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Abstract: The description of stellar interiors remains as a big challenge for the nuclear astrophysics community. The consolidated
knowledge is restricted to density regions around the saturation of hadronic matter pg = 2.8 x 10'* g cm~3, regimes where our nuclear
models are sucessfully applied. As one moves towards higher densities and extreme conditions up to five to twenty times py, little can
be said about the microphysics of such obejects. Here, we employ an MCMC strategy in order to acess the variability of polytropic
three-pircewised models for neutron star equation of states. With a fixed description of the hadronic matter we explore a variety of
models for the high density regimes leading to stellar masses up to 2.5 M. In addition, we also discuss the use of a Bayesian power
regression model with heteroscedastic error. The set of EoS from LIGO was used as inputs and treated as data set for testing case.
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1. Introduction

Neutron stars (NS) are supernova remnants, with a strong gravitational field and rapid rotation. They are objects
with nuclear matter in one of the highest density states in the Universe. The matter in their interior is compacted to values
from a few g cm 3 on their surface to possibly more than 10> g cm~3 in their center. The NS have become, alongside
black holes, vital sources of gravitational waves, and although they have been discovery more than 50 years as pulsars [1],
its internal structure still is not thoroughly understood. Part of the challenge, relates to the extreme physical environments,
e.g large matter and energy densities, and the associated limits of our current models that contain parameters adjusted to
reproduce, at their best, nuclear properties on natural conditions present on Earth.

Recently, this picture has started to change with multimessenger observations [2] from binary NS mergers [3,4].
Those constraints provide the opportunity for a more detailed study about some of the parameters that describe global
properties of NS such as radius constraints [5,6], tidal deformabilities [7], maximum mass [8] and other global properties.
All this information, are intimately associated with the equation of state of the NS, and once one constrains the global
properties, the microphysics can to be constrained as well. The GW170817 event, for example, besides the breakthrough
of being the first gravitational wave detection, was also a source of many studies that considered the impact of the
observation on internal aspects of the star. The impact of the NS crust on the equation of state was investigated [9], as well
as the effects of an isovector—scalar meson into the quark-meson coupling description of nuclear matter [10], and also
different Skyrme-like parametrizations [11]. Non-parametric inference showed that the event favors soft EoS [12]. Critical
examinations of the EoS of dense matter were performed [13] considering the nuclear physics in the chiral effective
field theory framework, but still left some understanding to be improved in regions of high densities of the EoS. The
association with electromagnetic counterparts of the event, lead to the first time to a joint-constraint. Using the binary’s
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tidal deformability parameter, simulations of EM observations within numerical relativity and Kilonova models, extreme
EoS models were ruled out, theoretically the stiffest and softest ones, e.g., see figure 2 of Ref. [2]. Statistical Bayesian
methods were applied in the context of the GW170817 event, where microscopic models of cold neutron stars using
chiral effective models [14] were studied. Recently, the GW event with X-ray sources we combined and studied with
the relativistic mean field models [15]. Besides the electromagnetic counterpart of the binary merger, another important
recent electromagnetic measurement was done by the NASA’s Neutron Star Interior Composition Explorer (NICER) [16], also
constraining the mass-radius of the pulsar PSR J0030+0451 [17,18]. While the astronomical data was gathered and studied
theoretically, experiments on Earth have also been performed. For example, the Lead Radius EXperiment (PREX-2) which
has provided a better understanding of the nuclear matter around the saturation density, has a direct implication for the
crust of neutron stars. The extrapolation of the data to higher densities has limited the stellar radii to 13.25 < Ry 4 < 14.26
km, meaning that the EoS should have a softening in the intermediate region and a stiffening at the high densities. This,
in turn, could lead to a phase transition in the stellar core. The increment in observational data, has helped to establish
further constraints on the dense matter EoS opening a rich field for statistical and machine learning models [19-23].

The description of nuclear matter around the nuclear saturation density py = 2.8 x 10 g cm ™3 = 0.17 fm 3 is well
understood in terms of hadron physics. The microphysics at intermediate densities is yet far away from a consensus with a
wide range of possible models. The debate includes the binding nature of NS with theories considering self-bound quarks
or simply with gravity-bound systems. The asymptotic behavior of the EoS, on the other hand, has been understood
in the context of quark matter [24]. As the details of the nuclear models are out of the scope of this work, we refer to
Refs [25-33] and references within for more information.

In this work, we separate the description of the equation of state into a three-piece polytropic functional. We
based our approach in the work by Read et al. 2009 [34] where a piecewise EoS was fitted with a direct cost function
minimization. Here, we extend this picture to a larger class of models made possible with modern computing resources.
We adjust the position of each piece of the EoS to better reproduce the observational data, and then perform a Bayesian
Inference with Markov Chain Monte Carlo on the polytropic exponent of each case. This approach provides an assessment
of the impact of variations in the EoS at intermediate and high densities on the mass radius diagram of the star.

One of our objectives is to determine the mass and radius of a selection of stars in correlation to the description of
nuclear matter modeled by the EoS. In this way, we can systematically use different EoS parameterizations to determine
relevant characteristics of neutron stars. In addition to that, we discuss the use of a Bayesian statistical model with
heteroscedastic errors. This enables the training of statistical models based on EoS generated by different nuclear physics
pictures. Due to the various parameterizations present in the microscopic models, the result set of all equation of states has
a variance that increases alongside density (heteroscedasticity). This behavior can be captured by models with scattering
residuals at different levels of the EoS when trained simultaneously with the NumPyro probabilistic programming
library'. Here we use the set of EoS from LIGO as input and handling the data set as a test case.

2. The structure of Neutron Stars

The description of NS comprises both the quantum mechanical and general relativity worlds. The properties of
particles that constitute the stellar matter are considered via equation of state obtained from quantum mechanics in flat
space. The EoS is present in the energy-momentum tensor T""(p, P(p)), the bridge to the gravitational /geometric degrees
of freedom G"¥, through Einstein’s general relativity equations

GH' = RM — %gHVR = 8rTH. 1)

For a perfect fluid energy-momentum tensor and for a static spherical symmetric spacetime, the Einstein’s field
equations lead to the hydrostatic equilibrium equation, well-known as Tolman-Oppenheimer-Volkoff equation [35,36].
This equation reads in natural units

drepr +m/r?

p = —(P"‘P)mr )

where the prime indicates radial derivative and m is the gravitational mass enclosed within the surface of radius, i.e.,

m' = 4mpr?. ®)

1 https:/ /num.pyro.ai
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To solve this system one needs to add to it an EoS (p(p)) and use the boundary conditions

m(r)l—o =0, p(r)lr—o=pc and p(r)|r=0 = pe, 4)

where p. and p. are the pressure and density at the center of the star. The numerical integration of Eq. (2) follows the
pressure decrease as one moves away from the center and it is stopped when the condition

p(r)l=r =0 (5)
is reached at the surface of the star R. The integration of the profile density

R
M(R) = 477/0 r2o(r)dr (6)
provides the total gravitational mass of the star M. The resulting M-R relation can be compared to data from astronomical
observations. Once the EoS is provided, the global properties of the neutron stars can be obtained. However, until
recently the uncertainties in the mass-radius relationship were significantly large so that almost any EoS could describe
the same stellar structure.

The NS can be subdivided in many layers with different theories. Roughly, we can have four regions for the interior:
the inner and outer core and the inner and outer crust. For the exterior part, an atmosphere with plasma governed by
strong magnetic/electric fields is frequently assumed. The theories to describe the interior span many-body theories of
high dense strongly interacting systems, nuclear many-body theories in the high density-temperature regime, atomic
structure and plasma physics, respectively [37]. We recall that due to all these different regimes/densities, only the
outer crust is well understood, since one can compare with experimental data of atomic nuclei. Around the nuclear
saturation density and above, the constraints become too fragile allowing for many descriptions of the NS interior: for the
outer core npey (neutron-proton-electron-muon) plasma and for the inner core many possibilities such as fermion/boson
condensation, hyperons, pion/kaon condensation, strange quarks surrounded by hadronic matter and so on. This
complex puzzle, calls for an extension of our knowledge about the many-body physics regimes and should lead to models
able to describe a large variety of environments all at once.

3. The equation of state

The description of the outer crust inside neutron stars is well accepted to be given in terms of hydronic matter up
to the saturation density py = 2.8 x 10! g cm~3. This limit reflects the validity of well established nuclear structure
models that were developed to describe properties of heavy atomic nuclei on Earth. When one goes beyond pp, more
sophisticated degrees of freedom, as mentioned in the previous section, have to be considered. These extra variables
make a universal and simultaneously description of systems with such large range density profiles a challenging task.
The microscopic constraints are so far just a few and consist of dp/dp being always positive and well-defined with p > 0,
electric neutrality, beta equilibrium and the speed of the sound must be less than the speed of light.

Generally speaking, the different set of EoS can be separated accordingly to the compressibility of the nuclear
matter: soft and stiff and the corresponding speed of sound. Among the several microscopic methods for the EoS
we cite: Perturbation expansions within the Brueckner-Bethe-Goldstone theory, perturbation expansions within the
Green’s-function theory, variational methods, effective energy-density functionals, and relativistic mean-field (RMF)
models [37—42]. Point-coupling and non-relativistic models employing well known nuclear interaction such as Skyrme
and Gogny are also used [43-49]. Two approaches are frequently seen in the literature: Models that approach the
physics around pg [50-52]; or models that aim specific systems such as binary neutron star mergers, e.g. using LIGO-
VIRGO observational data for the mass-radius of NS to extract the embedded EoS model [53]. In general, the EoS are
generated through these models using parameters adjusted to reproduce fundamental physical quantities and are listed
in tabulated data, i.e., there are many models and many codes/ways to generate them. The phenomenological models
have the advantage of being easily parametrized and can generate EoS that reproduce the M-R diagrams, offering simpler
representations of sophistical microscopic calculations. These are the so-called representation of the EoS, which are
basically two: the piecewise-polytropic [34,54-58] and spectral representations [59,60]. Here we focus on models of the
first kind.

Piecewise-polytropic representation

The piecewise polytropic model consists of a connected set of polytropic equations, effectively power-law like
functions, with different exponents (also called indices) to account for the softness/stiffness of the EoS at a given density
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Figure 1. Piecewise model representation of the equations of state with the polytropic equations (7). The vertical lines represent the
transition points py_,1 and p;_,, of each piece of the EoS.

regime. The indices are free parameters in most of the cases when one considers this kind of parametrization. The
density where the transition between two polytropic equations take place can also be used as a free parameter specially
at highly dense regions [61]. The polytropic representation can yield macroscopic observables for a wide range of EoS
with only a few parameters. The stellar structure maps the EoS parameters to gravitational mass, radius, moment of
inertia and others global properties. This representation has been extensively used in NS studies, gravitational waves
simulations [62-65] and can be tested using the astronomical data such X-ray, gamma and gravitational waveforms. The
representations can be also very useful when dealing with modified gravity such as f(R) [66,67] and or other alternative
theories where a coupling between geometry and matter could introduce corrections in the energy density, and therefore
requires an analytical representation to model the stellar structure [68].
The piecewise-polytropic parametrization of the EoS can be written as [34]

P(p) = Kip", @)

where I'; are the polytropic indices and K; strength constants. Due to the continuity of pressure at the transition points,
we impose (with i > 0)

i1—Ti

K; = Ki_10} ®)

In this work the piecewise polytropic parametrization of the EoS is done by combining three different polytropes. We
have two parameters to set the transitions points and three values of I' for each region. For the first piecewise, i.e, at
density values smaller than pg_,1, see the gray vertical line in Fig. 1, we define I'y (and Kj) in connection to the SLy4 EoS
in this regime. This equation of state, describes very well the nuclear matter and match the BPS and HP94 based on
experimental nuclear data, e.g., see Fig. 1 of Ref. [69]. We set Ty = 1.475 and Ky = 1.475 x 103 [fm3/MeV]?/3.

The two other polytropic combination of (7) have the set of parameters {I';, I';}, and the respective transition taking
place at pg_,1 (see Fig. 1). Having the first part of the EoS fixed the transition point p;_,; is placed at two different
density values and the exponents {I';,T;} are analyzed with statistical methods in relation to data from astronomical
observations.

4. Markov Chain Monte Carlo and Bayesian Inference

Markov Chain Monte Carlo (MCMC) is a convenient numerical way to stochastically explore a space of parameter
values with high probability and provides good expectation estimates for model variability. This is basically the point of
any Bayesian inference quantification summarized in terms of mean and variance values. One assumes a distribution F
for a given parameter with mean value g;, an associated uncertainty ¢, and with a transition probability K(g'|q) we can
write

F(o) = [ d'B(q)K(qlq). ©)
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Since the form of F is preserved, the algorithm can start from any point g’ that the convergence to the typical
parameter space region is guaranteed. Sampling from a prior distribution F and employing a simple Metropolis algorithm
with t = 0,...,t = T iterations to construct the Markov Chain [g;—o, §t=1, .. .,qi—T] one approximates the posterior
distribution given a sufficient large number of steps T. The sampled value g is accepted according to the probability

_ f(XZ(QtH))
=W &9

where f(x) = e~* and x? are the likelihood and chi-squared functions, respectively. More details and algorithms can be
found in Refs [70-72].

Here, we employ the MCMC algorithm to access the variability of polytropic piecewise-like models. The set of
parameters are assumed to be uncorrelated and normally distributed. We defined 5 (MD#) models containing different
parameterization schemes. The parameters of the first polytrope (left side of the gray vertical line of Fig. 1) is kept
unchanged with pg = pg_1 = 2.8 x 1014 g em ™3 = 0.17 fm~3 and Ty = 1.475. This low density region of the EoS is well
understood in terms of hadronic matter. For densities values pg_,; < p < p1-2 we use the second polytrope, representing
an intermediate high-density portion of the EoS with adiabatic index I';. This segment of the EoS (center part of Fig. 1) is
not fully understood with our current knowledge of microphysics, representing a density region where EoS variability
can be studied. Finally, the transition to the third polytrope with adiabatic index I'; (right side Fig. 1)) is defined by the
density transition region p;_,,, representing the densest part of the EoS. The value defining the transitions is difficult
to be estimated since the physics of highly dense interacting matter is yet not known in details, and therefore it can be
arbitrarily chosen.

We worked with two different values for the transition region p1_,» = {4.8p0;7.200 }. These two choices will have
the two following sets of polytropic indices I'1 = {2.5,2.6,2.8,3.0} and I', = {1.8,1.9,3.0,3.3,3.7} for the polytrope 1 and
2, respectively. Once the transition point p;_,», and I'; , are defined, one can calculate the constant K for each individual
polytrope using Eq. (8) and have the full the description of the EoS.

In total, we have 5 combinations of parameters schemes. Our MD#s, provide a large variety of equation of states, i.e.
different densities and pressure profiles to be used in solving the TOV equation, and generating the respective stellar
global properties. Our models are summarized in Table 1, where the color scheme used in the figures is also provided.

Label p;,, Iy T, Color

MD1 7200 25 18 cyan
MD2 7200 26 19 pink
MD3 48pp 26 3.0 purple
MD4 48pp 28 3.3 brown
MD5 48pp 3.0 3.7 lime

Table 1: Summary of the parameters for piecewise EoS models. pp = 2.8 x 1014 gecm=3 = 0.17 fm 2 is the nuclear

saturation density. We assumed the uncertainty as ¢ = 0.01 for both I'; ; in each model.

The MCMC is applied for I'1 and I', with an error uncertainty of ¢ = 0.01 associated to each of the exponents. All the
other parameters are kept fixed. Small variations in the polytropic indices lead to large change in the pressure, specially
at density regimes of > 4pg. Therefore, the variation of I'; , provides a way to access the impact of EoS variability on the
mass radius diagram for the models employed here.

Figure 2 presents the posterior distributions of values obtained in the MCMC process for the exponents I'; and I'»
in the left and right panels, respectively. We employ N = 10000 iterations of the Monte Carlo sampling for each of the
models defined in Table 1. This number of steps ensure convergence of the posterior distribution presented as histograms.
Figures 2(a-b) represent the model MD1 with averaged values for (I'1) = 2.5 and (I';) = 1.8. The histograms for the
parameters of MD2 is shown in Figs 2(c-d) with (T';) = 2.6 and (I';) = 1.9. The corresponding histogram with averaged
values (I';) = 2.6 and (T') = 3.0 for model MD3 is shown in Figs 2(e-f).

The two last subfigures of Fig. 2, Figs 2(g-h) and Figs 2(i-j), are associated to models MD4 and MD5 respectively.
MD4 has the averaged values of (I'1) = 2.80 and (I';) = 3.30. For the MD5, we have the following ones (I'y) = 3.00 and
(T2) = 3.70. The averaged value of each distribution confirms the convergence of the statistical sampling approach.

The MCMC provides the posterior distribution for what we can sample I'; , values to generate equation of states for
each of the model MD#. The EoS is then used to solve the TOV equation to obtain the mass and radius diagrams. As
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we are going to see the MD4 and MDS5 are the representations that seem to better reproduce the EoS, according to the

observations.
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Figure 2. Histograms for MCMC sampling for the five models: MD1, MD2, MD3, MD4 and MD?5 (from top to bottom). The
distributions are obtained with 10000 iterations. The averaged values for each histogram is shown in the inset and match the
parameters given Table 1.

In figure 3 we have the parametrized EoS for each model of 5 models studied here. As one can see, at low densities
they all converge to a single picture determined by the SLy4 parametrization. At higher densities they diverge from each
other, where the MD1 being the softest model and the MD?5 the stiffest one. The parametrization of MD1 and MD2 in the
third polytrope, I';, reduces the speed of sound, which reflects a decrement in comparison with the other models for
higher densities. This feature will be reflected in the mass-radius diagram, as we are going to see.
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Figure 3. The collection of EoS generated for the 5 models defined in Table 1. The description of the regime of low density associated
to the nuclear matter saturation point py is kept unchanged for every model. The transition between different polytropic equation can
be seen as elbows with large I' values providing highly stiff equation of state.

In Figure 4 we present the mass-radius relation for the 5 sets of our EoS parametrization. They are respectively
the models going from 1 to 5 in table 1. In this figure we also have the LIGO-VIRGO mass-radius region, in blue and
orange, constrained by the gravitational wave event GW170817 [6,73], This constraint was the first one to have a radius
associated with the mass tightly constrained, since the previous observations for neutron stars were using electromagnetic
bandwidth, which is very difficult to estimate the radius of NS. After this gravitational wave detection, the radius of a
pure nuclear hadronic matter with mass of 1.4 M, was estimated to be Ry 4 = 12.39 km [74]. Afterwards, this constraint
was shifted due to measurements of NICER for the pulsar PSR J0030+0451 to two values: M ~ 1.44 M., and equatorial
radius of Req = 13.02 km [17] and M ~ 1.24 Mg, and Ryeq = 12.71 km [18]. This information is highlighted by the black
dots with error bars in the mass-radius diagram. In Fig. 4 we present as upper limit of mass, a lower mass compact
object with 2.50 — 2.67 M in a binary system detected by LIGO-VIRGO [75], this unknown object if it is a NS, will
be a breakthrough, since no nuclear theory for ordinary matter, can explain such a EoS to generate such a mass in
general relativity. Finally, we considered observations of massive pulsars: The extremely massive millisecond pulsar PSR
J0740+6620 with mass of 2.147039 M, [76]; the PSR J2215+5135 with mass ~ 2.27 M® [77]. The measurement of the mass
of the source is not so precise, and if this number is confirmed, the star would be the most massive neutron star ever
detected; the two well-known NS sources J0348+0432 and J1614-2230 [78,79] with M = 2.0 M.

As we can see in the mass-radius diagram, the models MD4 and MD5, brown and lime curves respectively, seem to
better explain the observation. One can see that the curves cross the region of the NICER observation. For the mass of
1.4 Mg, the respective radius for MD4 and MD5 are: Rypsy = 11.96 km and Ryips = 12.44 km, the other models for the
same mass are more compact and are off the NICER data, although they are still inside the LIGO-VIRGO region. These
two approaches also cross the line for M = 2.0 M pulsars as well as they are inside the region for PSR J0740+6620 and
PSR J2215+5135 mass. Regarding the model MD5, even the compact object with 2.5 M could be explained with this
parametrization. They have as maximum mass Mpax mp4 = 2.35 Mg and Mpyax Mps = 2.57 Mg and respective radius
FMDAL = 9.63 km and EMDS = 10.21 km.

Concerning the model MD3, the purple one, it could explain the massive pulsars also; however, it starts to get out of
the NICER constraints. In this region of mass-radius this parametrization mixes with the model MD2, the pink one. They
have similar I';, which reflects in the central density when solving the TOV equation and getting the mass of the star in
this region. For the densest region, the model MD2 can barely reach the two solar mass region. It has a maximum mass of
Mpax MD2 = 1.97 M, and radius of Ry, = 9.49 km. For the model MD1, one cannot have the stars with mass close to
two solar masses, and it lies away of the NICER measurement.
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Figure 4. Mass radius relationship for the set of all our parametrizations. We have five lines corresponding to the MD#s in table 1. The
blue continuous line at 2.0 M, corresponds to the two massive pulsars J0348+0432 and J1614-2230. The filled green region represents
the pulsar J0740+6620 and the filled dashed salmon region is the pulsar J2215+5135. The red line is the low mass compact object in the
binary system GW190414. The black dots with errors bars are the NICER estimations of PSR J0030+0451. The blue solid stars mark
1.4 M, stars.

5. Bayesian Power Regression Model with Heteroscedastic errors

In this section, we briefly investigate the potential use of a Bayesian Power Regression model with heteroscedastic
errors (BPR-HE) to capture the relationship between the density and pressure. The idea here is to train a model that
incorporates the associated variance of a large variety of physics parameterization. This approach could then be
constrained by observational data automatically in a physics informed machine learning strategy. As a preliminary step
towards that, we focus in the BPR-HE approach.

Power regression is a non-linear regression model that take the form y = ax?, where y is the response variable, x is
the prediction variable, and a and b are the coefficients that describe the relationship between x and y. The model can be
made linear by simply applying a log transformation: log(y) = log(a) + blog(x). Therefore, one can infer the parameters
of a non-linear power regression model via a linear model. With that, our corresponding BPR-HE model is defined as

log(p') ~ Normal(a - log(p') + B, sm - log(p’) + sp), Vi=1,.. N.
a ~ Normal(y1,72)
B ~ Normal(0, v3) (11)
sm ~ HalfCauchy(-y4)
sp ~ HalfCauchy(1ys)

where 7, are a set of hyper-parameters that are specified by the user. In our experiment, we set all oy to 1. N = 65 is the
total number of equation of states taken from the LIGO Lalsuite [80] library and used as data set. Essential to the model is
the dependence of the standard deviation of the residual to the density variable p. This is necessary as the ensemble of
EoS from LiGO have an increasing pressure variance with respect to densities. Residuals with varying variance is known
as heteroscedastic. Figure 5 shows an illustrative example of heteroscedastic errors and homoscedastic errors, which is
assumed in classical linear regression models.

We used the Numpyro probabilistic programming language [81] to implement the model 11. We inferred the values
of the unknown parameters in our model («, , s;;, and sp) by running MCMC using the No-U-Turn Sampler (NUTS)
[82] for 10000 warm-up samples and then collected 1000 posterior samples to represent our model parameters posterior
distribution.
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Figure 6 shows posterior samples of the BPR-HE model (in yellow), and the EoS from LIGO. Notice that the model
captures the increasing variance of the pressure as the density increases. This is due to the heteroscedastic errors in
the model. The BPR-HE provides smooth functions as opposed to the piecewise polytropic approach described in the
previous section. The abrupt transition points of the MD# models can reduce the accuracy of the description of local
speed of sound, a problem already discussed in [34].

0.6

05 W Heteroscedastic 04, ™= Homoscedastic
» 04 .
o S —02
G 03 iy
S 02 S 00
2 2
g 01 8

0.2

T 0o T

0.1

@ 47 )

700 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
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Figure 5. Representative example of heteroscedastic (a) and homoscedastic (b) residuals. Notice how the variance of the residuals
changes with the value of x for the first, while it remains constant for the second.
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Figure 6. Bayesian Power Regression model heteroscedastic errors. Black solid lines are the 65 EoS from the LIGO Lalsuite [80] data set,
while the yellow ones are posterior samples generated by the BPR-HE model.

From Figure 6, we observe that the BPR-HE model is a promising approach to be used to model the relation of
density and pressure. This information can be used to estimate uncertainties of the maximum radius and mass of the
neutron stars via TOV equations. We left the use of BPR-HE generated EoS into the TOV equation for future works and
have restricted this work to a feasibility analysis of such approach.

6. Conclusion and perspectives

In this paper, we have studied parameters of piecewise polytropic equations that are representative of an equation
of state modeling the interior structure of neutron stars. Polytropic piecewise models with few parameters are known
to be good approximations to modern theoretical EoS and are able to reproduce global features of neutron stars such
as mass, radius, moment of inertia and so on (e.g. see Ref. [26,34,53,58,83,84]). Commonly used in literature, this
phenomenological approach is applied in a broad research context from numerical solution of rotating relativistic
stars/merger simulations [65,85,86] to modified gravity [66,68,87-89] studies. Also recently, they have successfully been
applied to constrain the dense matter equation of state of neutron stars supported by observations [53,90-92].
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In this work, we have connected three politropes resulting in 5 different schemes globally adjusted. We performed
an analysis that have accounted for different astronomical observational sources, in a joint constraint. We have performed
a Bayesian analysis of piecewise equations and then Markov Chain Monte Carlo (MCMC) strategies were we employed
to access the variability of our models to constrain the representation of the EoS compared with observations of neutron
stars. We have obtained 2500 mass-radius diagrams within the 5 different model schemes. The massive stars M > 2M
and stars with mass around M ~ 2M, can be explained with combinations of adiabatic indices of 2.8 S T'1, < 3.7, asin
the case of MD4 and MD5. Increasing this exponent even further will stiff more the EoS and result in unrealistic stars.

From our adopted schemes, the two models, MD4 and MD5, can represent very well stars for mass around 1.4 Mg,
and radius of ~ 12 km, i.e., the mass-radius observational region of LIGO-VIRGO binary NS merger and the PSR
J0030+0451 constrained by the NICER experiment. The two models can also explain massive pulsars with mass above
2.0 Mg as the two pulsars J0348+0432 and J1614-2230. One of the models, MD5, can even explain an unknown object with
mass of 2.5 M, in a binary system, detected by LIGO-VIRGO. This model has a maximum mass of M = 2.57 M. As one
can notice, the model MD5 yields almost the same radius for different masses, almost a limit for the polytropic exponent.

The parameters found here for the piecewise equations that represent modern EoS, will be used to constraint
nuclear models, i.e., the parameters of many-body models. In previous works [93,94], we analyzed correlations in the
microphysics of many EoS and in the global properties. We have studied two separated spaces, and now we are able to
bring these two complementary studies together in a full picture and by means of statistical and machine learning tools,
shading light in the path to understand the EoS of neutron stars.

Before closing, we would like to comment on some challenges and remarks on modeling EoS coming from many
nuclear models with different parametrizations. Statistical models, such as regression model with heteroscedastic errors,
for example, has the potential to best represent a set of different physics included in a variety of equation of states. The
Bayesian Power Regression model with heteroscedastic errors (BPR-HE) is a flexible model, but we faced difficulties with
it due to the nature of the data. In the model, the variance of the errors varies linearly with the density value, which
might not be appropriate, as the s, parameter has shown to be very sensitive and difficult to infer. We had to resort to a
forceful (informative) prior to stabilize the inference. Another point is that using a single power regression model to
describe all EoS might be too restrictive, given the diversity of physical models. We believe that a mixture regression
model, composed of several power regressors, will bring more flexibility. These points will be the focus of future research
steps, as well the tension brought by the Lead Radius EXperiment (PREX-2) results with astronomical data.
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