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Abstract: We present improvements in n-best rescoring of code-switched speech achieved by n-gram
augmentation as well as optimised pretraining of long short-term memory (LSTM) language models
with larger corpora of out-of-domain monolingual text. In addition, we consider the application
of large pretrained transformer-based architectures. Our experimental evaluation is performed on
an under-resourced corpus of code-switched speech comprising four bilingual code-switched sub-
corpora, each containing a Bantu language (isiZulu, isiXhosa, Sesotho, or Setswana) and English. We
find in our experiments that, by combining n-gram augmentation with the optimised pretraining
strategy, speech recognition errors are reduced for each individual bilingual pair by 3.51% absolute
on average over the four corpora. Importantly, we find that even speech recognition at language
boundaries improves by 1.14% even though the additional data is monolingual. Utilising the aug-
mented n-grams for lattice generation, we then contrast these improvements with those achieved
after fine-tuning pretrained transformer-based models such as distilled GPT-2 and M-BERT. We find
that, even though these language models have not been trained on any of our target languages,
they can improve speech recognition performance even in zero-shot settings. After fine-tuning on
in-domain data, these large architectures offer further improvements, achieving a 4.45% absolute
decrease in overall speech recognition errors and a 3.52% improvement over language boundaries.
Finally, a combination of the optimised LSTM and fine-tuned BERT models achieves a further gain of
0.47% absolute on average for three of the four language pairs compared to M-BERT. We conclude
that the careful optimisation of the pretraining strategy used for neural network language models can
offer worthwhile improvements in speech recognition accuracy even at language switches, and that
much larger state-of-the-art architectures such as GPT-2 and M-BERT promise even further gains.

Keywords: code-switching; automatic speech recognition; low resource languages; language mod-
elling

1. Introduction

Language modelling in under-resourced settings, such as those encountered for
African languages, is challenging [1,2]. In comparison with the large datasets available
for English and other highly resourced languages, very few large corpora are available
for African languages, and when they are available, the applicability of their domain is
narrow. In addition to this, code-switching, which involves the use of multiple languages
within or between utterances, is common in everyday speech in African countries. In
the context of language modelling and speech recognition, code-switching results in a
high confusion and consequently increased errors around language switches, as shown
in this work. Research notes that code-switches vary between speakers and across speech
domains, in addition, data for modelling code-switching is under-resourced and therefore
modelling the phenomenon statistically is challenging [3]. This makes them challenging to
model within a singular linguistic paradigm; such as matrix language frame theory [4] or
equivalence constraint theory [5].
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In this work we consider the inclusion of larger monolingual corpora in both related
and unrelated languages for language model pretraining as a way of alleviating data
scarcity. We show the surprising result that, although the additional data is monolingual
its inclusion allows us to improve speech recognition accuracies, even across language
switches. Additionally, we show that even when language models are pretrained on
completely unrelated languages, it is still possible to achieve improvements in speech
recognition even across language switches.

We present this work in two parts. Firstly, we optimize the pretraining of an LSTM
model utilising available out-of-domain monolingual corpora in our target languages -
isiZulu, isiXhosa, Sesotho, Setswana, and English. These language models are then fine-
tuned on sets of bilingual soap opera data [6] and used for n-best rescoring. Synthetic
code-switched data is also incorporated into our pretraining data. We show that, even in
situations where the vocabulary is closed on the types in the training, development and test
sets for each respective sub-corpus in the under-resourced dataset, resulting in high out
of vocabulary rates (26.13%-70.72%) during pretraining on the respective out-of-domain
corpora, that the neural language models improve substantially when pretrained using a
curated dataset.

In the second portion of this work we refrain from pretraining the neural language
models ourselves and instead utilise a selection of publicly available models that have not
been trained on any of the target languages considered in this work1. We find that, when
applying these models in n-best rescoring after fine-tuning on the same in-domain data used
in the LSTM experiments, we again see improved speech recognition even over language
switches. In fact, even without fine-tuning (a zero-shot setting) small improvements are
possible.

The remainder of this document is organised as follows. Section 2 provides a de-
scription of the background and literature. Section 3 describes the corpora utilised in this
work, and Section 4 presents our experimental setup, detailing how the corpora and model
architectures are utilised in pretraining and augmentation experiments. The augmented
n-gram and neural language models are then utilised for lattice generation and n-best
rescoring respectively, the results from these experiments are presented in Section 5. This
section also presents the rescoring results utilising the publicly available pretrained models.
Finally, Section 6 concludes.

2. Background

Research has found that pretraining on synthetic data generated by an adversarial
network can improve code-switched language modelling [7]. Additionally, an extensive
investigation of TDNN, LSTM, transformer, and other neural language models found that,
for the two African languages isiZulu and Sepedi, the inclusion of training data from nine
non-European South African languages improves language modelling performance [2].
Improvements in language modelling and speech recognition for two under-resourced
South African languages - isiZulu and Setswana - are also achieved by using sub-word and
multi-word tokenization techniques respectively [1].

Utilising the same corpus of multilingual code-switched speech considered in this
work, Biswas et al. [8] investigate the impact of the inclusion of both acoustic and textual
data on speech recognition accuracy. Specifically, four balanced bilingual corpora are
used to train bilingual speech recognition systems. The subsequent inclusion of more
in-domain speech, which leads to an imbalance in the training data, improves performance.
Further improvements are afforded by including out-of-domain monolingual speech [9] in
each of the considered languages. Finally, speech recognition in the same languages can
also be improved by incorporating additional out-of-domain monolingual text as well as
synthetically generated code-switched bigrams to the language model [10].

Typically the performance achieved by the current state of the art language models is
attributed the their large training corpora, which are far larger even than our monolingual
pretraining sets. However, research has shown that competitive multilingual language
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models can be trained utilising data from under-resourced (<1GB training data) African
languages [11], even when compared to large M-BERT [12] models trained on much larger
amounts (100GB) of mostly non-African languages.

In Ralethe [13], a monolingual Afrikaans BERT model was shown to outperform a fine-
tuned multilingual BERT in named entity recognition and dependency parsing. Utilising an
Afrikaans text corpus, a new sub-word encoded vocabulary was created. The monolingual
Afrikaans BERT model was then initialised utilising the parameters of mBERT. However,
only the overlapping sub-word embeddings were utilised, while all new tokens in the
vocabulary were assigned randomly initialised embeddings.

Research aimed specifically to improve code-switched language modelling and speech
recognition has employed state of the art architectures for text synthesis. Pretrained BERT
models have been employed in adversarial fine-tuning frameworks to generate code-
switched text [14], which was shown to improve speech recognition accuracy when the
data is incorporated into the language model training data. State-of-the-art transformer
models [15] have also been utilised to generate code-switched text which, when used to
train an LSTM model, reduced test set perplexities [16].

In this work we demonstrate improvements in language modelling and speech recog-
nition by optimising the pretraining strategy for an LSTM language model utilised in
n-best rescoring experiments. We show the surprising result that although the pretraining
data is monolingual, we observe improvements even across language switches. We also
demonstrate that large publicly available architectures, such as multilingual BERT and
distilled GPT-2, are able to improve the speech recognition accuracy for the same code-
switched speech. Use of these architectures can be seen as a way of pretraining on very
large out-of-domain and out-of-language datasets. To the best of our knowledge, this is
the first study which investigates the impact of such bidirectional transformer models on
code-switched speech recognition and particularly in African languages [17,18].

3. Datasets

For experimentation, we utilise an under-resourced corpus of code-switched speech
collected from South African Soap Operas [6]. We evaluate the performance of our pre-
training and augmentation techniques using the development and test set defined in this
corpus. The dataset is split into four bilingual corpora, each consisting of a Bantu language
and English, as shown in Table 1.

For each of the languages in this corpus, a respective out-of-domain monolingual
corpus is available, which has been collected from newspapers and web content [8]. For
each of the sub-corpora we define a bilingual vocabulary closed on the types in the train-
ing, development, and test sets highlighted in Table 1. In Table 2 we present the out of
vocabulary rates (OOV) when utilising these respective vocabularies on the Bantu and
English monolingual corpora. We note that in general the out of vocabulary rates are
high, in excess of 26%. It is also clear from the table that the out of vocabulary rates are
always higher for the Bantu corpora than for English. This is especially true for the Nguni
languages (isiZulu and isiXhosa) which are known to have large vocabularies due to their
agglutinative orthographies.

Additionally we utilise four synthetic corpora of bilingual code-switched text, gener-
ated using an existing LSTM network [19]. The token counts for the monolingual and the
synthesized text are given in Table 3.

4. Experimental Setup

In this section we outline the experimental setup of our work. We begin, in Section 4.1,
by outlining the evaluation metrics utilised in our language modelling and speech recogni-
tion experiments. In Section 4.2 we detail the experimental setup of our baseline speech
recognition system, and specify the toolkits we employed to train our n-gram models and
neural networks. Section 4.3 describes the architecture of the baseline and pretrained LSTM
language models. Subsequently, Section 4.4 presents our LSTM pretraining optimisation
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Table 1. The soap opera corpus, showing the four bilingual corpora (English-isiZulu, English-isiXhosa,
English-Sesotho, and English-Setswana). For each corpus the total number of word tokens (Tok),
word types (Uniq), and code switches (CS) is presented. We denote the number of code-switches
from English to a Bantu language as CSEB, while CSBE indicates the number of switches from Bantu
to English. The final column (Dur) presents the duration of each corpus in minutes (m) or hours (h).
Adapted from [6].

English Bantu Total

Partition Tok Uniq Tok Uniq Tok Uniq CSEB CSBE Dur

English-isiZulu

Train 28033 3608 24350 6788 52383 10396 2236 2743 4.81h
Dev 832 414 734 452 1566 866 175 198 8.00m
Test 2457 870 3199 1435 5656 2305 688 776 30.4m
Total 31322 3841 28283 7448 59605 11289 3099 3717 5.45h

English-isiXhosa

Train 20324 2630 12215 5086 32539 7716 776 1003 2.68h
Dev 1153 484 1147 762 2300 1246 91 113 13.7m
Test 1149 498 1502 889 2651 1387 328 363 14.3m
Total 22626 2828 14864 5975 37490 8803 1195 1479 3.14h

English-Sesotho

Train 15395 2255 19825 2086 35197 4339 1565 1719 2.36h
Dev 843 437 2227 614 3067 1050 156 166 12.8m
Test 1794 659 2265 535 4054 1193 403 396 15.5m
Total 18032 2520 24317 2437 42318 4955 2124 2281 2.83h

English-Setswana

Train 16180 2361 19570 1448 35725 3808 1885 1951 2.33h
Dev 1170 514 2539 539 3707 1052 224 251 13.8m
Test 1970 729 2979 526 4939 1254 505 526 17.8m
Total 19320 2607 25088 1625 44371 4231 2614 2728 2.86h

Table 2. Out of vocabulary rates for the monolingual corpora when a vocabulary is closed on the
four respective bilingual datasets.

Label English-isiZulu English-isiXhosa English-Sesotho English-Setswana

Bantu 62.31% 70.72% 36.39% 35.16%
English 26.13% 30.22% 32.45% 31.53%

strategy, Section 4.5 presents the n-gram optimisation strategy, and finally Section 4.6
presents the fine-tuning strategies for larger pretrained transformer architectures.

4.1. Code-switched perplexity (CPP) and bigram error rate (CSBG)

We evaluate the performance of our language models utilising the perplexity cal-
culated for the development and test sets as defined in Table 1. To analyse the model
performance specifically over code-switches, we also calculate the average perplexity over
only language switches, and refer to this as the code-switched perplexity (CPP). In a similar
fashion, we evaluate speech recognition performance at language switches by specifically
calculating the speech recognition error rate only at the point of language transition, and
refer to this as the code-switched bigram error rate (CSBG).

Table 3. Token counts for the four available monolingual corpora, as well as for the synthetic
code-switched corpus, which contains both English and the respective Bantu language.

Label English isiZulu isiXhosa Sesotho Setswana

Monolingual 471M 3.25M 0.99M 0.23M 2.84M
Synthetic - 6.6M 4.18M 10.7M 8.08M
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4.2. Speech Recognition

The speech recognition system utilised in our work is trained using the Kaldi toolkit
[20]. A CNN-TDNN-F acoustic model is pretrained on the pooled audio data and then
fine-tuned on each bilingual corpus, as presented in [21]. All n-gram language models
are trained using the SRILM toolkit [22], while the neural language models are trained
using Tensorflow [23]. The baseline speech recognition system is denoted as ASR-B in the
subsequent sections. Our baseline n-gram language models are trigrams with modified
Kneser-Ney smoothing trained separately on each of the four bilingual soap opera training
corpora. These are denoted by LMB.

4.3. Language Model Architecture

The neural language model shown in Figure 1 is an LSTM with 256-dimensional
embedding, and 256-dimensional recurrent dimensions. The embedding matrix weights
are tied to the final matrix [24]. This means that the embedding matrix weights of dimension
(dembed,dvocab) are utilised to form the output likelihood vectors on of dimensionality dvocab
in addition to producing embedded vectors of dimensionality dembed for each token in
the vocabulary. The output likelihood vectors on are calculated by applying the product
between the output hidden state vectors of the LSTM (hn), whose dimensionality is also
dembed, and the embedding matrix. The resulting vector (on) has the dimensionality of the
vocabulary (dvocab). In addition, L2 weight regularisation is applied to the LSTM recurrent
kernel (the trainable weights which manipulate the input hidden state vector hn−1) and
to the weight-tied embedding and dense matrix. These hyperparameters were chosen in
correspondence to the best development set performance during preliminary experiments.
We found that the incorporation of L2 regularisation improved performance, whilst weight
tying allowed us to greatly reduce the number of model parameters as well as improve
language model performance.

We train four separate baseline LSTM language models, denoted by N-LMB, on each
of the soap opera bilingual training corpora (Table 1) until convergence on the development
set. We utilise a batch size of 32 and the ADAM gradient descent algorithm [25].

4.4. Optimisation of LSTM pretraining

In preliminary experiments we found that training the model separately on the mono-
lingual data (i.e. by for example first training on the English data and then on the respective
Bantu data) did not afford improvements in perplexity when the pretrained model is
fine-tuned. However, interleaving and sub-sampling the sequences from the different
corpora resulted in consistent perplexity improvements. Therefore, we investigate different
methods of sequence level interleaving in order to determine empirically which affords the
largest improvements in language modelling performance.

In our first experiment we interleave batches (B) of the available sets by sub-sampling
the largest corpus (typically English) at regular intervals until the number of sequences is
the same as in the smallest set. The second strategy interleaves English and Bantu at the
sequence level (S), again by sub-sampling the largest dataset at regular intervals until it is
the same size as the Bantu set.

For each of the strategies we close the vocabulary of a word-based LSTM language
model on all word types in the soap opera dataset. We then pretrain using a specific
interleaving strategy (B or S) on a subset of the datasets presented in Table 4, after which
the model is fine-tuned using the code-switched data (Table 1) until convergence on the
development set. These models are indicated as N-LM in Table 4. Specifically, as indicated
in this table, we consider three pooled corpora for pretraining. Firstly, utilising only the
synthetic data (S), then combining the respective monolingual Bantu data as well as the
monolingual English data (M), and finally utilising a combination of the synthetic, Bantu
and English data (S+M).

In Section 5.1, we begin by optimising the number of pretraining epochs over the
range ne = {1, 2, . . . , 5}.
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Figure 1. Structure of the LSTM language model. Each batch of the respective training corpus is first
preprocessed and tokenized, and then presented as input to the embedding layer, which computes
the embedded vector xn. This embedded vector is presented as input to the LSTM network along
with the hidden (hn−1) and cell state (cn−1) vectors. The updated hidden state vector is presented to
the output dense layer, whose weights are shared with the embedding layer, to form a likelihood
vector of the next possible words (on). This process is repeated for each token in the current sequence.
L2 weight regularisation is specifically applied to the weight-tied embedding and dense layer, as well
as the recurrent kernel in the LSTM.

Table 4. Corpora considered for the different pretraining or augmentation strategies.

Model Label Soap Opera Synthetic Monolingual English Monolingual Bantu

N-LM
S ×
M × ×
S+M × × ×

LM

B ×
B+S × ×
B+M × × ×
B+S+M × × × ×

4.5. N-gram Optimisation

We would like to contrast the improvements in speech recognition when rescoring
n-best lists with the pretrained language model to improvements seen when re-running the
speech recognizer after augmenting the training sets of an n-gram model with the same data
used for pretraining. If the improvements afforded by rescoring are comparable to those
afforded by n-gram augmentation, the latter is preferable due to its reduced computational
requirements and greater simplicity, especially in computationally-constrained settings.
Additionally, we investigate whether the improvements afforded by n-gram augmentation
and n-best rescoring are complementary.

The augmentation process is accomplished by training separate n-gram language
models on each of the available corpora (soap opera, synthetic, and monolingual) and
interpolating these three individual n-gram models according to the four different combina-
tions of corpora (B,B+S,B+M,B+S+M) as indicated in Table 4. In all cases these interpolated
n-gram language models, denoted by LM, are optimised according to the development set
perplexity.

4.6. Large Pretrained Language Models

Large pretrained language models have become the de facto standard in industry.
These models are trained on billions of tokens and achieve the state-of-the-art in many
language modelling tasks. Here we investigate the application of these models in n-best
rescoring of code-switched speech in both zero-shot settings as well as after fine-tuning on
the code-switched data.

We note that many of these models are bidirectional and are trained using the masked
language modelling (MLM) objective as first presented in Devlin et al. [12]. This training
strategy randomly selects 15% of the input sequence tokens, and either replaces them with
a specific mask token [MSK], a random token, or the same token with 80%, 10%, and 10%
probability respectively. The average cross-entropy loss is calculated over the masked
tokens and utilised to calculate gradients via backpropagation for model weight training.

During rescoring, an autoregressive model is typically employed to calculate the
likelihood of the next token given a sequence of previous tokens. However, because
bidirectional models make use of context from both the left and the right of the current
token, a different strategy must be employed. Specifically, when applying these models,
the negative log likelihood is calculated for each token in a sequence given the remainder
of the sequence as a context. This is accomplished by applying the masking token [MSK]
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to the nth position in a sequence and calculating the negative log-likelihood of the target
token at the same position. This process is repeated for each position in the hypothesised
sequence, in order to generate a negative log-likelihood score for the sequence as a whole.
The scores for each sequence are then interpolated with the respective n-gram and acoustic
model scores, in order to rescore the development and test set n-best lists.

To our knowledge these are the first investigations applying bidirectional transformer
language model architectures to code-switched speech recognition. Although the structures
of the transformers and LSTM language models are not directly comparable - they differ
for example in pretraining data, architecture, and vocabulary size - we can nevertheless
contrast their impact on speech recognition performance.

We consider five different bidirectional architectures: a distilled multilingual BERT
model (D-M-BERT) [26], a multilingual BERT model (M-BERT) [12], a first BERT architec-
ture trained on South African languages (afriBERTa-S) [11], another distilled multilingual
transformer model distilled from XLM-R (mMiniLMv2) [27], and finally a distilled GPT-2
(GPT-2) model which is an autoregressive transformer [28].

Each of the considered models are applied in the following three ways. Firstly, in a
zero-shot setting (Z), where the baseline language model is applied with no additional
training. Secondly, after fine-tuning the model for between one and ten epochs on each of
the four bilingual soap opera corpora (F-B). Finally, by pooling the four bilingual language
pairs and again fine-tuning the model for between one and ten epochs (F-P). Each of these
resulting models is then evaluated by means of n-best rescoring experiments.

5. Results

First, in Section 5.1, we present the language modelling and n-best list rescoring
results achieved by the optimisation of the monolingual pretraining of the LSTM language
models as described in Section 4.4. In Section 5.2, we show the improvements afforded by
optimising the augmented n-gram language model, and additional performance afforded
by utilising both augmented n-grams as well as the pretrained LSTM for n-best rescoring
as described in Section 4.5. Finally in Section 5.3, the results afforded by applying fine-
tuned publicly available pretrained models, as described in Section 4.6, in n-best rescoring
experiments is presented.

5.1. Optimisation of LSTM pretraining

In this section we present the results of the experiments that investigate the best
pretraining strategy for the LSTM language model presented in Section 4.4. These results
will be both in terms of perplexity and word error rate after n-best rescoring. We compare
the performance of the pretrained model with the baseline LSTM language model (N-LMB)
which is trained solely on the soap opera training data as described in Section 4.3. In each
experiment, the LSTM is pretrained using data interleaved at the batch (B) or sequence (S)
level as described in Table 4 for between one and five epochs. Table 5 shows that, on average
over all four language pairs and five training epochs, the model pretrained using only the
out-of-domain monolingual data (N-LMM) affords the largest improvements in perplexity
of 42.87% relative to the baseline (N-LMB). Additionally, we find that interleaving at the
sequence level (S) is better than at the batch level (B), affording a 45.4% average relative
improvement in perplexity compared to a 40.33% average improvement relative to the
baseline (N-LMB).

When considering the application of these same language models in 50-best list
rescoring, a similar trend in terms of speech recognition improvements is seen. In Table 6,
we find that interleaving the monolingual sets at the sequence level again affords the largest
improvement, both in overall word error rate and in code-switched bigram error. We
find that, on average over all four language pairs and over all the pretraining epochs, this
strategy leads to an absolute improvement of the average test set word error rate and code-
switched bigram error of 1.65% and 1.26% compared to the baseline (ASRB) respectively,
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Table 5. Development set perplexity (PP) and perplexity over code-switches (CPP) during the
optimisation of the pretraining strategy for each of the respective language pairs: English-isiZulu
(EZ), English-isiXhosa (EX), English-Sesotho (ES), and English-Setswana (ET).

Label Interleaving Pretrain EZ EX ES ET
Strategy Epochs PP CPP PP CPP PP CPP PP CPP

N-LMB baseline 1128.03 7096.29 931.15 8304.73 382.63 3125.48 217.98 1540.83

1 1850.37 13311.93 1614.64 59474.81 561.98 4650.30 297.12 2417.28
2 2048.55 17436.57 1650.34 54905.99 610.43 5420.13 300.00 2737.39

N-LMS - 3 1998.27 16713.30 1652.17 45977.33 618.98 4383.20 322.15 3208.09
4 2098.93 17396.86 1699.18 36098.41 602.49 4594.89 324.74 2482.70
5 2187.36 19880.80 1851.82 59169.59 631.43 5092.63 325.94 2681.45

avg 2036.696 16947.892 1693.63 51125.226 605.062 4828.23 313.99 2705.382

1 509.02 5074.23 518.32 25010.68 291.01 2539.42 151.55 1177.82
2 497.80 5601.93 533.98 25526.28 272.05 2502.47 155.16 1267.82

N-LMM S 3 475.92 5721.63 524.00 31449.95 255.68 2492.32 156.67 1529.83
4 483.95 6755.50 549.62 33120.62 257.26 2640.20 157.40 1434.55
5 481.83 6394.88 564.92 29463.09 266.17 2514.81 158.58 1547.93

avg 489.704 5909.63 538.17 28914.12 268.43 2537.84 155.87 1391.59

1 571.18 5494.01 547.90 19960.04 322.25 3082.60 167.14 1689.05
2 553.30 6428.99 565.68 24943.19 274.48 2902.02 164.13 1556.71

N-LMM B 3 532.67 6391.08 593.91 21960.06 273.58 2370.09 166.29 1620.73
4 557.46 7651.09 588.64 28318.79 271.80 2674.29 166.61 1857.61
5 573.03 8382.29 609.99 24683.29 264.45 2371.42 171.15 2053.57

avg 557.53 6869.49 581.22 23973.07 281.31 2680.08 167.06 1755.53

1 781.01 8943.00 689.57 36081.04 302.86 2770.62 176.52 1657.77
2 859.46 11458.10 802.73 51184.45 291.72 2885.21 192.29 1881.91

N-LMS+M S 3 926.41 12613.78 869.72 64164.98 311.49 3526.64 197.82 2039.33
4 928.10 13214.15 930.73 60961.38 325.22 4223.84 208.19 2422.76
5 973.04 11998.12 971.92 80515.01 347.04 4047.01 213.72 2544.30

avg 893.60 11645.43 852.93 58581.37 315.67 3490.66 197.71 2109.21

1 836.48 9139.47 846.31 49030.77 321.34 2940.73 180.66 1688.67
2 944.16 10014.31 939.02 56308.11 308.64 3171.25 194.83 2143.43

N-LMS+M B 3 958.63 10209.21 964.50 61227.18 310.26 3493.94 203.00 2370.01
4 1013.20 11586.97 1063.56 78132.84 315.36 3376.50 211.92 2505.06
5 1081.88 13051.23 1088.47 66280.58 335.33 4088.15 226.31 2847.04

avg 966.87 10800.24 980.37 62195.90 318.19 3414.11 203.34 2310.84

outperforming the batch level interleaving, which afforded average improvements of 1.56%
and 1.13%.

When pretraining on the synthetic code-switched data, it appears from the results
in both Table 5 and Figure 2 that subsequent fine-tuning on the soap opera data is not
successful. In fact, columns S and S_M of the figure make it clear that for all four languages
the code-switched losses immediately diverge when fine tuning begins. We believe this
may be caused by over-fitting on the synthetic data, therefore we investigated pretraining
for fewer batches (1,100,500, and 1000). However, we found that models incorporating the
synthetic data are still outperformed by those pretrained on the monolingual data. When
pretraining on the monolingual data, it is clear that the performance over code-switches
is poor. However, during fine-tuning, performance improves. In fact, these models (M)
exhibit better performance over code-switches than the models which are exposed to
synthetic code-switched data during pretraining (S and S_M).

We therefore conclude that the best pretraining strategy in terms of speech recognition
performance is to mix the monolingual datasets at the sequence level, and pretrain for three
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Figure 2. Development set perplexity and code-switched perplexity for each language pair (in
rows: English-isiZulu, English-isiXhosa, English-Sesotho, and English-Setswana) and for each of
the combinations of corpora used for pretraining as outlined in Table 4 (in columns: S: Synthesized,
M: Monolingual, S_M: Synthesized and Monolingual). The red plot indicates the loss throughout
pretraining, and each alternate colour corresponds to the loss when fine-tuning is started after
pretraining for between one and five epochs.
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Table 6. Test set word error rates (WER) and code-switched bigram error rates (CSBG) during the
optimisation of the pretraining strategy for each of the respective language pairs: English-isiZulu
(EZ), English-isiXhosa (EX), English-Sesotho (ES), and English-Setswana (ET). The epochs which
afforded the lowest development set word error rate are highlighted. The best average performance
over the five pretraining epochs across the different strategies on the test set is denoted in bold.

Label Interleaving Pretrain EZ EX ES ET
Strategy Epochs WER CSBG WER CSBG WER CSBG WER CSBG

ASRB baseline 41.75 63.73 42.89 69.46 50.64 67.17 41.89 57.37

N-LMB baseline 40.84 61.20 43.04 69.32 50.07 68.30 41.00 55.22

1 42.03 62.91 43.04 69.90 51.13 69.17 41.49 56.29
2 41.38 62.43 43.27 70.19 51.70 69.55 42.26 57.85

N-LMS - 3 41.85 62.30 43.68 71.35 51.48 69.30 41.36 56.20
4 41.53 62.50 44.10 71.49 51.78 69.42 41.67 56.39
5 41.46 62.50 44.44 71.64 51.31 69.05 41.63 55.32

avg 41.65 62.53 43.71 70.91 51.48 69.30 41.68 56.41

1 39.25 61.27 43.30 72.07 50.07 67.79 39.12 52.68
2 39.15 61.00 43.04 71.64 49.38 67.54 39.36 53.76

N-LMM S 3 38.58 59.70 42.78 69.90 49.48 68.30 38.73 51.90
4 39.08 60.93 42.47 71.20 49.51 67.42 39.42 54.05
5 39.18 61.68 42.21 69.90 49.48 67.42 39.32 53.37

avg 39.05 60.92 42.76 70.94 49.58 67.69 39.19 53.15

1 39.75 60.86 43.30 70.91 49.06 67.54 39.93 55.90
2 39.38 61.41 42.81 70.04 49.36 67.29 39.22 53.37

N-LMM B 3 39.40 61.27 42.47 69.75 48.99 67.29 39.28 54.73
4 39.38 60.52 42.74 70.62 49.06 66.79 39.62 54.15
5 39.31 60.59 42.66 70.62 49.58 68.05 39.44 54.34

avg 39.44 60.93 42.80 70.40 49.21 67.39 39.50 54.50

1 40.35 61.48 42.14 70.04 50.15 67.42 39.18 54.54
2 40.65 62.30 42.66 70.04 49.48 66.92 39.14 53.27

N-LMS+M S 3 40.53 62.02 42.44 69.75 49.38 68.05 40.11 53.95
4 40.92 62.16 42.89 70.33 49.70 67.42 40.03 54.93
5 40.58 61.82 43.08 71.49 50.30 69.05 40.23 54.83

avg 40.61 61.96 42.64 70.33 49.80 67.77 39.74 54.30

1 40.46 62.30 42.78 69.90 49.43 66.92 39.20 53.27
2 40.44 61.95 42.70 70.62 49.04 67.54 40.49 55.12

N-LMS+M B 3 40.51 62.23 42.93 69.75 49.65 67.29 40.51 54.63
4 40.67 62.23 43.04 70.19 49.70 67.04 40.66 55.41
5 40.16 61.68 43.08 70.62 49.63 67.04 40.45 54.24

avg 40.45 62.08 42.91 70.22 49.49 67.17 40.26 54.53

or four epochs. Given this strategy, selecting the model with the best development set word
error rate over the five pretraining epochs (highlighted in Table 6) affords test set absolute
word error rate improvements compared to the baseline speech recognition system (ASR-B),
as outlined in Section 4.2, of 3.17%, 0.42%, 1.16%, 2.47% for isiZulu, isiXhosa, Sesotho, and
Setswana respectively. We note deterioration in speech recognition at code-switches (CSBG)
for isiXhosa and Sesotho of 1.74% and 1.13% respectively, while isiZulu and Setswana are
improved by 4.03% and 3.32%.

5.2. N-gram Augmentation

In Table 7, we present both the language model perplexities and speech recognition
word error rates when utilising the interpolated n-gram language models trained on
the respective corpora outlined in Table 4. We find that the interpolated models which
incorporate n-grams from the soap opera data, the synthetic code switched data, and the
monolingual data (LMB+S+M) on average afford the largest improvement in development
set word error rate as well as perplexity, and improve the test set word error rate by between
1.97-3.24% absolute compared to the baseline (ASRB). Additionally, absolute improvements
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in code-switched bigram error compared to the baseline of 1.23% and 3.19% are achieved
for isiZulu and Setswana respectively, while isiXhosa and Sesotho deteriorate by 0.29% and
0.75% respectively. By incorporating the additional monolingual and synthetic data to train
an interpolated n-gram model we are able to consistently improve absolute recognition
accuracy on average by 2.53% compared to the baseline model.

Table 7 also shows the results of rescoring the n-best lists with the best performing
pretraining strategy (N-LMM) identified in Section 5.1. Specifically, the table presents
the test set results corresponding to the best development set word error rate from the
five pretrained and fine-tuned models - N-LMM-S in Table 6. We rescore the n-best lists
generated by both the n-gram models trained using the soap opera and monolingual data
(LMB+M), as well as those that incorporated the soap opera, monolingual and synthetic
data (LMB+S+M). On average, over the four language pairs, we find that rescoring the
hypotheses generated using the n-gram incorporating the soap opera, monolingual and
synthetic data (LMB+S+M) lead to the largest improvements in the development set word
error rate compared to the baseline (ASRB). These language models achieved corresponding
improvements in test set word error rate of 3.5% on average compared to the baseline,
and 0.98% over the n-gram trained using the soap opera, synthetic and monolingual data.
We find that including the synthetic data improves both language modelling and speech
recognition when achieved by n-gram augmentation. This is in contrast to the lack of
improvement seen when the same data is used in LSTM pretraining. This is consistent with
our expectation, as the data was optimised specifically to improve speech recognition when
incorporated by n-gram augmentation.

It is also clear that the improvements afforded by rerunning speech recognition experi-
ments after n-gram augmentation are similar to those afforded by the rescoring experiments,
which suggests that especially in computationally constrained settings, the augmentation
of only the n-gram models for lattice generation should be favoured since it is far less
computationally expensive to implement. More specifically, when comparing the results
achieved when the optimally pretrained model is used to rescore the baseline n-best hy-
potheses (ASRB + N-LMM in Table 7) to those achieved by utilising the same data for n-gram
augmentation (LMB+M) we find that on average over the four language pairs, the n-gram
augmentation outperforms the rescoring by 0.69% absolute in overall speech recognition
accuracy. However, the rescoring method outperforms the n-gram augmentation in terms
of code-switched recognition accuracy by 1.38% absolute on average. This suggests that the
neural language models are better able to model the code-switching phenomenon, while
the augmented n-grams improve the modelling of monolingual stretches of speech.

Overall, rescoring the n-best lists produced by the augmented n-gram LMB+S+M pro-
duces the lowest development set word error rate for isiZulu and Setswana, with corre-
sponding test set improvements of 4.23% and 4.45% absolute compared to the baseline
(ASRB). Additionally, we improve the speech recognition accuracy over code-switches
for the same languages by 2.05% and 3.13% absolute compared to the baseline. The best
development set word error rate for isiXhosa and Sesotho is achieved by rescoring the
n-best lists produced by n-gram LMB+M, leading to test set improvements of 1.81% and
2.69% absolute compared to the baseline. We find, however, that speech recognition at
code-switches is worse for both of these languages than the baseline. We conclude that
utilising the additional data for both n-gram augmentation (LMB+S+M) and LSTM pretrain-
ing (N-LMM) for n-best rescoring offers the largest consistent improvements in speech
recognition accuracy, and outperforms either strategy employed alone.

5.3. Large Pretrained Language Models

In Table 8 we present the overall test set speech recognition error rate (WER) as well
as the speech recognition error rate specifically over code-switches (CSBG) for the five
considered pretrained architectures, as discussed in Section 4.6. Each pretrained model
is used in rescoring experiments in either a zero shot setting (Z) or after fine-tuning for
between one to ten epochs on either the respective bilingual corpus (F-B) or the pooled data
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Table 7. Development set perplexity (PP) and code-switched perplexity (CPP) of the augmented
n-gram language models (LM) for each of the four respective language pairs: English-isiZulu (EZ),
English-isiXhosa (EX), English-Sesotho (ES), and English-Setswana (ET). The test set speech recogni-
tion error rates (WER) and code switched bigram error rates (CSBG) when utilising the augmented
n-gram language models and additional rescoring by the pretrained neural language model (+N-LM)
or multilingual language model (+ GPT-2 (F-P) or + M-BERT (F-P)) are also shown. The model which
afforded the best average speech recognition performance on the development set is highlighted. The
best performance achieved on the test set is denoted in bold.

Label EZ EX ES ET
PP CPP PP CPP PP CPP PP CPP

LMB 565.44 2606.7 418.04 3433.36 235.99 1143.3 174.51 836.91
LMB+S 515.07 2127.7 409.94 3356.73 227.39 1024.28 160.81 724.57
LMB+M 432.83 2702.94 330.12 3298.88 207.68 1086.17 150.75 864.44
LMB+S+M 407.78 2220.83 328.69 3236.44 203.21 998.71 142.38 730.85

WER CSBG WER CSBG WER CSBG WER CSBG

ASRB 41.75 63.73 42.89 69.46 50.64 67.17 41.89 57.37
+ N-LMM 38.58 59.70 42.47 71.20 49.48 68.30 39.42 54.05
LMB+S 41.41 62.64 42.66 68.60 50.69 67.92 41.24 56.29
LMB+M 38.12 63.11 40.21 70.04 48.79 68.92 40.07 56.68
+ N-LMM 37.15 61.54 41.08 71.35 47.95 67.67 37.92 54.54
LMB+S+M 38.51 62.5 40.44 69.75 48.67 67.92 39.42 54.18
+ N-LMM 37.52 61.68 41.19 71.20 46.99 66.04 37.44 54.24
+ GPT-2 (F-P) 36.59 59.84 39.08 69.03 48.00 67.04 37.94 53.37
+ M-BERT (F-P) 37.36 59.08 38.82 67.44 46.15 64.54 37.05 52.59
+ M-BERT (F-P) 36.32 59.02 40.32 69.90 45.98 64.16 36.85 53.56+ N-LMM

Table 8. Test set word error rates (WER) and code-switched bigram error rates (CSBG) when utilising
transformer models for n-best rescoring. Results are presented for each of the four respective language
pairs: English-isiZulu (EZ), English-isiXhosa (EX), English-Sesotho (ES), and English-Setswana (ET).
The model which afforded the best average speech recognition performance on the development set
is highlighted. The best performance achieved on the test set amongst the multilingual models is
presented in bold.

Label Setting EZ EX ES ET
WER CSBG WER CSBG WER CSBG WER CSBG

ASRB 41.75 63.73 42.89 69.46 50.64 67.17 41.89 57.37

N-LMB 40.84 61.20 43.04 69.32 50.07 68.30 41.00 55.22
N-LMM 38.58 59.70 42.47 71.20 49.48 68.30 39.42 54.05

Z 41.41 64.14 42.21 69.61 50.35 69.55 41.43 56.78
D-M-BERT F-B 40.84 62.57 41.34 67.87 49.61 67.67 40.72 55.71

F-P 40.62 62.16 40.81 66.86 48.52 66.54 40.35 54.34

Z 41.41 64.14 42.21 69.61 50.35 69.55 41.43 56.78
M-BERT F-B 40.40 61.27 40.29 66.86 49.31 66.42 39.93 52.98

F-P 39.57 60.38 40.81 67.58 48.50 65.04 39.54 54.05

Z 41.23 63.11 41.72 68.89 50.54 67.67 41.67 56.98
afriBERTa-S F-B 40.74 62.02 41.98 70.48 49.38 66.17 40.66 55.71

F-P 40.01 60.52 41.57 67.58 48.82 65.54 40.21 54.05

Z 41.57 63.80 42.25 68.31 50.79 68.92 41.73 56.59
mMiniLMv2 F-B 40.30 60.59 41.95 68.60 50.72 68.67 41.79 56.39

F-P 40.30 61.41 41.64 67.73 50.42 66.92 40.76 55.61

Z 44.95 67.55 45.83 73.95 52.91 69.92 45.41 61.37
GPT-2 F-B 39.70 60.31 40.89 67.73 50.05 67.04 40.62 55.41

F-P 38.97 60.11 40.06 68.60 48.91 65.91 39.62 53.27
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from all four sub-corpora (F-P). After fine-tuning, the model which afforded the largest
development set word error rate improvements over the ten fine-tuning epochs is selected
and used to rescore the corresponding test set n-best list. The resulting test set word error
rate is listed in the table.

It is clear from Table 8 that marginal average speech recognition improvements in zero-
shot rescoring (Z) are possible for all the bidirectional models except GPT-2. On average
over the four language pairs, an absolute improvement of 0.4% is achieved compared to the
baseline (ASRB). While better results were achieved by rescoring with the LSTMs trained
only on the in domain data (N-LMB), it is nevertheless interesting that these models, even in
zero-shot settings, are able to improve the recognition accuracy. We believe that this might
be due to the language agnostic sub-word encoding strategy used by all the large models
in Table 8. These encodings allow the models to learn rich embeddings across languages.
Unlike our own LSTM language model, which distinguishes words between languages
by appended language tags, the sub-word encoding strategies used by the multilingual
models do not. We hypothesise that this allows the model to benefit from the additional
training data in related target languages. We aim to explore this hypothesis in further
research.

When fine-tuning the pretrained models on the pooled bilingual sets of in domain
data (F-P), we find that absolute speech recognition accuracy is improved by 1.79% on
average compared to the baseline over all the models and the four language pairs, while
models fine-tuned on only the bilingual data afford improvements of 1.23% compared to
the baseline.

Interestingly, we note that the BERT model trained on 11 African languages (afriBERTa-
S) is outperformed by the BERT model (M-BERT) trained on much more text in unrelated
languages. Preliminary experiments using the larger afriBERTa-base, which is comparable
in model size to M-BERT, indicated even higher word error rates than those achieved with
the smaller afriBERTa-S model.

Over all the large transformer models and language pairs, we find that distilled GPT-2
and multilingual BERT, both fine-tuned on the pooled (F-P) soap opera training data, afford
the largest improvements in development set speech recognition, both overall and over
language switches. In fact, the best fine-tuned GPT-2 model outperforms our own LSTM
rescoring model pretrained on the out-of-domain bilingual corpora as outlined in Section 4
by an average of 0.60% absolute on the test set over the four language pairs. Similar trends
are seen in terms of code-switched speech recognition error rate, where GPT-2 outperforms
the LSTM model by 1.34% absolute on average over the four language pairs. These results
are remarkable, given that the data on which GPT-2 was pretrained did not include any of
the target languages considered in this work, and uses a vocabulary that is not optimised
to represent those same languages.

Furthermore, the multilingual BERT model also affords consistent improvements over
all four language pairs in both overall speech recognition and recognition across code-
switches. On average over the four language pairs, this model affords overall improvements
of 2.18% in test set word error rate, and 2.67% in code-switched bigram error compared to
the baseline system (ASRB).

When rescoring the n-best lists produced using the augmented n-grams (LMB+S+M)
the performance of M-BERT surpasses the performance of GPT-2. As shown in Table 7, the
multilingual BERT model affords, on average over the four language pairs, improvements
of 4.66% and 4.45% in development and test set speech recognition accuracy respectively.
The improvement in code-switched performance achieved by the bidirectional model is
further strengthened, improving the test set baseline recognition performance by 3.52%,
outperforming the GPT-2 model by 1.41%.

We conclude that fine-tuning large transformer models pretrained on unrelated lan-
guages can improve speech recognition accuracy more effectively than carefully fine-tuned
LSTM models pretrained on data in the target languages. In terms of effective use of com-
putational resources this is an encouraging result, because it means that under-resourced
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Figure 3. Development and test set word error rates (WER) for each of the respective language pairs
(English-isiZulu, English-isiXhosa, English-Sesotho, and English-Setswana) when optimising the
interpolation weight between n-best scores produced by the optimal pre-trained LSTM (N-LMM from
Section 5.1) and BERT (M-BERT (F-P) from Section 5.3).

languages can benefit from large models pretrained on well-resourced languages, even
when the under-resourced languages are completely unrelated to those used to train the
larger models.

5.4. LSTM + BERT Rescoring

In a final set of experiments, we interpolated the n-best scores obtained by the best
LSTM (Section 5.1) and best M-BERT (Section 5.3) models. We optimise the interpolation
weight over the range 0.05 to 0.95, as shown in Figure 3. In the figure, interpolation weights
closer to one assign more weight to the BERT scores, and conversely interpolation weights
closer to zero assign more weight to the LSTM scores.

It is clear from Table 7 that utilising a combination of both architectures for rescoring
is able to marginally improve (0.4% absolute) overall speech recognition performance
for all language pairs except English-isiXhosa. However, recognition performance over
code-switches is not improved. Additionally, utilising both models incurs the severe
computational overhead of training both architectures, as well as requires each model to
rescore the n-best lists.

In future work, we aim to train a large multilingual transformer (comparable to M-
BERT) using our South African language data, in order to better assess the performance
of the fine-tuned transformer architectures explored here. The LSTM models we have
considered receive word-level tokens with language dependent and closed vocabularies,
while the transformer models utilise language agnostic sub-word encoding strategies. By
closing this gap, we hope to achieve further benefits.

6. Conclusions

In this work we have presented and compared several strategies for pretraining a code-
switched neural language model. We found that interleaving distinct pretraining corpora
at the sequence level outperformed interleaving at the batch level. Additionally we found
that incorporating synthetic data in the pretraining corpora did not afford improvements
in speech recognition when the language models are employed in n-best rescoring. We
presented the surprising result that, although the data utilised for pretraining our LSTM
language model is monolingual, its inclusion allows us to improve speech recognition
accuracies, even across language switches.

In contrast, we found that when augmenting n-gram models used for lattice generation
with the monolingual and synthetic data we could achieve consistent and comparable
improvements, at a fraction of the computational cost of training the neural language model.
A combination of n-best rescoring and n-gram augmentation lead to larger improvements in
speech recognition accuracies than each approach individually, achieving gains of between
1.81% and 4.45% absolute compared to the baseline.

Finally, we contrasted the improvements afforded by our pretraining strategies to
those achieved by fine-tuning large publicly available language models, such as M-BERT.
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We found that, even when not specifically trained on data that include the target languages,
these models also improve both overall test set speech recognition (by between 4.07%-
4.84%) and recognition over code-switches (by between 2.02%-4.78%) compared to the
baseline. This result is encouraging, since it represents a means of taking advantage of
huge out-of-domain datasets without the need for costly pretraining. Further marginal
improvements in speech recognition were achieved by interpolating the n-best scores
produced by the best pre-trained LSTM and BERT models. In future work we would like to
investigate if these results can be improved upon by direct training of large transformer
architectures utilising the monolingual text in the target languages which are available.
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LSTM Long-short term memory
WER Word error rate
CSBG Code-switched bigram error rate
OOV Out of vocabulary
PP Perplexity
CPP Code-switched perplexity
BERT Bidirectional encoder representations from transformers
GPT Generative pretrained transformer
LM Language model
N-LM Neural language model
ASR Automatic Speech Recognition
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