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Abstract  

The global financial crisis of 2008, triggered by the collapse of Lehman Brothers, 

highlighted a banking system that was widely exposed to systemic risk. The 

minimization of the systemic risk via a close and detailed monitoring of the entire 

banking network became a priority. This is a complex and demanding task considering 

the size of the banking systems: in the US and the EU they include more than 10000 

institutions.  

In this paper, we introduce a methodology which identifies a subset of banks that 

can: a) efficiently represent the behavior of the whole banking system and b) provide, 

in the case of a failure, a plausible range of the crisis dispersion. The proposed 

methodology can be used by the regulators as an auxiliary monitoring tool, to identify 

groups of banks that are potentially in distress and try to swiftly remedy their problems 

and minimize the propagation of the crisis by restricting contagion. This methodology 

is based on Graph Theory and more specifically Complex Networks. We termed this 

setting a “multivariate Threshold – Minimum Dominating Set” (mT–MDS) and it is an 

extension of the Threshold – Minimum Dominating Set methodology (Gogas e.a., 

2016). The method was tested on a dataset of 570 U.S. banks: 429 solvent and 141 

failed ones. The variables used to create the networks are: the total interest expense, the 

total interest income, the tier 1 (core) risk-based capital and the total assets. The 

empirical results reveal that the proposed methodology can be successfully employed 

as an auxiliary tool for the efficient supervision of a large banking network. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2022                   doi:10.20944/preprints202205.0065.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202205.0065.v1
http://creativecommons.org/licenses/by/4.0/


 

2 
 

Key words: Complex networks, Minimum Dominating Set, Banking supervision, 

monitoring optimization             

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2022                   doi:10.20944/preprints202205.0065.v1

https://doi.org/10.20944/preprints202205.0065.v1


 

3 
 

1. Introduction  

 

The global financial crisis of 2008, also known as the subprime mortgage crisis, is 

classified as the world’s worst crisis since the Great Depression of 1930. The initial 

collapse of Lehman Brothers triggered a cascading effect of failures exposing the high 

systemic risk embedded in a highly interrelated and interdependent banking network. 

Systemic risk in a banking system is defined as the risk of destabilization of the whole 

system, caused by the failure of a single or a small set of banking institutions. The 

collapse of Lehman Brothers threatened the viability of many other large financial 

institutions. The ones that eventually survived received significant subsidies (through 

bailout programs) under the Troubled Assets Relief Program (TARP) implemented by 

the government. The same was not true for a set of smaller institutions that were left to 

collapse.  

Historically, following each banking crisis, a series of Acts were introduced aiming to 

stabilize the banking system and avoid a future re-occurrence of a crisis. The Banking 

Act of 1933, commonly known as the Glass-Steagall Act, was signed by President 

Franklin Roosevelt at an attempt to restore the confidence in the U.S banking system. 

The bill was designed to reform the banking system by imposing a dichotomy between 

commercial and investment banking in order to reduce risk. It also intended to allow 

for a safer and more effective use of banks’ assets, to regulate interbank control and 

prevent banks form conducting speculative operations. This boosted disintermediation, 

the practice of financing directly from capital markets without the intermediation of 

banks, reducing banks’ share in total financing. As a result, banking institutions pursued 

the abolishment of the Glass-Steagall Act and several decades later, the U.S Congress 

passed the Gramm-Leach-Bliley Act of 1999, which was signed into law by President 

Clinton. The Gramm-Leach-Bliley Act waved the preexisting barriers in financial 

markets. Now, banking institutions were again free to engage in securities trading and 

insurance contracts that helped them increase their market share. This newly gained 

freedom and the inevitable fierce competition with non-banking institutions, led to the 

rapid development in the markets of new and diverse financial instruments. In effect, 

the liberalization of the banking sector led to a significant increase in systemic risk as 

banks are since exposed to investment and other types of risk. Many analysts believe 

that the 2008 financial crisis is directly linked to the imposition of the Gramm-Leach-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2022                   doi:10.20944/preprints202205.0065.v1

https://doi.org/10.20944/preprints202205.0065.v1


 

4 
 

Bliley Act. The lack of separation between commercial and investment banking 

activities, allows financial institutions to be involved in securities trading not only for 

their customers but also for themselves, a practice that exposes common depositors to 

high market risk.  

After the 2008 financial crisis, the Obama administration enacted the Dodd-Frank Wall 

Street Reform and Consumer Protection Act, in 2010, in an attempt to minimize 

systemic risk, enforce financial sector’s transparency and accountability, and 

implement rules for consumers’ protection. However, the provisions of the Dodd-Frank 

Act did not include the strict separation between commercial and investment banking 

and thus cannot fully minimize such risk in the banking sector. 

It is essential for the regulators to swiftly pinpoint incidents of bank distress. A prompt 

identification of instances of increased systemic risk can help minimize the policy 

reaction time. This can help minimize the contagion and defuse the propagation of a 

potential financial crisis. Thus, an effective and continuous monitoring of financial 

institutions is necessary for the maintenance of a solvent and stable banking system. 

Increased supervision and strict regulation of the banking system is also required by the 

new Basel Accord (Basel III) by the Basel Committee on Banking Supervision, 

introduced in the U.S. in 2013, and implemented in 2018.  

According to the new Basel Accord framework, the regulatory authorities are 

responsible to: a) implement an extensive supervision of the banking system, and b) 

mitigate the effects of possible crises and limit contagion. A significant concern, apart 

from finding the appropriate monitoring tools, is the appointment of such a regulatory 

authority. Many researches support that the supervision of the entire banking system 

should be vested to a single authority. Vives (2000) and Blinder (2010) support that a 

single authority can: a) establish credible systems, b) achieve economies of scale and 

c) reach financial stability, by taking advantage of the economies of scale between 

Lender of Last Resort (LOLR) facility, supervision and monetary policy. Boyer and 

Ponse (2012) support that a single supervisory authority preserves a more effective 

supervision of the banking system, than the one achieved by multiple authorities. 

Following the idea that a single authority is competent to optimize the supervision of 

the entire banking system by providing a timely and efficient intervention, E.U. leaders 
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decided in October 2012 to assign the supervision of the whole European banking 

network to a single authority, the ECB.  

In this paper, we introduce the multivariate Threshold – Minimum Dominating Set 

(mT-MDS) methodology and then use it to group the banking network in 

neighborhoods according to their financial health. The mT-MDS is an extension of the 

T-MDS methodology, that is especially designed  to treat multivariate networks, since 

the T-MDS can handle only univariate ones. The methodology creates a multilayered 

network and distills the multivariate information in one binary network using a Boolean 

operator. The multilayered network is build using the variables that were identified in 

Gogas, et al. (2018) for banking bankruptcy forecasting. Τhe empirical results reveal 

that the neighborhoods efficiently classify solvent and failed institutions. We propose 

the mT-TMDS method, as an auxiliary monitoring mechanism, an extra layer on 

banking supervision. 

The rest of the paper is organized as follows. In Section 2, we present a literature review 

of studies related to ours. In Section 3, we present the multivariate T-MDS model. In 

Section 4, we present our dataset, while in Section 5, we report the empirical results. In 

Section 6, we draw the conclusions.  

2. Literature Review  

Systemic risk is spread through the multiple interrelations between financial institutions 

in a banking network. A simple, concise and efficient way to model this system is by 

using a Complex Networks representation: each bank is represented by a node and the 

interrelation between two banks is represented by an edge linking them. The theory of 

Complex Networks provides a set of tools able to examine the structure of economics 

networks. Mantegna (1999) and Hill (1999) were the first to apply Complex Networks 

in economics systems. More specifically, Mantegna (1999) uses the MST in his attempt 

to study the hierarchical structure of the New York Stock Exchange, while Hill (1999) 

compared price levels across countries using the same methodology. The application of 

complex networks in economics and more particular in banking has grown 

expeditiously during the last years. There are several studies that examine the risk of 

contagion.               
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The seminal paper of Allen and Galle (2000) investigates the cascading effect of a 

banking crisis on a network of regions or economic sectors. The authors showed that 

two cases are resilient to a liquidity shock: a) the case of a complete interbank market 

(i.e., a market where every bank is connected with to all the other banks of the network) 

and b) an incomplete interbank market with low degree of interconnectedness. 

Conversely, in the case of an incomplete interbank market with high degree of 

interconnectedness the liquidity shock may spread to the whole network. Similar 

conclusions are drawn from the studies of Leitner (2005) and Gaia and Kapadia (2010), 

where the results revealed that as the network becomes denser, systemic risk drops and 

the influence of an institution’s default is negligible as the losses of the failed institution 

will be spread and engrossed from the rest institutions of the network. 

In order to examine in depth, the origins of systemic risk, a number of papers analyze 

the topology of real word networks in an effort to identify their features. Minoi and 

Reyes (2011), analyse the topology of the global banking network, formed of financiall 

flows during and after periods of financial stress. The findings show that a number of 

structural breaks in the network, indicates the waves of capital flows before and after 

crises. Network’s centrality falls at the begining and after a debt crisis. In the study of 

Tabak et al. (2014), the authors introduce the directed clustering coefficient as a 

measure of systemic risk in complex networks. The results reveal that the network is 

not exposed to systemic risk, more specific the clustering coefficient and domestic 

interest rates reveal negative correlation: as interest rates increase, the banks decrease 

their exposure to the system.  Thurner et al. (2003), examine the impact of a network’s 

structure on the wealth of the economy, concluding that a highly connected network, is 

more stable since it is not exposed to large wealth changes. Kuzubas et al. (2014) use 

centrality measures: betweenness centrality, closeness centrality and Bonacich’s 

centrality, to assess the network’s connectivity and identify the systemically important 

institutions. The results reveal that the centrality measures are adequate for the 

identification and the observance of systemically important financial institutions.  

Furthermore, there are studies using the balance-sheet based technique to explore and 

evaluate the interrelations of banking institutions and their level of influence in the 

overall banking system. These studies test the influence of credit relations, in different 

banking systems. Their aim is to explore how mutual claims between banks can affect 
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the propagation of contagion. Upper and Worms (2004) study the German banking 

system, Cocco et al. (2003) analyze the Portuguese, Wells (2004) explores the U.K. 

interbank market, Furfine (2003) studies the U.S. banking system, Nguyen (2004) tests 

the Belgian interbank market and Sheldon and Maurer (1998) study the Swiss banking 

system. The results of the above studies coincide and reveal that the default of a single 

institution is not capable to trigger the collapse of the entire system, though it is able to 

influence a quite small part of the network. All studies reach to the same conclusion: 

banking systems are robust to the failure of a single institution. Finally, Chan-Lau 

(2010) also uses a balance-sheet based approach to examine whether the financial crisis 

of 2008 that was triggered by an institution’s failure and it spread to the largest part of 

the world, was an aftermath of institutions’ interbank exposure and their externalities 

with too-connected-to-fail institutions. The results reveal that when shocks in the 

network jeopardize banks' solvency, they can be characterized as sources of financial 

contagion worldwide. 

We presented a large collection of papers focused in measuring the robustness of a 

banking network and its exposure to systemic risk. Our approach differs as it is oriented 

on the optimization of network monitoring. Μore specifically, we propose the 

introduction of a new monitoring layer to the existing systems for bank supervision. In 

this layer, the regulator will identify a reduced version (small subset) of the initial 

network that: a) contains an adequate amount of the total information and b) is easier 

to monitor and analyze. We merge these two targets in one under the term 

representation goal. We investigate the interrelations between banking institutions 

using tools from Complex Networks theory and more specifically Graph theory. In 

Gogas, e.a. (2016) we introduced a two-step methodology termed T-MDS for the 

identification of a small subset of nodes able to represent the entire network. In our 

setup the nodes are the economic entities (banks) and the edges define temporal 

similarity as described by the correlation. We showed that the T-MDS banks can be 

used as distress sensors for the whole banking network.  

 

3. Proposed Methodology  

In this paper, we introduce the multivariate Threshold-Minimum Dominating Set (mT-

MDS), a multivariate extension of the T-MDS. The mT-MDS shares the same goals 

with the T-MDS, though it works in a multivariate environment. Indeed, the main 
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limitation of the T-MDS methodology lies in its univariate design: the network is built 

based only on one variable and the representation goal may be unreachable in such 

information-wise poor environment. Banking interconnections are complex, and they 

are better described by more than one variable. With this need in mind, here we 

introduce and employ the multivariate T-MDS. We begin with some basic concepts of 

the Graph Theory.  

Definition 1: A graph G consists of a collection V of nodes and a collection Ε of 

edges, for which we write G = (V, E). An edge eij ⋲ E is said to join the nodes i and j. 

The structure can be extended by assigning numerical values (often called weights) to 

each edge representing quantitative relations vij.  

To fully comprehend the methodology and the explanation of the empirical results, the 

following key concepts must be defined:  

• Isolated node is a node that is not connected to any other node in the network. 

• Interconnected node is any node that is connected to at least another node in 

the network. 

In our experiments the nodes represent economic entities (banks), the edges represent 

the existence or not of a relation (similarity) between two nodes, and the weights of the 

edges measure the relation between the two nodes (in our tests we calculated the 

temporal similarity between nodes using the Pearson’s correlation coefficient r). To 

identify the smallest subset of nodes that can represent the whole network we will use 

the notion of the Dominating Set.  

Definition 2: A dominating set of a graph G is a subset of nodes DS ⊆ V such that 

every node 𝑣 ∉ DS is directly connected to at least one member of the DS. The members 

of the DS are called dominant nodes. 

 

So, if we identify a dominating set of a graph, any node of the graph is either a) a 

dominant node or b) a node directly connected to a dominant node. This is a particularly 

important property to us, since it means that, given that the edges of a graph describe 

high similarity between the nodes, the whole network can be represented by the 

dominating set. Indeed, by the definition of DS, every non-dominant node is directly 

connected with at least a dominant node by an edge that describes high similarity. The 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2022                   doi:10.20944/preprints202205.0065.v1

https://doi.org/10.20944/preprints202205.0065.v1


 

9 
 

nodes directly connected with a dominant node form the neighborhood of the dominant 

node. The dominant node of a neighborhood will serve as the representative node of 

the group.  

 

A network can have many DS. The ones with minimum cardinality are called Minimum 

Dominating Sets (MDS).  The MDS can be identified through a minimization process: 

 

Define the variables 𝑥𝑖 ∈ {0,1}, 𝑖 = 1, 2, … , 𝑛 representing the nodes’ membership to 

the MDS (1 describes the dominance and 0 describes the non-dominance of a node).  

These variables in vector form are 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛]. The Minimum Dominating Set 

is identified by minimizing:  

 𝑚𝑖𝑛
𝐱

∑ 𝑥𝑖

𝑛

𝑖=1

 

subject to 

𝑥𝑖 + ∑ 𝑥𝑗 ≥ 1, 𝑖 = 1, … 𝑛𝑗∈𝑁(𝑖)                                             

 

where 𝑁(𝑖) represents the set of adjacent nodes of node 𝑖. The assumption is 

straightforward: the node i can be a) a node of the MDS (𝑥𝑖 = 1) or b) adjacent to at 

least a MDS node (∃𝑗 ∈ N(𝑖): 𝑥𝑗 = 1). In any case the l.h.s of the constraint is equal or 

greater than 1. The imposed constraint preserves that every node of the network will be 

represented from the MDS subset.  

In real data networks, all the edges may not describe high similarity between its 

endpoint nodes. Couples of low correlated entities may exist in the network. These low 

correlation edges are undesired in the identification of the MDS; we wish to monitor 

every neighborhood through its dominant node, and this is achieved only if the edges 

describe high correlation. So, we add a thresholding step on the correlation level marked 

as weight on the edges, eliminating the low correlation ones from the network. After 

this step, all the edges depict the desired to the representation goal, high similarity. 

During the thresholding isolated nodes may appear in the network. Nodes with all 

weight edges below the selected threshold become isolated. Even, if the focus of this 

study is the representation of the interconnected banks, the isolated banks are important 

as well since they are the members of the banking network that exhibit unique 
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idiosyncratic behavior. Any isolated node can only be represented by itself and is a 

member of the T-MDS by definition.  

 

This methodology was introduced in Gogas, e.a. (2016), termed as Threshold-

Minimum Dominating Set (T-MDS) and defined with the following steps: 

• Preprocessing: Create the network using Pearson’s correlation coefficient of 

the selected variable. 

• Step 1. Apply a threshold on the weights and eliminate the edges with weights 

less than the threshold. 

• Step 2. Identify the MDS nodes on the resulting network. 

We claim that every dominant node in the T-MDS can be perceived as a sensor for its 

directly connected neighborhood nodes, since they are connected with edges that 

survived the thresholding step (i.e. they are highly similar/correlated). Thus, all the 

nodes in a neighborhood are expected to exhibit a similar behavior. In our empirical 

section, we examined the solvency of the banking institutions. If the dominant node is 

expected to fail (or not), so are the neighboring nodes. Empirical results in Gogas e.a., 

2016 backed-up this theory in the univariate T-MDS methodology. 

In this paper, we extend the T-MDS concept to multiple variables. We call a 

multivariate Threshold – Minimum Dominating Set (mT-MDS) the three-step 

methodology for the identification of the network’s most representative nodes in a 

multilayered network: 

• Preprocessing: For each variable, create the correlation-based network. The 

network is a layer in the multilayered framework. 

• Step 1: Impose a threshold in every layer to eliminate the low correlation edges, 

producing thresholded layers. The threshold level may vary across layers.    

• Step 2: For every couple of nodes combine the edge information from all layers 

using some operator. In our experiments we used the conjunction Boolean 

operator: an edge is created when an edge exists between the two nodes in every 

layer. This step results in the creation of a single unweighted binary network. 

• Step 3: Identify the MDS. 
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In Figure 1 we depict graphically the representation of the mT-MDS. 

 

Figure 1: A graphical representation of the mT-MDS 

Initially, there is an edge between every node (regardless of the correlation level). In 

Step 1, the thresholding eliminates the low correlation edges in each layer of the 

network. After this point, the edges have no weights and describe the high correlation 

of its endpoints. Its absence means the opposite. The information of all layers is 

combined in a single binary network in Step 2, through the Boolean conjunction1. An 

edge in the resulting network, describes nodes that are highly correlated in all layers, 

thus, for every variable. The final step is the identification of the Dominant Nodes in 

the network and their respective neighborhoods. In section 5, we will show the 

superiority of this method over the simple T-MDS.     

4. The Data  

The examined period spans from 2006Q1 to 2010Q3, a period that includes a major 

financial crisis where many banks failed. We collected quarterly data from the databank 

of the Federal Deposit Insurance Corporation (FDIC) and they include 570 US banks. 

 
1 Different applications may use other operators to create the final networks: Boolean Disjunction,  

majority ruling or even more complex voting. 
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From these banks, 429 were solvent and 141 have failed. The 141 failed institutions 

represent the total number of banks that failed during the 2010-2011 period and have 

available data for all the studied quarters. We also collected data for the 429 largest, in 

terms of total assets, solvent banks,  to maintain a 3:1 ratio between solvent and failed 

banks. Gogas, et al. (2018), created a Machine Learning based forecasting model for 

bank failures for the period 2007-2013 that produces a remarkably high overall 

accuracy reaching 99.22%. Their model selected from an initial extensive list only two 

variables: a) Tier 1 (core) risk-based capital over total assets (T1CRC) and 2) Total 

interest expense over total interest income (TIE). The same two variables were used in 

the empirical section of our paper, since our goal is to test the presented methodology 

on banking solvency.  

Tier 1 (core) risk-based capital over total assets includes disclosed reserves and equity 

capital and provides a measure of a bank’s capital adequacy. It is a significant ratio 

considered as a proxy of a bank’s financial strength. It provides a relative measure of 

the amount of financial losses a bank can absorb without requiring new capital 

injections. Whenever a recapitalization is needed, the new capital can either be added 

through a common increase of share capital or in times of crisis through a bail-out or a 

bail-in program. Total assets measure the absolute size of a bank. In times of economic 

expansion, banks tend to augment their assets mainly by issuing new loan facilities; in 

times of declining economic activity, they reduce their lending and as a result total 

assets and their balance sheet is reduced. A direct way that a crisis propagates through 

the banking system is via interbank loans. A troubled bank that used interbank lending 

to augment its balance sheet and provide more loan facilities, is unable to repay its 

financial obligations to other banks and thus the total assets of the lending banks take a 

hit. In general, banks with higher T1CRC ratios are associated with lower probability 

of default (Gogas et al. 2018). The total interest expense over total interest income (TIE) 

ratio provides a proxy of a bank’s operational efficiency from its core business, i.e. 

pooling funds and lending. The nominator includes all interest paid by the bank for its 

interest bearing liabilities and the denominator includes all interest earned on any type 

of lending from the assets’ side of the balance sheet. An increasing TIE ratio reflects a 

declining gross profit margin. 

 

5. Empirical Results   
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Trivially, a network combining two variables is information-wise richer than a 

univariate one. However, the combination of the two variables through the logical 

conjunction may result in a significant loss of information2, rendering the multivariate 

network appealing in theory but not in practice. In this section, we will compare the 

univariate networks to the multivariate one and show that the information loss is 

negligible, while the multivariate network neighborhoods portray better the banking 

solvency.   

5.1 Comparison between the T-MDS and mT-MDS networks 

In the univariate T-MDS we create two networks: one based on the Tier1/Total Asset 

variable and one based on the Total Interest Expense/Total Interest Income variable. In 

the multivariate T-MDS we create a layer for each variable (in a multilayered 

framework) and then combine them in one binary network (without weights). In every 

case the threshold level will be set at 0.8. The composition of the univariate networks 

after thresholding are shown in Table 1 and 2, and the composition of the multivariate 

network after thresholding and logical conjunction is shown in Table 3. 

 

Table 1: Composition of the 570 banks network using the variable Tier1/Total Asset. 

Threshold level = 0.8 

 Solvent Failed Total %  

Total Banks 429 141 570  

Interconnected 317 129 446 78.3% 

Isolated 112 12 124 21.7% 

Dominant 47 16 53  

The Tier1/Total Asset based network after thresholding retains 446 of the nodes 

interconnected (78.3%), while 124 of the nodes (21.7%) are isolated from the rest of 

the network. The interconnected part is clustered in 53 neighborhoods (47 with a 

solvent dominant node and 16 with a failed one). 

 
2 In the Boolean conjunction, the operation is true only if all the operands are true. In our case, true is 
the presence of an edge and false describes its absence.  
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Table 2: Composition of the 570 banks network using the variable Total Interest 

Expense/Total Interest Income. Threshold level = 0.8 

 Solvent Failed Total %  

Total Banks 429 141 570  

Interconnected 428 139 567 99.5% 

Isolated 1 2 3 00.5% 

Dominant 5 6 11  

The Total Interest Expense/Total Interest Income based network is almost unaffected 

from the thresholding step: only 3 nodes became isolated. The 567 interconnected nodes 

are represented by 11 dominant nodes (5 solvent and 6 failed ones).    

 

Table 3: Composition of the 570 banks network using both the Tier1/Total Asset and 

the Total Interest Expense/Total Interest Income. Threshold level = 0.8 

 Solvent Failed Total %  

Total Banks 429 141 570  

Interconnected 294 119 413 72.5% 

Isolated 135 22 157 27.5% 

Dominant 56 16 72  

The multilayered network refines the univariate layers to a binary one through the 

logical conjunction. Thus, for an edge to “survive” the conjunction step, it should 

appear in every layer of the multilayered network. Consequently, the number of edges 

in the resulting binary network can be at maximum as many as in the layer with the 

fewer edges. The same is true for the number of interconnected nodes. Thus, in our 

case, the upper limit of the interconnected part in the multivariate case is 446 nodes (the 

interconnected part in the thresholded Tier1/Total Asset network, which is the smallest 
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interconnected part). The combination of the univariate layers in a multivariate one 

results in 413 interconnected nodes clustered in 72 neighborhoods and 157 isolated 

ones. The multivariate thresholded network has 33 (5.8%) less interconnected nodes 

than the Tier1/Total Assets univariate network. Next, we will demonstrate that this did 

not affect the results quantitatively or qualitatively.  

 

5.2 Comparison of the T-MDS and mT-MDS clustering 

In this paper, our main goal is to create a monitoring tool that will be able to swiftly 

examine the health state of the entire banking network (all neighborhoods) using only 

information from the representative nodes (dominant nodes). Such a tool, would be fast, 

easy and low-cost. Thus, it can be used by the supervising authority as an auxiliary 

monitoring system for the health of the banking sector.  

Ideally, we would like to be able to label as solvent or failing every node of a 

neighborhood based on the state of the dominant node. It must be noted here that a node 

may belong to more than one neighborhoods. Consequently, in some cases, a node may 

be labeled as both solvent and failed. We call these nodes “fuzzy”. The fuzzy nodes 

have the disadvantage that they introduce uncertainty in our monitoring tool. We are 

unable to forecast the fate of a fuzzy node.  

The misclassification of our system (nodes that belong to a single neighborhood and 

thus have one label, but this is the wrong one) may create two distinct cases: false 

alarms or missed failures. Obviously the costs of a false alarm to the efficient 

monitoring of the banking system is far less than a missed failure, i.e. identifying a bank 

as healthy while it is actually failing. The later, may potentially have cascading effects 

due to contagion and imply systemic risks to the banking sector. However, we also want 

to keep the false alarms in low levels. For any insolvent case the regulator orders 

measures to promptly and efficiently treat it and avoid the undesired outcome; in the 

false alarm case, these measures are unnecessary and prevent the prosperity of the 

banking institution. So, we will evaluate each system by counting the number of 

correctly labeled nodes, the erroneously labeled nodes (both missed failures and false 

alarms) and the fuzzy nodes. 
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Table 4: The efficiency of the Tier1/Total Assets based network. 

The Tier1/Total Assets based network after thresholding has 476 interconnected nodes: 

211 (47.3%) of them are labeled correctly, 47 (10.6%) are labeled erroneously, and 188 

(42.1%) received both labels thus are marked as fuzzy.  

 

Table 5: The efficiency of the TIE/TII based network. 

The TIE/TII based network has 3 isolated nodes and 597 interconnected nodes after the 

Thresholding step. 99 nodes (17.5%) are correctly labeled, 25 are mislabeled (4.4%), 

and 443 are fuzzy (78.1%). The performance of the clustering using the TIE/TII 

variable can be characterized as subpar.  

 

Tier1/Total Assets 

 Solvent Failed Total %  

Correct 165 46 211 47.3% 

Fuzzy 120 68 188 42.1% 

Wrong 33 14 47 10.6% 

TIE/TII 

 Solvent Failed Total %  

Correct 48 51 99 17.5% 

Fuzzy 372 71 443 78.1% 

Wrong 9 16 25 4.4% 
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Table 6: The labeling of the multivariate network. 

The interconnected nodes in the multivariate case are 413, partitioned as follows: 308 

are correctly labeled (74.6%), 25 received the wrong label (6%) and 80 received both 

labels (19.4%) and are thus classified as fuzzy.  

The multivariate network produced the most accurate labeling in terms of the absolute 

number of nodes correctly labeled (308 correctly labeled nodes over 211 on the 

Tier1/Total Assets network and 99 on the TIE/TII network) and ratios as well (74.6% 

correctly labeled nodes over 47.3% on the Tier1/Total Assets network and 17.5% on 

the TIE/TII network). Another noteworthy point is that the multivariate network 

labeling  missed the fewer failures: 11 over 14 and 16 respectively in the univariate 

networks.  

5.3 Inside the neighborhoods 

Since we established the superiority of the multivariate clustering over the univariate 

ones, we can analyze the concordance level between the dominant node and its 

neighbors.  

Tier1/Total Assets and TIE/TII 

 Solvent Failed Total %  

Correct 241 67 308 74.6% 

Inconsistent 40 40 80 19.4% 

Wrong 14 11 25 6.0% 
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Figure 2: The concordance between the dominant node and its neighbors. 

In Figure 2, we show the concordance level inside each one of the resulting mT-MDS 

neighborhoods. In 48 of the 72 neighborhoods, or 67% of the total, we have a more 

than 95% concordance between the dominant node and its neighbors.  

 

6. Conclusion  

In this paper we presented an extension of an already proposed methodology of Graph 

Theory to optimize the supervision of complex banking networks. We introduce the 

multivariate Threshold-Minimum Dominating Set (mT-MDS), to identify a subset of 

banks with three distinct characteristics: a) small in size b) representative enough for 

the whole network, and c) able to act as a gauge of its respective neighborhoods. The 

proposed methodology outperforms the T-MDS method in terms of efficient 

classification of both solvent and failed banks. We attribute this superiority in the ability 

to form multivariate networks exploiting information from different variables. 

Considering the latest consensus which supports that the supervision of the whole 

banking system should be empowered to a single authority we recommend the mT-

MDS method as an auxiliary monitoring tool. The method’s efficiency is tested in a 

network of 570 American banks, 429 solvent and 141 failed. The network is constructed 

in terms of two variables: the Tier 1 (core) risk based capital over Total Assets and the 

Total Interest Expense over Total Interest Income. We compare the performance of 

67%
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85%-80%

80%-75%

75%-70%

less than 70%

Concordance Level

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2022                   doi:10.20944/preprints202205.0065.v1

https://doi.org/10.20944/preprints202205.0065.v1


 

19 
 

both methods (mT-MDS and T-MDS) in terms of efficiency and accuracy. The results 

indicate that the multivariate T-MDS method outperforms the respective univariate T-

MDS method in terms of absolute number of labeled nodes and ratios as well.  
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