
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 2020 1

Towards Efficient and Deposit-Free
Blockchain-Based Spatial Crowdsourcing

Mingzhe Li, Student Member, IEEE, Wei Wang, Member, IEEE, and Jin Zhang, Member, IEEE

Abstract—Spatial crowdsourcing emerges as a new comput-
ing paradigm that enables mobile users to accomplish spatio-
temporal tasks in order to solve human-intrinsic problems.
Existing crowdsourcing systems critically use centralized servers
for interacting with workers and making task assignment deci-
sions. These systems are hence susceptible to issues such as the
single point of failure and the lack of operational transparency.
Prior work, therefore, turns to blockchain-based decentralized
crowdsourcing systems, yet still suffers from problems of lacking
efficient task assignment scheme, requiring a deposit to an un-
trusted system, low block generation speed, and high transaction
fees. To address these issues, we design a blockchain-based
decentralized framework for spatial crowdsourcing, which we
call SC-EOS. Our system does not rely on any trusted servers,
while providing efficient and user-customizable task assignment,
low monetary cost, and fast block generation. More importantly,
it frees users from making a deposit into an untrusted system.
Our framework can also be extended and applied to generic
crowdsourcing systems. We implemented the proposed system on
the EOS blockchain. Trace-driven evaluations involving real users
show that our system attains the comparable task assignment
performance against a clairvoyant scheme. It also achieves 10×
cost savings than an Ethereum-based implementation.

Index Terms—Blockchain, spatial crowdsourcing, task assign-
ment, smart contract

I. INTRODUCTION

CROWDSOURCING [15] is proposed as a new com-
puting model that outsources problems (tasks) to an

undefined group of internet users (workers) through an open
call for solutions. Thanks to the ever-evolving smart phone
technologies and the growing number of mobile phone users,
more extensive types of tasks in different scenarios could be
performed using mobile phones through spatial crowdsourcing
[19]. In spatial crowdsourcing, the outsourced tasks contain
spatial information, and they require workers to travel to some
specific locations to accomplish the tasks. Many companies

M. Li is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong, and with
the Department of Computer Science and Engineering, Southern University
of Science and Technology, Shenzhen, China (email: mlibn@cse.ust.hk).

W. Wang is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong (email:
weiwa@cse.ust.hk).

J. Zhang is with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and Engi-
neering, Southern University of Science and Technology, Shenzhen 518055,
China (email: zhangj4@sustech.edu.cn).

J. Zhang and W. Wang are the corresponding authors.
Copyright (c) 20xx IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

rely on spatial crowdsourcing as a primary means of solving
real-world problems, ranging from infrastructure monitoring
to smart transportation [29], [13], [18], [16], [26], [30]. There
are numerous well-known spatial crowdsourcing applications
such as Uber [7], Gigwalk [5] and Waze [8].

Traditional spatial crowdsourcing consists of three groups of
entities, requesters, workers and a centralized platform (a.k.a.
server) [19]. Requesters submit spatial- and temporal-related
tasks that need to be performed in a spatial crowdsourcing
platform. The platform then manages the tasks and assigns
them to different workers. Workers, upon receiving the tasks,
need to perform them at specified locations and return the
results to the server. In return, the workers will receive some
monetary rewards from the requesters through the platform.

Despite the popularity of the spatial crowdsourcing systems,
their centralized computing models lead to several concerns.
First, traditional spatial crowdsourcing systems are vulnerable
to a single point of failure due to the centralized architecture
[21]. Second, the centralized spatial crowdsoucing systems
often suffer from the issue of lacking operational transparency,
meaning that the operations made by the server cannot be
verified and tracked by users. Therefore, a misbehaving cen-
tralized server could manipulate the operations and result in
misbehaviors such as "collusion" and "false-reporting" [12].
Finally, spatial crowdsourcing companies charge non-trivial
service fees to requesters [5], which, in turn, increases the
costs for both workers and requesters.

Blockchain emerges as a promising decentralized technique
that can address the aforementioned problems in traditional
spatial crowdsourcing [11]. Many recent works, e.g., [21],
[23], [31], [28], [20], explored to combine crowdsourcing and
blockchain using smart contracts. The smart contracts can be
seen as programs that are stored on blockchain and executed
by blockchain nodes in a faithful manner. Yet, those efforts still
fall short in mainly three perspectives. First, few of the existing
blockchain-based crowdsourcing systems consider applying
efficient task assignment mechanism design into blockchain,
which is essential for any crowdsourcing systems [39], [14],
[10]. Second, each user (e.g., worker, requester) is required to
pay a deposit into the smart contracts so as to force users
to behave properly (e.g. transfer correct amount of fees).
However, the smart contracts are not bug-free and the contract
developers may not be trustable. As a result, the users are
taking the risk of losing their deposit [1]. Third, some previous
work suffers from the problems of low block generation speed
and high transaction fee [21]. The main reason is that those

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202205.0110.v1
http://creativecommons.org/licenses/by/4.0/


2 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 2020

studies rely on Proof of Work (PoW) as their consensus
protocol in which certain computing nodes (a.k.a. miners)
calculate complicated puzzles and compete with each other to
generate new blocks. As a result, the block generation speed
is decreased and users need to pay extra fees to compensate
the miners for their computing cost [9].

To address the above issues, we propose a novel blockchain-
based framework for spatial crowdsourcing named SC-EOS.
In SC-EOS, spatial crowdsourcing tasks of requesters and
worker information are published onto the blockchain. By
using various smart contracts we designed, the published tasks
can be assigned efficiently to suitable workers. In addition, SC-
EOS guards against malicious behaviors while eliminating the
need for requesters and workers to make deposits into smart
contracts, hence eliminating the risk of losing their deposit.

A well-performed system requires judicious designs. The
main challenges are in three aspects. First, how to design
a well-performed task assignment scheme. A good task as-
signment scheme should consider both the requirements of
workers and requesters, and be able to assign a large number of
tasks to workers. In practice, different workers/requesters may
have variant requirements and preference on their interested
tasks/workers. For instances, some workers like tasks with
higher reward, some tasks need workers with higher expertise.
Based on this observation, we propose a user-customizable
task assignment scheme in SC-EOS in order to perform
task assignment while satisfying various requirements and
preferences of workers and tasks. The user-customizable task
assignment scheme allows workers/requesters to customize
their preference in choosing tasks/workers, publish their pref-
erence onto the blockchain, and the task assignment scheme
matches proper tasks to workers based on the preference. To
assign more tasks to workers hence improving task assignment
efficiency, the proposed task assignment scheme is performed
in a batched manner. Specifically, the task assignment mecha-
nism is executed periodically, and multiple tasks are assigned
to multiple workers at a time in a batch.

Second, how to enable such an efficient and user-
customizable task assignment scheme in blockchain. It is
hard to enable such a batched task assignment mechanism in
blockchain. This is due to the fact that, in a distributed system
such as blockchain, there does not exist a trusted centralized
server to coordinate and handle the function of assigning
multiple tasks to multiple workers. Therefore, to accomplish
the batched task assignment scheme in blockchain, our design
intuition is to periodically select a particular requester and
require it to invoke the task assignment smart contract to
match multiple tasks and workers. However, another problem
occurs under such design. In blockchain, triggering the ex-
ecution of smart contract requires monetary cost. Therefore,
for fairness, the requester who triggers the task assignment
smart contract execution should be compensated for its cost.
Hence, to achieve a fair compensation settlement, we propose
a compensation scheme to require the rest of the workers and
tasks who are successfully assigned to compensate the cost
spent by that requester. Finally, a task assignment scheme

possesses lots of functions and complex logic. However, each
block in blockchain only has limited space to deal with
limited functions or logic, and thus cannot handle the whole
task assignment process. To address that, we split the task
assignment process into multiple small logic parts, each can
be executed without exceeding the block limitation.

Third, how should the system prevent a user from misbe-
having without requiring users to deposit into untrusted smart
contracts. Without the bondage of the deposit, a user in the
system may conduct misbehavior such as sending no reward or
submitting no results. To address this issue, we design a series
of linkage protocols, in which each user’s actions are linked
back and forth. Only if a user properly finishes the previous
step, it can perform the next step. The linkage design thus
incentive users to behave following the system’s rules without
requiring users to deposit into the untrusted smart contracts.

In addition, to accelerate the block generation speed and
lower the cost, Delegated Proof of Stake (DPoS) is used as our
consensus protocol where several delegated nodes collaborate
together to generate blocks. Finally, the proposed blockchain-
based spatial crowdsoucing framework could be generalized
to generic crowdsourcing systems by some modifications.

In summary, our contributions are as follows.

• We propose a blockchain-based decentralized framework
for spatial crowdsourcing named SC-EOS, and design
the whole process by leveraging the power of smart
contract. Our framework possesses the merits of efficient
task assignment scheme, no deposit to untruthful system,
low economic cost and fast block generation speed. In
addition, it does not suffer from a single point of failure
and possesses operation transparency.

• We propose a user-customizable, blockchain-specialized
batched task assignment mechanism to achieve efficient
and customizable task assignment for crowdsourcing atop
of blockchain. In addition, a series of linkage protocols
are proposed to force users to make proper behaviors
in strict accordance with the system rules, obviating
the need for making additional deposit into the spatial
crowdsourcing system.

• We implement the proposed framework to verify the
feasibility based on EOS with real users and real-world
dataset. Experimental results show that the task assign-
ment scheme leads to an efficient and effective result
in terms of the number of the assigned tasks, which is
close to the performance of a clairvoyant task assignment
scheme. In addition, our framework achieves 10× lower
economic cost for users compared with the same system
we implement on Ethereum.

II. BACKGROUND AND RELATED WORK

A. Blockchain and Smart Contract

Blockchain is a decentralized distributed ledger originally pro-
posed by Nakamoto in the Bitcoin project [25]. In blockchain,
a set of time-ordered transactions containing use-case specific

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


LI et al.: TOWARDS EFFICIENT TASK ASSIGNMENT IN BLOCKCHAIN-BASED SPATIAL CROWDSOURCING 3

data (e.g., currency transfers, or program codes) are recorded
in files called blocks. Each block contains the hash value of
the previous block, and they eventually form a hash chain
named blockchain. The blockchain has the properties of de-
centralization, transparency, traceability and immutability. It
thus has great potential to be exploited in various scenarios
such as cryptocurrency, digital health, internet of things and
crowdsourcing.

Smart contract is used for blockchain to provide various com-
plex logic functions in a faithful manner. It is a collection of
code and data stored in a blockchain, which can perform some
pre-defined operations. The smart contract is non-tamperable
and traceable by using the digital signature and the time
stamp of the blockchain technology. Each blockchain nodes
can observe the status and execution records of the contract
through interactions with the blockchain. Therefore, we use
smart contracts to perform task assignment process of spatial
crowdsourcing, and hence, all the functions will get executed
faithfully and no black-box operation exists in the system.

B. Ethereum

A straightforward way for the system implementation is to
implement it based on Ethereum. Ethereum is a well-known
blockchain-based platform that implements smart contracts
[4]. The Ethereum uses PoW consensus protocol that requires
miners to competitively do a compute-intensive verification
to maintain the consensus for each block. In Ethereum, the
execution for each transaction will consume a certain amount
of fees (called "gas"), which is intended to limit the amount
of operations to execute the transaction and pay the execution
cost to miners. When executing a transaction, the gas will be
gradually consumed according to certain rules.

However, there are some drawbacks of using Ethereum.
First, the PoW-based consensus algorithm causes the waste
of computing resources and limits the throughput of the
network. At present, the throughput of Ethereum is only tens
of transactions per second. The high latency of the network
makes the performance of distributed applications built atop
Ethereum incomparable to those of centralized services. Sec-
ond, executing smart contracts on Ethereum consumes gas,
and for highly interactive applications such as crowdsourcing,
high-frequency transactions could result in high monetary cost.
Therefore, Ethereum is not suitable for our crowdsourcing
application scenario.

C. EOS

We choose EOS for our system implementation. EOS is
a promising blockchain platform designed for commercial
distributed applications that also adopts smart contracts [3].
The purpose is to solve the problems of low performance and
high transaction cost of the existing blockchain platforms. EOS
typically achieves a throughput of thousands of transactions
per second [2]. We choose to build our system atop of EOS

mainly because of its feature of high throughput and low
monetary cost.

DPoS consensus protocol. DPoS consensus protocol enables
the high throughput of EOS. Unlike Ethereum, EOS uses the
DPoS (Delegated Proof of Stake) consensus mechanism to
generate blocks. 21 super nodes are elected as block producers
by the whole network token-holding nodes, and the super
nodes take turns to confirm and record the transaction data.
Since block producers do not need to compete for mining,
EOS can accurately generate a block every 0.5 seconds, and
the transaction can be irreversibly confirmed after 1 second,
which is much faster than Ethereum.

RAM cost. The monetary cost in EOS is due to buying RAM,
which is low according to our evaluation results. The RAM
is used for a user to store data in an in-memory database.
The database is called EOS database maintained by the super
nodes. In practice, it is often the case to cope with multi-
ple complex operations (e.g. the task assignment process in
crowdsourcing) rather than a single monetary transfer between
users. It is generally required for users to save data (e.g.
task assignment results) onto the blockchain while executing
sophisticated operations in smart contracts. Hence, users are
required to purchase RAM space from EOS for data storage.

Action. A user needs to invoke the smart contracts to perform
task assignment, such invocation is achieved by pushing an
action into EOS network. An action is the most elementary
component in EOS, which represents a single operation. One
or multiple actions form a transaction, and the block producers
will pack one or multiple transactions into a block and generate
the block. Contracts and users in EOS communicate in the
form of pushing actions to the blockchain network.

D. Prior Work and Its Inefficiency

Traditional spatial crowdsourcing systems. With the wide
adoption of the smart mobile devices, Spatial crowdsourcing
has attracted an increasing amount of attention. The main
focus of spatial crowdsourcing includes: (a) task assignment
scheme design [37], [14], [10], (b) incentive mechanism design
[22], [35], [34], (c) data aggregation, quality control and eval-
uation [24], [17], [33], and (d) security and privacy problems
in spatial crowdsourcing [36], [32], [38]. The design of the
task assignment mechanism is crucial for a crowdsourcing
system. An efficient task scheme should assign more tasks at
faster speed with both the requesters and workers satisfying the
assignment results. Although many task assignment schemes
have been proposed in traditional crowdsourcing systems, they
cannot be directly applied in blockchain-based systems without
a centralized server. Moreover, those centralized models suffer
from issues such as a single point of failure and the lack
of operation transparency, preventing the wide adoption of
spatial crowdsourcing.

Blockchain-based crowdsourcing system. With a growing

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


4 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 2020

interest in Blockchain technology, there are quite a few at-
tempts to build crowdsourcing systems atop blockchain. For
example, Li et al. [21] presented CrowdBC, a basic design
of a blockchain-based framework for crowdsourcing systems.
A private and anonymous blockchain-based crowdsourcing
system called ZebraLancer was proposed in [23] in order
to address the data leakage and identity breach problems.
NF-Crowd [20] was proposed to reduce the lower bound
of the total cost of a decentralized crowdsourcing project.
Tan et al. [28] proposed a blockchain-empowered and de-
centralized trusted service mechanism for the crowdsourcing
system in 5G-enabled smart cities. The most related work
to our approach is an industry project named Moonlight
[6], which is a platform to hire knowledgeable workers for
different projects. However, the details about the design of its
protocols are not provided. Furthermore, the platform is built
on NEO blockchain, which is fundamentally different from
the blockchain used in our system. However, nearly none of
the prior work considers to design an efficient task assignment
scheme based on blockchain. Moreover, they require users to
deposit into their system, which increases the risk for users
to lose their deposit once facing malicious developers or
encountering smart contract bugs [27], [1].

III. SYSTEM OVERVIEW

In this section, we present the basic system architecture
for our blockchain-based spatial crowdsourcing system. Based
on the system architecture, we explain the intuitions and
challenges behind several core designs of our system, i.e., the
blockchain-based efficient and user-customizable task assign-
ment mechanism design and the design of the linkage protocol
to prevent users from misbehaving with no deposit.

Blockchain

Requester

Requester

Requester

Requester

Worker

Worker

Worker

Worker

Worker

CA

Fig. 1: SC-EOS system architecture.

A. System Architecture

There are four entities in our system model: Requester,
Worker, Blockchain Platform, and Certification Authority

(CA). The basic system architecture is shown in Fig. 1.
In particular, requesters, denoted as R = {r1, ...,rj, ...,rm},
with location-related tasks T = {t1, ..., tk, ..., tp} could release
their task information and gather the task results through the
blockchain. Workers, identified by W = {w1, ...,wi, ...,wn},
also publish their information and could claim rewards via the
blockchain. The blockchain serves as a hub to bridge workers
and requesters as well as manages the spatial crowdsourcing
process by leveraging multiple smart contracts. The CA verifies
and manages unique identities of workers and requesters
before they join into our system, by binding each identity to
a unique credential (e.g. a digital certificate).

The CA conducts user authentication and access control
for the system, which is a necessary demand for many real-
world crowdsourcing systems. For example, MTurk and Waze
need the CA to prevent malicious participants. In addition, the
authentication is done offline only once for each worker and
requester and hence can be seen as an initialization process of
the whole procedure in our system.

B. Design Intuitions and Challenges

It is with significant importance in a crowdsourcing system
to design a task assignment mechanism with high efficiency.
However, existing blockchain-based crowdsourcing systems
only apply naive task assignment scheme where requesters
publish their tasks atop blockchain and workers select the ones
they are interested in. Hence, we design a blockchain-based
efficient task assignment mechanism, where the functionalities
of the mechanism are implemented in smart contracts. In our
design, requeseters and workers can publish their customized
requirements onto the blockchain, the blockchain then uses
smart contracts to assign multiple tasks to workers based on
their variant requirements periodically. Therefore, more tasks
will be assigned in shorter time and efficiency is achieved.
However, it is challenging to design a blockchain-based
efficient task assignment scheme. We list several main
challenges as follows.

First, how to efficiently assign tasks in a decentralized
blockchain system. The users join in and leave the system
dynamically, hence, individually conducting task assignment
for each user would be inefficient. Therefore, an efficient
task assignment scheme should be periodically performed in
different time points, and group users to assign multiple tasks
to workers at once. However, such a method is challenging
to be implemented in a decentralized blockchain framework,
since there exists no centralized server to control the time
points, perform the task assignment, and bear the compu-
tational cost. In blockchain, it is the distributed users who
invoke the smart contracts to perform task assignment, and
the user who invokes a smart contract should bear the cost for
executing it. Therefore, we design a protocol that the smart
contract periodically delegates a requester to perform task
assignment for multiple workers and tasks. In addition, the
assigned workers and tasks give back a compensation to the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


LI et al.: TOWARDS EFFICIENT TASK ASSIGNMENT IN BLOCKCHAIN-BASED SPATIAL CROWDSOURCING 5

delegated requester to compensate its cost for executing task
assignment process.

Second, how to implement the task assignment scheme with
numerous operations in the blochchain when each block has
limited space. Each block in blockchain only allows limited
operations (i.e., transactions) to be executed. The exceeded
operations will cause the failure for a block to be packed.
However, a task assignment scheme contains vast number of
operations, making the combination of the task assignment
scheme and the blockchain even challenging. To address this
challenge, we split the whole task assignment process into
multiple modules, each with limited operations, so that the
whole task assignment process could be handled in multiple
blocks without failure.

Third, how to consider both workers’ and requesters’ variant
requirements and preference, and assign tasks to proper work-
ers. The results of the task assignment should be satisfactory to
both the requesters and the workers. Existing task assignment
schemes usually consider distance as the solely metric and
assign tasks to those workers who are near to them. However,
different workers/requesters may have different requirements
and preference in choosing tasks/workers in practice. For
example, some of the workers want to find tasks with higher
rewards, while some other workers prefer tasks that are easy
to finish. Therefore, we propose a user-customizable task as-
signment scheme in which both requesters and workers could
choose different preference requirements on workers/tasks.
Based on the preferences, a stable matching is performed to
assign tasks to the proper workers.

It is essential to prevent users from misbehaviors in any spa-
tial crowdsourcing systems, where a misbehaving user could
evade paying money or paying an incorrect amount of money.
To ensure proper behavior by users, existing blockchain-based
crowdsourcing systems force the users to deposit certain fees
into the smart contract they developed before they join into the
system. However, such a deposit scheme could raise significant
issues if a malicious system developer, for instance, withdraws
the money deposited in the smart contract or the deposited
money gets stolen by a hacker. Thereby, we design a series
of protocols to motivate users to behave following the rules
in the system without requiring a deposit. The intuition of
the protocol design is to link a user’s previous step to its
subsequent step. Only a user when determined by the smart
contract as behaving properly in the former step, could the
user perform the next step.

IV. SYSTEM DESIGN

In this section, we present the proposed blockchain-based
spatial crowdsourcing system, SC-EOS. We first describe the
overview of the system, followed by a brief description of
the user information content. Then, we explain the two core
designs of our system, which are the user-customizable and
blockchain-specialized task assignment mechanism, and the
misbehavior-preventing and deposit-free protocol.

A. System Overview

We now briefly overview our system. The certificated re-
questers/workers can publish their task/worker information
onto the blockchain, containing their various requirements
and preference. Those information will be used for task
assignment. Time is divided into slots in our system, to enable
efficient task assignment in blockchain, only one requester
will be delegated to perform task assignment in one slot.
Specifically, the first arrived requester in a slot is elected
and perform task assignment for multiple online workers
and tasks. To make proper assignment, the task assignment
scheme will consider the tasks’ and worker’ variant preference,
and tries to assign tasks to workers who are more suitable
for them. Since the task assignment is performed by certain
requester, to compensate its cost for invoking smart contract,
an amount of compensation is given back to it by the other
tasks/workers who get assigned. Through the whole procedure,
requesters/workers invoke multiple smart contracts to achieve
all the functionalities. To enable the complex functionalities to
be successfully executed, the smart contracts are split into finer
parts, so that each part can be executed in a block. Finally, to
prevent users from misbehavior, we link smart contracts with
each other. Only if a user properly finished the last step, can
it start to move on to the next step.

B. Task/Worker Information Content

Requesters and workers need to publish their information
atop of the blockchain, which contains the required informa-
tion for the task assignment. Each user in our system needs
to publish the required information onto the blockchain to
be online through either a TaskReleasing smart contract for
a requester or a WorkerReleasing smart contract for a worker.
The TaskReleasing/WorkerReleasing smart contract will record
the task/worker information into the EOS database.

The basic task information for a requester includes: the task
ID, the requester ID, the location of the task, the waiting time
of the task, the payment of the task, the preference rule of the
task, other property information of the task, and the description
of the task.

The basic information for a worker contains: the worker
ID, the location of the worker, the waiting time of the worker,
the preference rule of the worker, along with other property
information of that worker.

We further explain several fields in the information. First,
the waiting time, which will be used in the batched task
assignment, represents the maximum amount of time that a
worker or task is willing to wait before it gets assigned.
The task/worker can not be assigned after the waiting time
is expired. Second, the preference rule means what preference
should a task/worker follow to sort and choose worker/task
(e.g. based on distance). Third, the field of other property
information for a task/worker contains more options in order
to allow a worker/task to sort (e.g. the difficulty of a task). The

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


6 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 2020

TABLE I: Functionality of Smart Contract

Smart Contract Name Main Functionality
TaskReleasing Record the task information and invoke the

task assignment execution
WorkerReleasing Record the worker information

TaskMatching Perform the task assignment and invoke the
result notification

ResultInform Notify users about the task assignment results
and the compensation

CompensationVerify Transfer and verify the compensation
TaskSubmission Record the task results

Reward Grant rewards to workers

above two fields will be used to achieve the user-customizable
task assignment.

C. Task Assignment Mechanism Design

A naive consideration to make task assignments based
on blockchain is to empower workers choose the published
tasks, which is adopted in most of the previous blockchain-
based crowdsourcing systems. However, this could result in
unsatisfactory task assignment results since one’s preferred
worker/task may prefer others. Furthermore, it will be ineffi-
cient if the mechanism allows workers and requesters to nego-
tiate with each other and choose the satisfied opposites, since
the negotiation may last for several rounds or even may not
terminate. Hence, we propose to leverage the smart contract
to help workers and requesters perform task assignments.

The proposed task assignment mechanism is implemented
in the TaskMatching smart contract and will be automatically
executed after the execution of the TaskReleasing smart con-
tract. The TaskMatching smart contract will first judge whether
to make a task assignment and only assign tasks when it
is needed. The tasks will be assigned according to both the
preference rules of workers and requesters through a stable
matching approach. The assignment results will be sent to the
matched requesters and workers through a ResultInform smart
contract after the task assignment is performed.

We will now explicitly explain the proposed task assignment
scheme in terms of how it improves the efficiency through
a batched manner, and how it performs the task assignment
based on users’ preferences.

Task assignment in batch. Our task assignment scheme is
with a batched manner, in which a group of users get assigned
together, to improve its efficiency. Specifically, the first arrived
requester in one time slot will trigger the execution of the
task assignment at the next time checkpoint, and the task
assignment mechanism will assign all the waiting tasks to
waiting workers in a batch. We will now elaborate on the
design aspects we made to achieve the above purpose.

To enable periodic task assignment, we divide time into
multiple time slots and create time checkpoints at the be-
ginning of each slot. This functionality is achieved through
implementing a global clock which records the latest block
generation time. In our framework, each time slot is set to

Time1 2 3 4

Task 1 (t1)

Worker 1 (w1)

Task 2 (t2)

Worker 2 (w2)

Worker 3 (w3)

Worker 4 (w4)

Task 3 (t3)

Task 4 (t4)

t2 performs task assignment for 
t1, t2, w2, and w3

t4 performs task assignment for 
t3, t4 and w4

Time slot 2Time slot 1 Time slot 3

Fig. 2: An Illustration of Batched Task Assignment.

be with equal interval (e.g. 10 minutes). Once a requester
rj has a task tk , it can push an action (similar as sending a
transaction) to blockchain and trigger the TaskReleasing smart
contract to record the task information. The TaskReleasing
smart contract will also check the global clock, record it as
the arrival time of rj , and compare the arrival time with the
last time checkpoint. Only if rj is the first arrived requester
in one time slot (if multiple requesters arrive at the same
time, randomly pick one), the TaskReleasing smart contract
triggered by rj will invoke TaskMatching to perform task
assignments automatically at the next time checkpoint.

The task assignment would get delayed and automatic
execution at certain time checkpoint. As aforementioned, the
requester arrival and the task assignment are not at the same
time. Specifically, the task assignment mechanism will get
automatically performed at the time checkpoint in the future.
To empower this functionality, we use the action which can
perform delayed invocation named deferred action. Through
a deferred action, the tasks will not get assigned immediately
when invoking TaskMatching, yet will be allocated automati-
cally at the next time checkpoint.

Fig. 2 presents an illustration of our batched task assignment
scheme. In which the owner of t2 will perform task assignment
at time checkpoint 2 for the waiting workers w2, w3 and
waiting tasks t1, t2, as t2 is the first arrived task during time slot
1. The same reason for the task assignment at checkpoint 4.
The task assignment will not get performed at time checkpoint
3 since no task arrives during time slot 2.

User-customizable task assignment. The proposed task
assignment scheme conduct a stable matching between the
waiting workers and tasks, based on their preference rules.
Since different workers/tasks may have different preferences
when choosing tasks/workers. The stable matching is used for
improving the users’ satisfaction of the task assignment results.

The user-customizable task assignment scheme is imple-
mented in the TaskMatching smart contract. The mechanism
will firstly build a specific preference list for each waiting
worker/task according to its selected preference rule. For
example, if a worker wants to select tasks based on the
distance, the mechanism will generate a preference list for

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


LI et al.: TOWARDS EFFICIENT TASK ASSIGNMENT IN BLOCKCHAIN-BASED SPATIAL CROWDSOURCING 7

it which contains the waiting tasks ordered from the nearest
to the farthest. Table II lists the preference rules pre-defined in
our system for workers and requesters to choose. More other
preference rules could be supplemented to the system as well.

Based on the preference lists of tasks and workers, a
stable matching algorithm will get performed between waiting
workers and tasks, and generate the task assignment results.
A worker/task may get one of the two possible states after the
matching: either it is stable or not matched by anyone, since
the number of waiting workers and the number of waiting
tasks may not be the same. In addition, here we consider
the situation that one task can be assigned to one worker,
and one worker can be assigned one task at a time. This is a
practical demand in real world such as car sharing like Uber.
If a requester wants to publish more tasks or a worker seeks
for more tasks to perform, one will be matched in the future
time checkpoints.

Transaction split. We split the transactions containing the
task assignment mechanism and increase the running time
limitation in each block to enable a successful execution for
each transaction. Since a task assignment scheme contains
multiple operations (regarded as transactions in blockchain)
sometimes will exceed the limitation of a block. Specifically,
there is a running time limitation for each transaction as well
as block in EOS. Hence, we split the transactions with long
running time into multiple micro transactions and increase
the transaction running time limitation to ensure that each
transaction can be finished within the transaction running time
limitation, resulting a larger scale task assignment.

Compensation claim. The matched workers and tasks need
to compensate the cost spent by the requester who triggers
the task assignment execution. Since the execution of our
proposed task assignment mechanism will consume the RAM
space of the requester who triggers it (e.g. requester rj),
leading to a result that rj spends more monetary cost. Such
unfairness would hinder users from joining into our system. To
improve the fairness among users in terms of monetary cost,
other matched workers/requesters with the same batch should
transfer compensation to rj .

To inform each matched worker and requester about the
compensation it should send and the matching results, the
ResultInform smart contract will get invoked by TaskMatching
after the task assignment. The notification messages are then
sent via blockchain from the requester rj to the matched
workers and requesters.

The amount of compensation is decided and calculated in
the TaskMatching smart contract. The compensation calcula-
tion rule is that each of the other matched workers and tasks
should pay requester rj 1/N of the total consumed RAM cost,
where N is the number of matched workers and tasks during
this task assignment process.

…
Blockchain

Registered
Requester

Task info
rmation TaskReleasing

Block # 333

WorkerReleasing Worker information

Registered
Worker

TaskMatching

Block # 334

ResultInform

CompensationVerify

Block # 335

TaskSubmission

Reward

…

Registered
Worker

Registered
Requester Task assignment

result
Task assignment
result

CompensationCompensation

Registered
WorkerTask results

Registered
Requester

Send reward

Interactions between users
and smart contracts

Smart contracts

BlocksAutomatic triggering of smart
contracts

Fig. 3: Basic workflow.

D. Summarized Workflow

In this section, we give a summary for the basic workflow
of SC-EOS, which is shown in Fig. 3. In our design, we imple-
ment main functionalities in a spatial crowdsourcing system
into different smart contracts, and the smart contracts invoke
each other to accomplish the spatial crowdsourcing procedure.
The main functionalities for different smart contracts in our
framework are enumerated in Table I.

Our system mainly contains following stages:

Stage 0: the requesters and the workers get certifications
and register into our system through CA. Stage 1: each certifi-
cated requester/worker can publish its task/worker information
onto the blockchain through a TaskReleasing/WorkerReleasing
smart contract. Stage 2: when it is necessary to perform
the task assignment for workers and tasks, the TaskMatching
smart contract will be invoked by TaskReleasing to execute the
task assignment scheme in a batched and user-customizable
manner. Stage 3: after the task assignment is executed, the
TaskMatching smart contract will invoke ResultInform to send
assignment results to the assigned workers and requesters.
Stage 4: since the task assignment process is in deed trig-
gered by a certain requester (i.e. TaskReleasing, who invokes
TaskMatching, is triggered by a requester), an amount of fee is
required to compensate the cost of that requester, for perform-
ing the task assignment, through the CompensationVerify smart
contract. Stage 5: the task results will be sent to the blockchain
via the TaskSubmission smart contract by the workers who
performed the assigned tasks, and Stage 6: the requesters after

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


8 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 2020

receiving the task results will send rewards to the workers
through the Reward smart contract.

E. Misbehavior-preventing and Deposit-free Protocol Design

A user has incentives to misbehave deviating from the sys-
tem rules without the bondage of a deposit, while depositing
to the smart contracts of an untrusted system will cause other
issues. Therefore, we inventively design a series protocols to
prevent users from misbehaving with no need for depositing
into our smart contracts. The misbehaviors in our system
contain: not sending compensation by users, not performing
tasks by workers, not sending rewards by requesters, and
creating redundant user information. The main idea of the
protocol is to link several steps together to ensure that only if
users behave properly in the previous steps can they perform
the following steps.

The linkage between TaskMatching and CompensationVer-
ify. To prevent users from not compensating to the requesters
who performed the task assignments, the CompensationVerify
smart contract will verify the compensation status. Specifically,
when a worker/requester receives the task assignment result
and the claimed compensation, it needs to send the correspond-
ing compensation to requester rj through a transfer. This trans-
fer will trigger a smart contract called CompensationVerify,
and the smart contract will search the data, in EOS database,
which containing the amount of required compensation and
generated by TaskMatching. CompensationVerify will then
check whether the compensation in the transfer is equal to
the required compensation. If and only if a worker/requester
indeed sends the transfer and the compensation equation holds,
it will be marked as valid in CompensationVerify and the
validation data will be saved in the EOS database, as well
one can perform the following steps.

After a worker receives the task assignment result and
sends the compensation to requester rj , it can physically move
to the location of the assigned task and perform it. After
the task is performed, the worker needs to submit the task
result along with its location onto the blockchain through the
TaskSubmission smart contract. The location, which can be
obtained through the GPS on the smartphone, is necessary to
be reported since it can verify whether the worker is indeed
at the task location.

The linkage between CompensationVerify and TaskSubmis-
sion. Once a worker triggers the execution of the TaskSubmis-
sion smart contract, it will first check whether the worker is
valid by searching the validation data generated by Compensa-
tionVerify. If the worker is invalid, the TaskSubmission smart
contract will reject the worker’s task submission request and
hence the worker cannot receive any task reward in the follow-
ing steps. Otherwise, the smart contract will record the task
result and the location of the worker into the blockchain. In
addition, the TaskSubmission smart contract will also mark the
worker for this task as offline by removing the corresponding
worker information from the EOS database. If multiple worker

information coexists for a worker, the smart contract will only
remove the one related to performing this specific task.

The linkage between CompensationVerify and Reward. After
the worker successfully submit the task result, the requester
who owns the task need to trigger the Reward smart contract
to perform task evaluation and send reward to the worker
who performed the task. The Reward smart contract will
first search and check the validation data of the requester
to scrutinize whether the requester has submitted the correct
compensation to requester rj . If the compensation has not been
sent or the amount of compensation is incorrect, representing
the requester is invalid, the task evaluation request will get
rejected by Reward and the requester cannot conduct further
steps. If the requester is valid, the Reward smart contract will
perform the task evaluation according to an evaluation function
to judge the quality of the task performing results. In addition,
the smart contract will calculate the amount of reward and send
proper reward to the specific worker. At the end, the Reward
smart contract will mark the task as offline and wipe up the
corresponding task information from the EOS database.

The linkage between TaskSubmission/Reward and Worker-
Releasing/TaskReleasing. We manage the whole process as
a circle to prevent more improper behaviors. Specifically, a
user could misbehave to create multiple accounts, publish
multiple redundant user information to the blockchain. As a
result, a misbehaving worker may not perform the assigned
tasks, meanwhile a misbehaving requester may refuse to pay
for the rewards. We tackle this issue using the power of the
certification authority (CA). Each user should first register
and get certificated at CA before joining in, to bind its real
identity to a unique account in our system.

A misbehaving user could also publish multiple redundant
user information even with a single account. To solve this
problem, we set a quota for each worker and requester. The
quota is a system-defined value set in the TaskReleasing and
WorkerReleasing smart contracts, representing the maximum
number of task/worker information that can be simultaneously
coexisted for one requester/worker. If the number of the online
task/worker information for a given requester/worker does
not exceed the quota value, the requester/worker can further
publish their information onto the blockchain, otherwise the
TaskReleasing/WorkerReleasing smart contract will reject the
requester’s/worker’s request.

Therefore, if a worker refuse to perform the assigned tasks
or a requester refuse to pay for the rewards for multiple
times, the number of its online task/worker information will
eventually reach its quota, leading to a result that the user
cannot publish any information anymore.

Discussion of the protocol. We assume the users in the system
want to use the system in long-term. Therefore, the linkage
protocol will prevent users from misbehaving since it link
each step together, and if a user misbehaves, it will stuck
and cannot do any further actions. However, our design has

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


LI et al.: TOWARDS EFFICIENT TASK ASSIGNMENT IN BLOCKCHAIN-BASED SPATIAL CROWDSOURCING 9

TABLE II: Preference Rules for Workers and Requesters

For Workers For Tasks
(Choose Tasks According to) (Choose Workers According to)

Distance Distance
Payment Reputation
Difficulty Expertise
Deadline Time to reach the task

limited prevention for the misbehaving users who only want
to use the system for few times. To alleviate this issue, we
use the power of the certification authority (CA). The CA will
evaluate the credit of a user in real world, and only certificates
the users who are credible, and bind their real identity to a
unique account in our system (i.e., it prevents Sybil Attacks).
When a user perform misbehavior in the system, its real-world
credit will also get downgraded. Therefore, rational users will
reduce their misbehavior and behave properly in our system.

It is worth noting that EOS requires users to stake tokens
for the usage of CPU and NET and the tokens will be returned
after the usage of CPU and NET. Such kind of deposit does
not belong to the category that "deposit to the smart contract
of an untrusted system". The reason is that the tokens to
exchange CPU and NET is actually deposited in EOS itself,
while the tokens that need to be deposited in the system is
deposited to the application built atop of the blockchain. A
practical thinking is that the blockchain has a higher degree
of credibility than the applications built upon it. Hence we
make the assumption that the blockchain itself can be trusted
while the systems built on the blockchain has lower credibility.

Isolate the permission of the data modification. As men-
tioned in Sec. II, the data is saved in the EOS database. In
addition, the database can be public seen by anyone and the
data in it could, by default, be accessed by any user. However,
a misbehaving user can modify other users’ data if there is
no restriction on the data modification permission. Hence,
it is essential to thoroughly manage the data modification
permission control in our system.

In our SC-EOS system, each user only has the permission
to modify the data belongs to itself. However, this permission
limitation makes the system design more sophisticated. For
example, after the task assignment mechanism is performed,
the status of whether a user is successfully assigned should be
updated. A most convenient way to achieve this is to directly
change the status for every user. However, in our design, the
requester rj who performs the task assignment is not permitted
to modify any data that belongs to others. Thereby, we design
to record the user states in its own data field, and the one who
needs to get these states can search for the fields that store the
data and read it.

V. EVALUATION

In this section, we will show the results of our proposed
SC-EOS to see its economic cost and task assignment perfor-
mance.

TABLE III: Monetary Cost Evaluation for Single User

Requester/Worker ID #1 #2 #3 #4 #5
Monetary cost for requesters ($) 0.26 0.23 0.23 0.24 0.25
Monetary cost for workers ($) 0.11 0.10 0.11 0.11 0.10

A. Evaluation Setup

We implemented a prototype of our system based on EOS
blockchain to test our framework and scheme on a test
network, since the underlying architecture of EOS has been
modified to better match our framework. The test network
consists of three PCs to play the role of super nodes, they are
Lenovo with Ubuntu 16.04 LTS installed, equipped with Intel
Core i5-8400 CPU and 16GB main memory, along with five
laptops mimic requesters and five laptops act as workers.

We first evaluated the monetary cost caused by the RAM
consumption for single user in our SC-EOS system. We
then evaluated the economic cost of our SC-EOS and also
implemented a simplified version of our spatial crowdsourcing
framework on Ethereum as a comparison. Finally, the eval-
uation also includes the performance of our proposed user-
customizable blockchain-specialized task assignment scheme.

The last two experiments are performed on the NYC TLC
Trips dataset. We used the data from trips completed in Yellow
taxis in NYC in the year of 2016. We assumed that the
workers’ locations were at the drop-off locations while tasks
were at the pick-up locations. The tasks’ arrival times are
set as the pick-up times in the dataset while the arrival of
workers are set as obeying the Poisson process with a default
arrival rate λ = 1/2 per min, which means the arriving interval
α = 2min. As for the waiting times of workers and tasks,
we use a widely accepted assumption that they obey Pareto
distribution, in which the default values are set as minimum
waiting time xmin = 10min, and the shape parameter k = 3.

B. Monetary Cost Evaluation for Single User

We employed 5 requesters and 5 workers in different
locations to imitate the spatial crowdsourcing process in SC-
EOS, where each requester had one food take-away request,
and each worker delivered the food for the assigned requester.
We mainly evaluated the monetary cost for each user due to
the RAM consumption. The evaluation results are illustrated
in Table III.

The results show that both workers and requesters only
cost few in our system. As a comparison, the well-known
spatial crowdsourcing platform Gigwalk will typically charge
the requester for several dollars for publishing one task [5].
The cost for a requester is usually higher than a worker mainly
because of more information contained in a task.

C. Overall Economic Cost Evaluation

We conducted the evaluations to measure the system overall
economic cost. Especially, we implemented a prototype of our

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


10 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 2020

4 6 8 10 12

observation time (h)

10
0

10
1

10
2

c
o
s
t 
($

) EOS
ETH

(a) Observation time vs. cost.

100 120 140 160 180 200

arriving interval (s)

10
0

10
1

10
2

c
o
s
t 
($

)

(b) Arriving interval vs. cost.

400 500 600 700 800

waiting time (s)

10
0

10
1

10
2

c
o
s
t 
($

)

(c) Waiting time vs. cost.

Fig. 4: Overall Cost Evaluation.

spatial crowdsourcing system atop of EOS (SC-EOS) and also
a simplified version on Ethereum, and compare them to see
how much SC-EOS can save money for users.

We assume that every worker/requester will sell its RAM
after using, and will buy RAM when it is needed. We first
evaluated the overall cost change over time, Fig. 4a illustrates
the result. We then changed worker arriving interval and
evaluated for 12 hours to observe its influence to the overall
cost and shows the result in Fig. 4b. We also performed the
evaluation to see the influence to the overall cost in 12 hours
by changing task and worker waiting time, where the result is
shown in Fig. 4c.

From the results we can see that the overall cost in SC-EOS
is always much lower (more than 10× lower) than the spatial
crowdsourcing system built in Ethereum in any situation above
no matter how the parameters change. The main reason is that
the economic cost for SC-EOS is mainly produced by buying
RAM. The RAM cost is a one time cost and one can sell it after
using, and only need to be charged for 0.5% transaction fee
by the EOS blockchain. However, in Ethereum, each operation
will consume gas, which will cause transaction fees for users.
The consumption of the gas is related to the operations and
cannot be sell like the RAM in EOS.

D. Task Assignment Scheme Evaluation

We presented the task assignment mechanism performance
in this subsection. We mainly considered two metrics to illus-
trate the performance of our task assignment mechanism. The
first one is the number of workers/tasks that are successfully
matched. The second one is named "rank percent". Since each
worker or requester has its own preference rule (e.g. rj likes
to order workers by distances, while wi prefer to order tasks
by payments), it is nonsense to only choose one rule (e.g.
distance) to illustrate the mechanism performance. Thus, we
used rank percent to represent the top percent of ranking in
the total preference list for a worker/task who is matched to
another task/worker. For example, if the length of a preference
list of a worker wi is 10 and the matched task tk is the second
preferred task for that worker, the rank percent is hence 20%.

We compared our task assignment scheme with a naive
random matching scheme and a clairvoyant matching scheme.

• Naive random matching. Each task, once it is online, will
search all the workers and tasks that are waiting at that
time and perform a random matching. However, only the
matching result related to itself is valid.

• Clairvoyant matching. The system knows all the future
tasks and workers and can do stable matching at any time
point with the combination of the future information.

In this evaluation, we randomly chose 30 tasks from the
dataset and the workers are keep arriving. We conducted a
series of evaluations to see the number of matched work-
ers/tasks and rank percent results by changing the worker
arriving interval, worker waiting time, the shape parameter
k value, and the task waiting time. The results are shown as
Fig. 5. From the results we can conclude that our mechanism
achieves sub-optimal performance compared with the clairvoy-
ant mechanism, in both the number of matched workers/tasks
and rank percent. The main reason for the gap is that the
clairvoyant scheme can predict the future and do matching at
any time point, yet this clairvoyant scheme is impractical in
real world systems. The random matching scheme performs
the worst in matched number, since it doesn’t apply batched
algorithm and only let each task to do matching for itself. The
random matching also has the highest rank percent, which is
also the worst, since it only use random matching and hence
the user may not satisfied with its matching result.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented the design of SC-EOS, an
EOS-based framework for spatial crowdsourcing. We ana-
lyzed that the traditional centralized spatial crowdsourcing
system suffers from the problems such as lack of operation
transparency, single point of failure and high services fee,
while previous blockchain-based crowdsourcing frameworks
hold the issues of depositing to an untrusted system, naive
task assignment scheme, low throughput and high transaction
fee. We formalized SC-EOS to handle these problems. We
carefully designed our spatial crowdsourcing paradigm and
modified EOS to make them a better fit. Specifically, we
proposed a user-customizable and batched task assignment
mechanism specially built for blockchain, along with a series
of protocols based on smart contract to prevent users from
misbehaving without the need for a deposit. Besides, we

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


LI et al.: TOWARDS EFFICIENT TASK ASSIGNMENT IN BLOCKCHAIN-BASED SPATIAL CROWDSOURCING 11

60 80 100 120 140 160 180 200

worker arriving interval (s)

5

10

15

20

25

30

#
 o

f 
m

a
tc

h
e
d
 w

o
rk

e
rs

batch

random

clairvoyant

(a) Worker arriving interval vs. # of matched work-
ers/tasks.

400 500 600 700 800 900

worker waiting time (s)

10

15

20

25

30

#
 o

f 
m

a
tc

h
e
d
 w

o
rk

e
rs

(b) Worker waiting time vs. # of matched workers/tasks.

1 2 3 4 5 6

k value

10

15

20

25

#
 o

f 
m

a
tc

h
e
d
 w

o
rk

e
rs

(c) k value vs. # of matched workers/tasks.

400 500 600 700 800 900

task waiting time (s)

10

15

20

25

30

#
 o

f 
m

a
tc

h
e
d
 w

o
rk

e
rs

(d) Task waiting time vs. # of matched workers/tasks.

60 80 100 120 140 160 180 200

worker arriving interval (s)

20

30

40

50

60

ra
n
k
 p

e
rc

e
n
t 
(%

)

(e) Worker arriving interval vs. rank percent.

400 500 600 700 800 900

worker waiting time (s)

20

30

40

50

60

ra
n
k
 p

e
rc

e
n
t 
(%

)

(f) Worker waiting time vs. rank percent.

1 2 3 4 5 6

k value

20

30

40

50

60

ra
n
k
 p

e
rc

e
n
t 
(%

)

(g) k value vs. rank percent.

400 500 600 700 800 900

task waiting time (s)

20

30

40

50

60

ra
n
k
 p

e
rc

e
n
t 
(%

)

(h) Task waiting time vs. rank percent.

Fig. 5: Task Assignment Scheme Evaluation.

evaluated our approach on EOS based on real users and real-
world dataset. Evaluation results shown that our SC-EOS can
achieve efficient task assignment with low economic cost.

We are still in the early stage of blockchain technology, let
alone the blockchain applications in spatial crowdsourcing. We
now briefly summarize some potential meaningful future work.
First, the task matching algorithm is executed on blockchain
by utilizing smart contract, yet the logical scheme can be
considered to run in somewhere else to save computational
resource. Second, privacy protection can be considered in the
future blockchain based spatial crowdsourcing system design
as privacy is a significant concern for users. Third, an efficient
evaluation mechanism is crucial in any spatial crowdsourcing
system, while how to design an efficient evaluation scheme
based on blockchain is still worth researching. Finally, spatial
crowdsourcing requires workers to physically travel to the task
locations to perform tasks. However, how to verify whether
the workers are indeed at the specified locations is an urgent
problem, especially for blockchain since blockchain is based
on a trustless model.

REFERENCES

[1] https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-sof
t-fork-and-the-hard-fork/.

[2] https://medium.com/futurepia/fastest-transaction-speed-mainnet-2e
b3799bbed2.

[3] Eos. https://eos.io/.
[4] Ethereum. https://www.ethereum.org/.
[5] Gigwalk. http://www.gigwalk.com.
[6] Moonlight. https://moonlight.io.
[7] Uber. https://www.uber.com.
[8] Waze. https://www.waze.com.
[9] V. Buterin et al. A next-generation smart contract and decentralized

application platform.
[10] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi. Fair task assignment

in spatial crowdsourcing. Proceedings of the VLDB Endowment, 13(12),
2020.

[11] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman, et al. Blockchain
technology: Beyond bitcoin. Applied Innovation, 2(6-10):71, 2016.

[12] W. Feng, Z. Yan, H. Zhang, K. Zeng, Y. Xiao, and Y. T. Hou. A survey
on security, privacy, and trust in mobile crowdsourcing. IEEE Internet
of Things Journal, 5(4):2971–2992, 2018.

[13] S. R. B. Gummidi, X. Xie, and T. B. Pedersen. A survey of spatial
crowdsourcing. ACM Transactions on Database Systems (TODS),
44(2):1–46, 2019.

[14] B. Guo, Y. Liu, L. Wang, V. O. Li, J. C. Lam, and Z. Yu. Task allocation
in spatial crowdsourcing: Current state and future directions. IEEE
Internet of Things Journal, 5(3):1749–1764, 2018.

[15] J. Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1


12 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 2020

[16] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher. Smartroad:
Smartphone-based crowd sensing for traffic regulator detection and
identification. ACM Transactions on Sensor Networks (TOSN), 11(4):55,
2015.

[17] H. Jin, L. Su, and K. Nahrstedt. Theseus: Incentivizing truth discovery
in mobile crowd sensing systems. In Proceedings of the 18th ACM
International Symposium on Mobile Ad Hoc Networking and Computing,
page 1. ACM, 2017.

[18] B. Kantarci and H. T. Mouftah. Trustworthy sensing for public safety
in cloud-centric internet of things. IEEE Internet of Things Journal,
1(4):360–368, 2014.

[19] L. Kazemi and C. Shahabi. Geocrowd: enabling query answering
with spatial crowdsourcing. In Proceedings of the 20th international
conference on advances in geographic information systems, pages 189–
198. ACM, 2012.

[20] C. Li, B. Palanisamy, R. Xu, J. Wang, and J. Liu. Nf-crowd: Nearly-free
blockchain-based crowdsourcing. In 2020 International Symposium on
Reliable Distributed Systems (SRDS), pages 41–50. IEEE, 2020.

[21] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xiang,
and R. Deng. Crowdbc: A blockchain-based decentralized framework for
crowdsourcing. IEEE Transactions on Parallel and Distributed Systems,
2018.

[22] J. Lin, M. Li, D. Yang, G. Xue, and J. Tang. Sybil-proof incentive mech-
anisms for crowdsensing. In IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, pages 1–9. IEEE, 2017.

[23] Y. Lu, Q. Tang, and G. Wang. Zebralancer: Private and anonymous
crowdsourcing system atop open blockchain. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
pages 853–865. IEEE, 2018.

[24] C. Miao, L. Su, W. Jiang, Y. Li, and M. Tian. A lightweight privacy-
preserving truth discovery framework for mobile crowd sensing systems.
In IEEE INFOCOM 2017-IEEE Conference on Computer Communica-
tions, pages 1–9. IEEE, 2017.

[25] S. Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.
[26] V. Pankratius, F. Lind, A. Coster, P. Erickson, and J. Semeter. Mobile

crowd sensing in space weather monitoring: the mahali project. IEEE
Communications Magazine, 52(8):22–28, 2014.

[27] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss. Security analysis
methods on ethereum smart contract vulnerabilities: a survey. arXiv
preprint arXiv:1908.08605, 2019.

[28] L. Tan, H. Xiao, K. Yu, M. Aloqaily, and Y. Jararweh. A blockchain-
empowered crowdsourcing system for 5g-enabled smart cities. Computer
Standards & Interfaces, 76:103517, 2021.

[29] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi. Spatial crowd-
sourcing: a survey. The VLDB Journal, 29(1):217–250, 2020.

[30] C. Wang, H. Liu, K.-L. Wright, B. Krishnamachari, and M. Annavaram.
A privacy mechanism for mobile-based urban traffic monitoring. Per-
vasive and Mobile Computing, 20:1–12, 2015.

[31] J. Wang, M. Li, Y. He, H. Li, K. Xiao, and C. Wang. A blockchain based
privacy-preserving incentive mechanism in crowdsensing applications.
IEEE Access, 6:17545–17556, 2018.

[32] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, and X. Ma. Loca-
tion privacy-preserving task allocation for mobile crowdsensing with
differential geo-obfuscation. In Proceedings of the 26th International
Conference on World Wide Web, pages 627–636. International World
Wide Web Conferences Steering Committee, 2017.

[33] H. Wu, L. Wang, and G. Xue. Privacy-aware task allocation and data
aggregation in fog-assisted spatial crowdsourcing. IEEE Transactions
on Network Science and Engineering, 7(1):589–602, 2019.

[34] M. Xiao, K. Ma, A. Liu, H. Zhao, Z. Li, K. Zheng, and X. Zhou. Sra:
Secure reverse auction for task assignment in spatial crowdsourcing.

[38] D. Yuan, Q. Li, G. Li, Q. Wang, and K. Ren. Priradar: A privacy-
preserving framework for spatial crowdsourcing. IEEE transactions on
information forensics and security, 15:299–314, 2019.

IEEE Transactions on Knowledge and Data Engineering, 32(4):782–
796, 2019.

[35] P. Xiong, L. Zhang, and T. Zhu. Reward-based spatial crowdsourcing
with differential privacy preservation. Enterprise Information Systems,
11(10):1500–1517, 2017.

[36] K. Yang, K. Zhang, J. Ren, and X. Shen. Security and privacy in
mobile crowdsourcing networks: challenges and opportunities. IEEE
communications magazine, 53(8):75–81, 2015.

[37] S. Yang, K. Han, Z. Zheng, S. Tang, and F. Wu. Towards personalized
task matching in mobile crowdsensing via fine-grained user profiling. In
IEEE INFOCOM 2018-IEEE Conference on Computer Communications,
pages 2411–2419. IEEE, 2018.

[39] Y. Zhao and Q. Han. Spatial crowdsourcing: current state and future
directions. IEEE communications magazine, 54(7):102–107, 2016.

Mingzhe Li is currently a Ph.D. candidate with
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,
and Southern University of Science and Technol-
ogy. He received his B.E. degree in communication
engineering from Southern University of Science
and Technology in 2016. His research interests are
mainly in blockchain, network economics and wire-
less communication and networks.

Jin Zhang is currently an assistant professor with
Department of Computer Science and Engineering,
Southern University of Science and Technology. She
received her B.E. and M.E. degrees in electronic
engineering from Tsinghua University in 2004 and
2006, respectively, and received her Ph.D. degree
in computer science from Hong Kong University of
Science and Technology in 2009. Her research in-
terests are mainly in mobile healthcare and wearable
computing, wireless communication and networks,
network economics, cognitive radio networks and

dynamic spectrum management.

Wei Wang is currently an assistant professor with
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology.
He received the Ph.D. degree from the Department
of Electrical and Computer Engineering, University
of Toronto in 2015. Prior to that, he obtained the
B.Eng. and M.Sc. degrees from Shanghai Jiao Tong
University. He is also affiliated with HKUST Big
Data Institute. His research interests cover the broad
area of networking and distributed systems, with
a special focus on big data and machine learning

systems, cloud computing, and computer networks.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2022                   doi:10.20944/preprints202205.0110.v1

https://doi.org/10.20944/preprints202205.0110.v1

