the minimal number of155

terms in MB- and BLC-series of efficient algorithms for the computation of the Riemann156

zeta function, taking into account the behavior of the series in the neighborhoods of157

critical points. Proposition 1 shows that MB-based algorithms converge faster than158

BLC-based algorithms. Indeed, MB-coefficient of the error term G(1)
n = O(0.172n) while159

G(2)
n = O(0.5n) (cf. (9)). However, BLC-approach has its advantages that might be useful160

in analytical research (cf. (4)). Note that this deficiency of MB-algorithm is solved by the161

introduction of NA-modification (19).162

The results of the numerical experiments (see Table 10 and Table 11) show that MB163

and BLC methods, along with their normal and empirical modifications, allow fast and164

accurate calculations of the Riemann zeta function for large values of argument t. The165

results demonstrate that the introduced modifications accelerate computations of the166

Riemann zeta function, compared to Zetafast method. These versions of algorithms are167

well-suited for distributed computations and grid computing.168

Findings of visual investigations of fractal structures, associated with the Riemann zeta function169

The illustrations obtained using FH-method clearly show the arrangement of trivial170

and non-trivial zeros of the Riemann zeta function in the complex plane (see Figures 5a,171

5b). In addition to these points, we can also see dark 2D curves that satisfy the conditions172

<(ζ(σ + it)) = 0 and =(ζ(σ + it)) = 0 (see Figure 4a). The SFH-method distributes173

deformed copies of the Mandelbrot set in the complex plane, thus relating the values of174

the Riemann zeta function to the fractal structure. This allows for a visual assessment175

of essential changes in the Riemann zeta function values. Next, SFH-approach reveals176

notable symmetric fractals characterizing the neighborhood of the pole of the Riemann177

zeta function (see Figure 6 and Figure 7).178

Future research directions179

Numerical experiments with empirical formulas indicate that the theoretical se-180

lection of the number of terms of the series n can be reduced. Next, the accuracy of181

the normal approximation-based modifications of MB and BLC algorithms might be182

refined by employing the theory of large deviations. The figures presented in this work183

reveal areas of the complex plane where the modulus of the Riemann zeta function184

exhibits very volatile values. This allows us to investigate the complex plane regions of185
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<ζ(s) = =ζ(s), thus enabling us to locate non-trivial zeros’ positions visually. In future186

works, these visual instruments could be refined.187
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MB Modification of Borwein’s algorithm
BLC Binomial-like coefficients
NA Normal approximation
FH First heuristic
SFH Second fractal heuristic
NGC New General Catalogue of Nebulae and Clusters of Stars
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