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Abstract: Load variations in any power system result in losses escalation and voltage 

drops. With the sensible and optimal allocation of distributed generators (DGs), these 

problems could be considerably mitigated. It has been seen in the priorly existing methods 

that ideally allocation of DGs has been carried out during fixed loads and constant power 

requirements. However, in real scenarios the loads are always variable and allocation of 

DGs must be done in accordance to the variations of the connected load. Therefore, the 

current paper addressed the aforementioned problem by distinctive optimal allocation of 

DGs for each variability of 24hour load horizon. However, the single exclusive solution is 

considered among all allocations of 24 hours. The min-max regret concept has been uti-

lized in order to deal with such methodology. Altogether, 24 scenarios are analyzed 

wherein each scenario corresponds to a specific hour of the respective day. The optimal 

allocation of DGs in terms of their optimal sizing and placement has been carried out by 

using three algorithms including battle royal optimization (BRO), accelerated particle 

swarm optimization (APSO) and genetic algorithm (GA). The multi-objective optimiza-

tion problem is evaluated on the basis of minimum value criterion of the multi-objective 

index (MO). MO comprises of active and reactive power losses and voltage deviation. 

Hence, in order to find robustness of proposed technique, Conseil international des 

grands réseaux electriques (CIGRE’s) MV benchmark model incorporating 14 buses has 

been considerably used as a test network. In the end the results of three proposed algo-

rithms have been compared. 

Keywords: Distributed generators; Sizes and Locations of DGs; DGs’ allocation; Power losses; Min-

max regret Criteria; Battle royal optimization  

1. Introduction

The invention of electricity and advancement in technology has brought remarkable 

betterment to mankind [1]. In the whole regime, transmission and distribution networks 

are the most significant operators. The distribution networks comprise a complex and en-

gaged system. Therefore, the poor performance of the distribution networks may deprive 

the whole power system. One of the major hurdle to the performance marker of the dis-

tribution network is load variations over time. These load variations lead to varying active 

and reactive power losses and voltage drops [2]. One of the significant methods is the 

optimal deployment of DGs to minimize the power losses and improve the voltage drops 
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in the distribution networks [3]. These DGs could be fossil fuel-based or renewable en-

ergy-based. Furthermore, the deployment of DGs in networks brings on to significant in-

stallment and operational costs [4]. Therefore, it has to be always done by employing 

standard optimization algorithms. 

In the published literature, numerous researchers have reported the deployment of 

DGs in networks about certain objectives. In [5], the authors have investigated the deploy-

ment of DGs in several rounds using a plant propagation algorithm while minimized ac-

tive power losses (APL) and reduced voltage drop. While the researchers in [6] improved 

voltage stability index (VSI) along with the above two objectives by utilizing a newly in-

troduced cloud model-based symbiotic organism search algorithm for DGs deployment. 

However, [7] explored optimal DGs deployment after and before system reconfiguration. 

Technical constraints are followed in [8] for optimal allocation of DGs without its violation 

and a selective particle swarm optimization algorithm (SPSO) is utilized in the presence 

of a non-uniformly distributed pattern of load. The study [9] involved the chaotic artificial 

flora optimization-based technique for multiple test scenarios of optimal allocation of DGs 

and system reconfiguration. In [10], multiple load models are considered for obtaining the 

optimal size and location of DGs using the student psychology-based optimization 

(SPBO) algorithm. In [11], the researchers considered oppositional sine cosine muted dif-

ferential evolution algorithm (O-SCMDEA) for optimal DG placement and analyzed ob-

jective functions separately as well as a combined objective function. Moreover, the study 

conducted in [12] used a novel algorithm for optimal deployment of DGs which is the 

combination of improved-grey-wolf-optimization and the PSO algorithm.  

In [13], single and multiple DGs are optimally placed using whale Optimization Al-

gorithm (WOA) for minimizing various objectives, moreover, the study also considered 

types of DGs. In [14], the effective placement of DGs is carried out using the optimal loca-

tor index and utilized the kalman filter algorithm to obtain the optimal sizes of the DGs. 

In [15], system losses are minimized by optimal placement of multiple DGs using analyt-

ical formula however, the effects of DGs, load level and many other factors are also ana-

lyzed. In [16], the size of the PV-based DG is optimized using the PSO. The study is fo-

cused on probabilistic PV generation under varying load models. 1n [17], single and mul-

tiple DGs are deployed with unity and optimal power factor using adaptive PSO and 

modified gravitational search algorithm (GSA) algorithm. 

In [18], a wind turbine-based DG is optimally placed and sized in the presence of 

time varying load and renewable generation. In [19], optimal placement and sizing of DGs 

is considered to minimize losses and improve bus voltages along with total energy cost 

minimization with artificial bee colony (ABC) algorithm. Whereas in [20], sensitivity anal-

ysis of CIGRE’s MV benchmark is accomplished while integrating large-scale renewable 

energy. In [21], invasive weed optimization algorithm (IWO) is utilized for optimal DGs 

allocation to check loss sensitivity factors under different kinds of loads. In [22], DGs are 

parameterized by using the PSO and genetic algorithm (GA). The study is conducted for 

different load models to minimize system sensitivity, losses, and bus voltage instability. 

In [23], capacitors are placed in addition to wind power-based DGs in the distribution 

system. The objectives are to minimize real and reactive power losses and gas emissions 

and to improve bus voltage profiles. Studies considered various scenarios which are based 

on combination of different numbers and sizes of capacitors and DGs.  

In [24], multiple scenarios are investigated through adaptive shuffled frogs leaping 

algorithm (ASFLA) while scenarios are based on different combinations of network re-

configuration and DGs deployment. In [25], the optimal DG allocation is achieved by min-

imizing both technical and economical related objectives using the cuckoo search algo-

rithm (CSA). The DG parameterization is investigated at various real and reactive load 

models. In [26], the system power losses are reduced by effectively positioning and sizing 

DGs and capacitors. It is carried out by using the dragonfly algorithm. Different scenarios 

are studied, while each scenario is the combination of different numbers and sizes of DGs 

and capacitors placed in the IEEE 33 bus system. 
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From the above literature [5-26], the authors in published literature considered the 

allocation of DGs based on the static loads. Some of the authors evaluated the allocation 

of DGs for time-varying load while the location and size of DGs are calculated at average 

load. Moreover, some researchers considered multiple loads; however, each segregate al-

location is achieved for a particular load instead of a single allocation for a combined load. 

People in the literature have obtained allocation for the probabilistic load and generation. 

Furthermore, most of them considered the static generation from renewable sources in-

stead of time-varying generation. Certain studies investigate scenarios depending on the 

number and types of DGs and capacitors in the power system. However, they did not 

consider distinct loads and generations for each specific scenario. 

The above points have analyzed that previous works utilized single-point analysis; 

however, in reality, electricity demand variates with different times of the day, resulting 

in losses variations at each specific duration. Hence, DG allocation at static particular load 

and generation (that may be any form, i.e., probabilistic generation/load) does not encoun-

ter the whole situation, and that’s why DGs allocation for each time setting must be ac-

complished. Then the suitable allocation is to select among all allocations having desire 

objectives. 

The main contributions of this paper are: 

• The min-max regret criteria is analyzed and implemented for calculating the single

robust optimal allocation of DGs among all optimal DGs’ allocations of 24 scenarios.

Although, this technique is used first time in these types of problems.

• Problem is formulated in scenarios such as each scenario representing a particular

hour’s load and generation.

• The methodology is implemented under the 24 hour varying load and renewable

generation of wind and solar DGs.

• Battle royal optimization (BRO) algorithm is first time considered for DGs placement

in the current study according to the best of the author's knowledge and also inves-

tigate performance and compared the results with APSA, and GA algorithm at indi-

vidual and as well as combine objective value.

• Optimal allocation of DGs are obtained for each particular scenario by minimizing

MO.

• Active power losses, reactive power losses, and buses voltage profiles are analyzed

and discussed for each specific scenario.

• Energy losses of the whole day are calculated and discussed.

The above objectives clearly illustrate the system analysis at various times of the day

and are thus beneficial in a way to get in touch with losses with varying demand. Hence, 

DGs allocations can be accomplished at each specific duration and, in turn, results in an 

optimal allocation of DGs for the whole day. The rest of the paper is organized as follows. 

In section 2 and 3, problem formulation and optimization algorithms are enlightened. 

Similarly, section 4 deals with the mathematical modeling of the optimization problem. 

Furthermore, in section 5 results and discussions are described. Lastly, section 6 concludes 

the paper. 

2. Problem Formulation

The problem formulation involves the newton Raphson load flow (NRLF) and the 

findings associated with the optimal allocation of DGs using MO while considering various 

constraints. Optimal allocation of DGs means incursion of DGs in the system at an optimum 

point accompanied with optimal size and location. The system block diagram is illustrated 

in Figure 1. The first stage presents inputs of the system such as 24h load horizon (L), DG 

(/s) active and reactive power (P and Q), which have different values for each considered 

scenario. The second stage determines the optimal allocations of DGs for all scenarios based 
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on minimum MO. Finally, at the third stage, single DG (/s) allocation is selected among all 

DGs at stage 2 using the min-max regret criteria. 
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Figure 1. System Block Diagram 

2.1. Load Flow Analysis 

The load flow analysis (LFA) is an approach used to calculate bus voltage profiles 

and power flow across generators, loads, and branches under the static condition of a 

system [27]. It helps in the evaluation of system performance and therefore considered 

paramountly significant for the allocations of DGs. Different iterative methods such as 

fast-decoupled, Gauss-Seidel, and Newton-Raphson methods have been used for per-

forming the LFA in literature. NRLF method converges faster as compared to the fast-

decoupled and Gauss-Seidel approaches [28]. Following the study [5] for load flow anal-

ysis, the voltage across wth bus of any system can be calculated by using Eq. (1).  

( )
*

1

1 Num
w w

w wi i
www w

w i

P jQ
V Y V

Y V =



 
− 

= − 
 
 

 (1) 

In Eq. (1), the phasor voltages of bus w and i are denoted by Vw and Vi respectively. 

Vw* and Vw represents the phasor conjugate and magnitude of the wth bus, respectively. 

The magnitudes of active power of bus w is represented by Pw, while in case of Eq. (2), 

magnitude of reactive power of bus w is represented by Qw, Eq. (3). Ywi represents the 

phasor Y-bus matrix between wth and ith bus, whereas Yww represents the phasor Y-bus 

matrix at the wth bus.  

( )
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i
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= + − (2) 

( )
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sine
Num
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i

Q Y VV   
=

= − + − (3) 

Active and reactive power across each bus can be calculated by using Eq. (2) and Eq. 

(3), respectively. Ywi represents the magnitude of admittance between wth and ith bus. Num 

represents the total number of buses in the system. θwi refers to the angle of Ywi. δi and δw 

are the voltage angle of bus i and w, respectively. The voltages calculated at each bus helps 

in the calculation of line currents of different branches by using Eq. (4).  
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−
= (4) 

Wherein, the current and impedance of the branch between wth and ith bus are denoted by   
Iwi and Zwi. The apparent powers at w and i bus can be calculated by using Eq. (5) and Eq.   
(6).  

*   w w wi w wS V I P jQ= = − (5) 

*   i i wi i iS V I P jQ= = − (6) 

Sw and Si represents the apparent complex power at w and i bus, respectively. Line losses 

between bus w and bus i are represented by Ploss wi, which can be calculated by us-

ing Eq. (7).  

 loss wi w iP P P= − (7) 

2.2. Objective Function 

The main objective function is to minimize the multi objective index. 

2.2.1 Multi Objective Index 

Multi objective index (MO) is the combination of active power loss index (API), re-

active power loss index (RPI) and voltage deviation index (VD) [9]. The optimal allocation 

of DG can be achieved by minimizing the MO. The said applicable process is given 

by Eq. (8), whereas w1, w2, and w3 are weight indices of API, RPI, and VD, respectively 

[16]. API These indices are outlined in Table 1. It is basically the ultimate goal to minimize 

active and reactive power losses for a whole day while improving bus voltages profiles.  

1* 2* 3*MO w API w RPI w VD= + + (8) 

Table 1. Indices 

Indices W 

API 0.5 

RPI 0.25 

VD 0.25 

2.2.1.1 Active Power Loss Index 

The system's active power loss is the first objective and can be calculated by using 

the total active power losses across each line. The process is given by Eq. (9) and Eq. (10), 

where, Pw and Pp are the active powers at bus w and p, respectively. The Line (L)Aloss is the 

active power loss at line L, whereas nl refers to the total number of lines in the system. 

( )
 

  W PA loss
Line L P P= − (9) 

( )
1

     
nl

Aloss
l

Total Active Power losses Line L
=

= (10) 

The API index is associated with the active power loss objective, which is the ratio 

of APLDG to APL. The process is given by Eq. (11), wherein, APLDG and APL are active power 

loss with and without DG, respectively. 

[ / ]LDG LAPI AP AP= (11) 

2.2.1.2. Reactive Power Loss Index 

The reactive power loss of the system is the second objective and can be calculated 

by using total reactive power losses across each line. The process is given by Eq. (12) and 

Eq. (13). Wherein, Rw and Rp are reactive powers across bus w and bus p respectively, 

while Line (L) Rloss is the reactive power loss at line L whereas nl tells the total number of 

lines in the system. 
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( )  w pRloss
Line L R R= − (12) 

( )
1

     
nl

Rloss
l

Total Reactive Power losses Li Lne
=

= (13) 

RPI is the reactive power loss index which is expressed as a ratio of RPLDG to RPL. The 

process is given by Eq. (14), where RPLDG and RPL are reactive power losses with and 

without DG, respectively. 

[ / ]LDG LRPI RP RP= (14) 

2.2.1.2 Voltage Deviation Index 

The voltage deviation index (VD) is the third objective that is under consideration 

for the current problem and is mainly used for monitoring the power system. So, in real-

time, voltages across buses deviate from their stability limit and can be set to a safe limit 

by optimal allocation of DG in a system that eventually helps in the improvement of 

voltage profile. The VD must be small, because of the fact that a higher value corresponds 

to a more significant deviation from the initial one. The process is given by Eq. (15). n is 

the total number of buses in the system while Vb is the bus voltage after placement of DG 

in the system and Vini is the initial voltage and is consider as 1.03 nominal voltage as 

referred to [16]. 

1

| |ini bn

b

ini

V V
VD max

V
=

 −
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 
(15) 

2.2.2. Constrains 

2.2.2.1. Limitations of DGs Capacity 

The active and reactive powers supplied by the DG have a capacity limit (Limit). It is 

given by Eq. (16). PDG and QDG denote the active and reactive power of the DG, which is 

measured in kW and kVAR. 

0 ,DG DGP Q Limit  (16) 

2.2.2.2. Power Balance 

The power supplied by each DG and Grid must be equal to load and losses [10]. 

DG Grid load lossP P P P + = + (17) 

DG Grid load lossQ Q Q Q + =  + (18) 

PDG and QDG are active and reactive powers supplied by each DG, respectively, while 

PGrid and QGrid are active and reactive power from the grid station. The active and reactive 

load of the system is denoted by PLoad and QLoad, respectively while active and reactive 

power losses of the system are PLoss and QLoss, respectively. 

3. Optimization Algorithms

The methodology utilizes the BRO, APSO, and GA metaheuristic algorithms for op-

timum DG allocation described in the following sections. 

3.1. Battle Royal Optimization Algorithm 

BRO is a metaheuristic algorithm which is basically inspired by the idea of royal bat-

tle games such as PUBG and Call of Duty. The algorithm was developed by Taymaz [29] in 

2020 and is first time used in this paper for optimal placement of DGs in the system. This algorithm 

envisages that each player must be randomly placed in the game space encompassing same 

amount of resources and strength. Wherein, each player has to compete with the other 

players and game-obstacles as well. Every player in the game tries to move towards a safe 
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region and kill the opponent player. On the losing end, players’ resources or strength 

might be reduced or they may be eliminated from the game on the account of damage. In 

the end, the player possessing highest number of kills finally wins the game. The main 

steps of the BRO algorithm are listed below; 

Step I: This step accounts for initialization of algorithm parameters by determining the 

number of population, iterations and maximum threshold. 

Step II: Random population is generated within the problem space.  

Step III: Each individual in the game tries to hurt the nearest opponent soldier.  

Step IV: The soldier hurt by an opponent loses one point of strength. 

Step V: The player, which experiences damage, tries to alter its position. The position 

within dimension (dim) can be achieved by Eq. (19).  

, , , ,( )D dim D dim B dim D dimx x r x x= + − (19) 

Wherein, xD,dim represents the position of the damaged soldier, while xB,dim represents 

the  position of best soldier found so far. r denotes a random number which is uniformly 

distributed from the range of 0 to 1.

Randomly initialize a population, 

Initialize all parameters 

Compare i
th

 soldier with nearest one j
th

  

Relocate xD based on Eq.(19) 

xD.damage = 0

D= index of damaged soldier

V= index of victorious soldier

Termination criterion is met
NO

Yes

If(xD.damage < Threshold)

Start

xV.damage = 0

update ( f (xD))

Select the best soldier as the solution

Shrink down problem space 

based on Eq. (21) and Eq. (22)

Relocate xD

based on Eq.(20) 

Yes

NO

xD.damage = xD.damage +1

End

Figure 2. Flow Chart of BRO Algorithm 

Step VI: If the soldier's strength reduces up to the extent of predefined threshold due to 

damage, then this soldier dies. The player will be reallocated within the feasible region 

with full strength. The process is given by Eq. (20). 

, ( )D dim dim dim dimx r ub lb lb= − + (20) 

In Eq. (20), ubdim and lbdim are the upper and lower bounds of dimension, whereas r has a 

random value between 0 and 1. 

Step VII: In this step, after each iteration, the search space converges towards the best 

solution. The process is illustrated by Eq. (21) and Eq. (22). Wherein, SD corresponds to the 
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standard deviation of the population. Moreover, lbdim and ubdim are the upper and lower 

bound limits of dimension dim, respectively. 

( ),dim B dim dlb x SD x= − (21) 

( ),dim D dim dub x SD x= + (22) 

Step VIII: In this step after the completion of each iteration, the best solution is selected. 

The flow chart of BRO is shown in Figure 2. For the sake of DGs’ allocation, following 

alterations are made in the conventional BRO. outlined: 
• The population of soldiers is replaced with DGs’ locations and sizes.

• The threshold selected in the current paper is 3 and specific value is used to avoid premature
convergence and to attain improved results.[29]

• The upper and lower bounds are replaced with the upper and lower limits of DGs’ location
and size.

The best solution depends on a multi-objective value. 

3.2. Accelerated Particle Swarm Optimization Algorithm 

APSO is the updated version of PSO and was developed by Yang in 2010 [30]. The 

study [31] consider APSO for optimal DG allocation. In PSO, both global best and particle 

best positions are used. The diversity in this algorithm is achieved by using particle’s best 

position while for the sake of expeditious convergence, only global best position (Pg) is 

used in APSO. The algorithm is discussed and utilized in [32]. The velocity vector at t+1 

iteration is obtained by using Eq. (23). 

( )1t t t

j j g jV V P X + = + + − (23) 

For convergence of algorithm more rapidly, the particle's location is also updated using 

Eq. (24) where ℇ is the vector containing random values between 0 and 1. 

( )1 1t t

j j gX X P  + = − + + (24) 

Primary population generation

Find global best for t=0

Return best solution

Calculate particle velocity

NO

Yes

Generate initial position and velocities randomly for all

Meeting the final criteria?

Evaluate objective function for the 

position

Find actual position for each particle

Start

End

Figure 3. Flow Chart of APSO Algorithm 

The particular values of α lie within 0.1 to 0.4 while the value of β is between 0.1 and 0.7. t  

is the index value of each iteration and also used in flow chart. In the current problem, the  
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value of alpha α is 0.2 while beta β is taken as 0.5 [30]. The position in the APSO algorithm 

is replaced with DG size and location. The flow chart of the APSO algorithm is shown in 

Figure 3 [33]. APSO algorithm comprised of following stages that are illustrated below. 

[32]. 

Step I: The first step accounts for the initialization of basic parameters of the algorithm such 

as population, velocity and number of iterations. 

Step II: Similarly second step accounts for, evaluation of objective function value at each 

particle’s location. 

Step III: In this step calculation of global best position will be carried out. 

Step IV: After locating global best position the algorithm will update the swarm velocity 

and position using Eq. 13 and Eq.14. 

Step V: At the end, repetition of step 2 is done until the specific criteria are satisfied.  

3.3. Genetic Algorithm 

Genetic algorithm (GA) is an evolutionary optimization technique based on genetics 

phenomena and Natural Selection. Hence, the best candidate is always chosen by the Nat-

ural Selection process, which is dominant over the weaker ones [34]. The study [35] also 

implemented GA for optimal DG allocation. The flow chart of GA is illustrated in Figure 

4 [36]. 

Initialization

Evaluation

Selection

NO

Yes

Termination Criteria 

reached?

Start

Mutation

Crossover

End

Figure 4: Flow Chart of GA 

This process involve Selection, Crossover and Mutation, while basic steps of methods 

are discussed below. 

Step I: First of all, the initial chromosome population is generated, while in the current 

case, DGs sizes and locations are reciprocated as chromosomes. 

Step II: Second step accounts for evaluation of the fitness value of each chromosome in 

the population. 

Step III: New population is generated using biological evaluation, which is selection, 

crossover, mutation and at the last acceptance. 

Step IV: In last step, check the results if achieved up to the desired range; otherwise, repeat 

the process from fitness calculation.  
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4. Mathematical Modelling of Optimization Problem

This section envisions min-max regret criteria for the optimal allocation of DG all, 

modelling of the said optimization problem and the test systems employed to cope up the 

optimization problem. 

4.1. Min-max Regret Criteria 

The min-max regret criteria provide a robust solution for various scenarios while 

minimizing the worst-case regret [37]. It means that the min-max regret criteria calculates 

the best possible solution for all possible scenarios. Aforementioned solution then mini-

mizes the maximum divergence between the best possible solution and the optimal solu-

tion of each corresponding scenario. The said technique has been applied and imple-

mented in [37,38]. Wherein, S is considered as a finite set of scenarios (s1,s2,s3,….sn) and, 

each scenario s is the subset of S i-e (s∈S). Herein, set of solutions is represented by vector 

X (x1,x2,x3,…..,xn). f(x,s) is represents the value of solution x∈X at scenario s∈S and xs* is 

the optimal solution at scenario s∈S and  fs*= f(xs*,s) is the corresponding optimal value. 

In first step, regret value R(x,s) of each solution x under scenario s is obtained, which is 

represented by the following equation. 
*( , ) ( , ) SR x s f x s f= − (25) 

The maximum regret value of solution x∈X is denoted by Rmax(x) which can be further 

expressed as Rmax(x)= maxRmax(x,s). In second step the maximum regret value of each solu-

tion is obtained. In the end, the solution which possess the minimum value among the 

corresponding maximum regret values is considered the minimum solution of all the so-

lution x∈X and is defined by the following equation. 

( )*

maxmin min max )) (( ,s SR f x sx f= − (26) 

4.1.1. Handling DG Allocation Through Min-max Regret Criteria 

The min-max regret criteria is implemented for the Day-ahead bidding strategies in 

[38], which inspired to implement for current DG allocation problem incorporating mul-

tiple scenarios. The min-max regret criteria for DG allocation (at various scenarios) need 

several replacements in the corresponding equation of min-max regret criteria. DGs’ allo-

cation (sizes and locations) is considered as solution x. First step corresponds to the selec-

tion of best allocations of DGs that are obtained at each scenario that are further consid-

ered as solutions (x1, x2, x3,…xn) and considered in vector X. The value of solution is f(x,s) 

and regret value R(x,s) are replaced with MO and fitness value F in the current method 

respectively. OMO refers to the optimal multi-objective index value which is considered 

as optimal MO value. OMOs is defined as fs* in Eq. (25) which is the optimal value of x at 

particular scenario s. MO is obtained by each solution x at particular scenario s. Total 24 

scenarios are taken and considered as a set S (S=(s1,s2,s3,…..s24)) while each scenario sig-

nifies the specific hour of the day. In second step, F is obtained for each solution x as a 

regret value for the particular scenario. The general equation mentioned earlier Eq. (25) 

for the calculation of the regret value of solution x is modified according to current method 

and illustrated below.   

( , )x s sF MO OMO= − (27) 

In third step, the maximum regret value of each solution x is obtained by Eq. (28). 
24

( ) ( , )

1

max
s

x x s

s

F F
=

=

= (28) 

( )max xMF F= (29) 

Maximum regret value is defined in terms of maxF(x),  which is the arithmetic sum of 

all F values of each solution x. Eq. (26) is modified in accordance to the current problem 

of DGs allocation that is represented by Eq. (30) is mentioned hereunder; 
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( ) ( )mimin man xx XMF MF= (30) 

Wherein, the solution x, which has a minimum value maxf(x) is considered as the final 

solution. From fourth to tenth step modelling of the optimization problem has been car-

ried out that includes the min-max criteria. 

4.2. Modelling Of The Optimization Problem 

The main focus of current paper envisages on the improvement of the power system 

while minimizing power system losses (active and reactive) and improving bus voltage 

profiles. The study is carried out under a 24h load horizon and renewable generation. This 

method involves the concept of min-max regret to obtain a robust solution that incorpo-

rates optimal allocation of DGs in the system. A total of 24 different scenarios are consid-

ered, and each of them has a unique load and renewable generation profile.  

First of all, the NRLF analysis is carried out for each scenario in order to obtain opti-

mum parameters of DGs, which are to be introduced in the system. Consideration of DGs 

are realized on the basis of minimum values of MO while using GA, APSO and BRO re-

spectively. Furthermore, the obtained DGs are placed in the test system one by one to in 

order to calculate the fitness values for each DG in a considered scenario. Afterwards, the 

maximum fitness value of the DG is obtained by summation of all fitness values of the DG 

across all scenarios respectively. Hence, the DG devouring the least maximum fitness 

value is considered as the desired optimal allocation of the DG for 24 hours. Aforemen-

tioned approach corresponds to the novelty as compared to the concurrent methods, as it 

studies the active and reactive power loss minimization and enhancement in bus voltage 

profiles for 24 hours with a time step of one hour. The flow chart of the earlier discussed 

methodology is shown in Figure 5. Steps for achieving the desired objectives are men-

tioned hereunder; 

Step I: Initialize basic parameters of BRO, GA and APSO algorithms and set the popula-

tion size and number of iterations. 

Step II: Perform newton-raphson load flow (NRLF) without integrating DG (/s) in the 

system and calculate APL and RPL for each scenario / hour. Renewable DGs produce dif-

ferent power for each particular scenario on the account of fluctuating nature of solar and 

wind. Moreover, the load is also fluctuating in each scenario which is that depends upon 

the demand side. 

Step III: Find DG (/s) with the optimal allocation (i.e. sizes and locations) for each scenario 

based on minimum MO values calculated through BRO, GA and APSO algorithms. 

 1   2   3 DGC dg dg dg= (31) 

1,2,3, ..,24SMO = 

In Eq. (31), DGC represents the combination of DGs that would be placed in the test sys-

tem, dg represents the optimal allocation of DG, whereas the coefficient of dg denotes the 

exact number of DGs allocated in the test system. The optimal allocation of DG means the 

optimal size and location of DG. S represents the scenario. 

Step IV: Sort MO values in ascending order that are obtained for each scenario. Onward, 

select ten best DGC corresponding to ten minimum MO values of the particular scenario. 

As a whole 24 scenarios are formed for a day and so each specific scenario is studied for 

each hour. Therefore S reaches up to 24. 

 1,2,..,24 1  2  3 ......  10SMO MO MO MO MO= = (31) 

 1,2,..24 1  2  3 ... 10SDGS DGC DGC DGC DGC= = (32) 

Wherein Eq. (32), MOS is the set of minimum MO values obtained for scenario S, 

MO1 to MO10 are sorted minimum MO values for scenario S. In Eq. (33), DGSS is the set 

of DGCs (i.e. DGC1 to DGC10) selected corresponding to minimum MO values obtained 

for the same scenario S. Ten DGCs are obtained per scenario resulting a total of 240 DGCs 

for 24 scenarios.  
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Step V: Place DGC in the system one by one and calculate APLDG, RPLDG and Vb for each 

scenario. 

Step VI: Calculate MO for each DGC by using Eq. (8). In each scenario, it is carried out 

while considering the parameters APL, RPL, APLDG, RPLDG and Vb that were calculated dur-

ing Step II and Step V. 

 1 1 2 24, , ..,DGC S S SMO MO MO MO=  (34) 

 2 1 2 24, , ..,DGC S S SMO MO MO MO= 

…….. 

 240 1 2 24, , ..,DGC S S SMO MO MO MO= 

Herein Eq. (34), MODGC1 to MODGC240 are the set of MO values, calculated by placing the 

DGC1 to DGC240 respectively for all 24 scenarios. Similarly, MOS1 to MOS24 are MO values 

that are calculated for specific DGC from scenario S1 to scenario S24. 

Start

Scenario =1

Set Basic Parameters of BRO, GA, APSO Algorithm 

(Step I)

Execute load flow analysis and calculate APL and 

RPL (Step II)

Select ten combination of DGs on the basis 

of ten best minimum MO values 

Save ten combinations of DGs 

Obtain ten best minimum MO values using 

Algorithms

Scenario= 24?

Total 240 combinations of DGs are selected 

Execute load flow analysis and calculate 

APLDG , RPLDG and Vb

Scenario=1,2,3,....24

Calculate MO (Step VI)

Fitness value= MO- OMO (Step VII)

Scenario= 24?

Maximum Fitness value= Sum of Fitness value at 

Scenarios 1,2,3,....24 (Step VIII)

DGs Combination = 240?

Minimum of Maximum Fitness value 

(Step IX)

End

Scenario 

1,2,3,....24

NO

Yes

Place each combination of DGs one by one

DGs Combination=1,2,3,...240

Yes

NO

NO

Yes

Combination of DGs selected having 

minimum of Maximum Fitness value

(Step X)

Step III & 

Step IV

Step V

Figure 5. Methodology 
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Step VII: Compute fitness value F for particular DGC under scenarios S1 to S24 using Eq. 

(36).  

 1 2 240, , , S S SOMO OMO OMO OMO=  (35) 

 1, 1 1 1DGC S S SF MO OMO= − (36) 

 1, 2 2 2DGC S S SF MO OMO= −

……….. 

 1, 24 24 24DGC S S SF MO OMO= −

In Eq. (35), OMO is the set of optimal MO values obtained for all scenarios, whereas 

OMOs1 to OMOs24 are optimal values for scenarios S1 to S24. Although, the optimal MO 

value means the maximum achievable minimum MO value. 

Step VIII: Calculate maximum fitness value MF by calculating arithmetic sum of all fit-

ness values of the particular DGC using Eq. (37). 

( )
24

1 1, 1, 1,  2, 1, 24

1

,...,
S

DGC DGC S DGC S DGC S

S

MF F F F
=

=

=  (37) 

( )
24

2 2, 1, 2,  2, 2, 24

1

,...,
S

DGC DGC S DGC S DGC S

S

MF F F F
=

=

= 

…….. 

( )
24

240 240, 1, 240,  2, 240, 24

1

,....,
S

DGC DGC S DGC S DGC S

S

MF F F F
=

=

= 

Step IX: Sort MF of all DGCs and find the minimum of maximum fitness among all DGCs 

by using equation mentioned hereunder; 

 1 2 240min , , .,DGc DGc DGcMF min MF MF MF=  (38) 

Step X: The combination of DGs (i.e. DGC) with the least value of MF is considered the 

desired solution for all scenarios.   

4.3. Test System 

This paper considered CIGRE MV benchmark model as a test system for implement-

ing the optimization problem discussed in the above section. 

Figure 6. CIGRE MV Benchmark Model 
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4.3.1. CIGRE MV Benchmark Model 

The model consists of 14 buses and 15 branches, as shown in Figure 6. Different types 

of DGs are connected to altered buses in the test system [39]. Almost every DG type has 

stable output power, but two of them have variations in output power on the account of 

fluctuation in the resources at different time of the corresponding day. Aforementioned 

DGs encompass solar and wind utility resources. The model also includes a battery but is 

neglected in this study because of its charging and discharging behavior after a specific 

period. 

4.3.2. Simulation Setup 

The optimal allocation of DGs for 24-hour load horizon is already discussed in the 

methodology section which is executed by various algorithms. Aforementioned simula-

tions are carried on MATLAB. The parameters of each algorithm are listed in Table 2.  

Table 2. Parameters of Algorithms 

Parameters BRO APSO GA 

No. of Iterations 100 100 100 

Population Size 100 100 100 

Size Range of DGs (kW and kVAR) 10 ~ 500 10 ~ 500 10 ~ 500 

4.3.3. Input Data Configuration 

The 24-hour load data is utilized for the CIGRE model with a time step of one hour 

[40]. The residential and commercial loads are connected to different buses with different 

power factors. The net active and reactive power loads connected to the European version 

of the CIGRE model are calculated on an hourly basis. The active and reactive power load 

values for each specific hour are outlined in Appendix A (Table A1 and Table A2). In Ta-

ble A1 and Table A2, the left-most column “Time (Hrs)” represents the time of the day in 

hours. In the CIGRE model, four different ratings, i.e., 40kW, 30kW, 20kW, and 10kW of 

solar DGs, are already installed, while the output power curve of each type of DG rating 

is shown in Figure 5(a). Each curve corresponds to the product of the power per unit curve 

of PV [41] and the rating of the solar DG. The wind DG used in the CIGRE model has a 

rating of 1500 kW, while power extracted at each scenario from the DG is shown in Figure 

5(b). The wind power curve is the product of its rating and wind DG per unit curve [33]. 

Scenario represents the specific hour of the day.  

(a)    (b) 

Figure 5. Power Curve (a) Solar (b) Wind 

5. Results

This section exhibits the effectiveness of the proposed methodology and algorithms 

on CIGRE's MV Benchmark model. It permits computing the voltages across all buses and 

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
o
la

r 
P

o
w

er
(k

W
)

Scenarios

SOLAR POWER CURVE

10 KW 20 KW 30 KW 40 KW

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
in

d
  

P
o
w

er
(k

W
)

Scenarios

WIND POWER CURVE

1500 KW

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2022                   doi:10.20944/preprints202205.0057.v1

https://doi.org/10.20944/preprints202205.0057.v1


15 of 16 

active and reactive power losses for a system overall and on lines. The study has been 

conducted by the placement of three DGs in the test system. These DGs have the same 

active and reactive power that is expressed in kW and kVAR. The minimum capacity limit 

is 10k, whereas the maximum limit accounts for 500k. In the said model, twenty-four dif-

ferent scenarios are considered. Each scenario corresponds to a single hour of the respec-

tive day and has a unique load and generation profile. In each scenario, the load and 

power of solar and wind DGs fluctuate. The active and reactive power loss minimization 

procedure is carried out according to the methodology mentioned earlier. Three DGs are 

incurred in the CIGRE model by optimizing system constraints (i.e., optimal size and lo-

cation). Each DG among them has been used for the consideration executing mentioned 

algorithm for all scenarios. At the initial stage, ten best optimal allocations of DGs are 

obtained for each scenario, and 240 optimal allocations are considered for 24 scenarios. 

Among these 240 solutions, the best one is selected using the min-max regret criteria. The 

best optimal allocation of DGs at each particular scenario is represented in Table 3. The 

robust optimal locations and sizes of DGs for all 24 scenarios are obtained through min-

max criteria and represented in Table 4. However, the locations and sizes obtained as 

modes and an average of 20 results respectively as the whole methodology is carried out 

20 times. Hence, all other results are deduced by extracting their average values.  

Table 3. Optimal DGs’ Allocations at each scenario 

Scenarios APSO GA BRO 

DG 

Locations 

DG 

Sizes 

DG 

Locations 

DG 

Sizes 

DG 

Locations 

DG 

Sizes 

1 1,2,12 171.30,10,43.87 12,1,2 51.35,214.26,14.73 2,1,12 15.51,162.58,40.43 

2 1,12,2 166.89,24.50,10 12,1,2 24.37,205.93,57.49 2,1,12 14.78,168.37,25.66 

3 2,1,12 10,158.81,19.60 12,1,2 65.80,413.49,50.08 2,1,12 18.66,174.74,23.16 

4 13,1,12 10,166.26,24.47 2,12,1 10.14,28.47,146.75 1,2,8 135.25,43.98,11.57 

5 1,12,8 194.65,41.99,10 2,1,12 32.49,173.65,39.49 12,1,2 40.54,169.10,21.74 

6 12,1,2 81.44,172.96,10 12,1,13 61.33,198.32,26.40 12,8,1 84.15,12.57,240.66 

7 1,6,12 200.19,10,116.28 1,12,13 235.07,99.55,33.70 1,12,13 216.04,105.89,24.47 

8 1,2,12 178.15,10,129.19 12,2,1 127.44,55.41,201.71 13,1,12 16.55,179.16,114.01 

9 1,2,12 177.58,10,127.21 2,1,12 42.21,238.37,136.20 2,1,12 51.20,202.74,127.79 

10 12,1,8 131.33,196.0,10 12,13,1 126.07,13.87,205.31 12,2,1 136.29,31.52,207.41 

11 12,6,1 111.92,10,199.07 13,12,1 21.92,97.80,194.21 2,1,12 21.21,203.31,116.99 

12 12,13,1 127.28,10,185.68 2,12,1 53.44,131.12,203.13 1,12,2 227.45,136.17,77.57 

13 1,2,12 178.40,10,124.37 12,1,2 126.32,202.01,21.50 14,1,12 11.28,187.81,113.93 

14 13,1,12 10,182.84,106.16 12,2,1 109.70,35.14,186.68 1,8,12 186.22,13.79,104.92 

15 2,1,12 10,174.06,103.36 2,12,1 72.13,98.57,204.19 1,2,12 208.96,96.62,96.12 

16 2,1,12 10,172.15,95.42 12,2,1 84.97,135.51,219.17 12,1,2 89.80,206.86,60.59 

17 1,2,12 177.77,109.28,10 1,2,12 190.36,33.58,107.72 1,12,2 184.21,99.20,90.54 

18 12,1,2 127.56,18.48,10 13,12,1 29.45,107.84,214.17 13,1,12 29.10,249.02,115.30 

19 12,8,1 139.92,10,201.15 1,13,12 243.72,55.93,105.24 12,13,1 134.70,15.65,208.25 

20 8,12,1 10,124.32,201.26 2,1,12 10,183.09,126.88 1,2,12 190.74,49.36,122.56 

21 8,12,1 10,10.86,198.24 2,1,12 10.02,176.03,104.47 2,12,1 44.88,98.21,152.83 

22 2,12,1 10,87.56,177.39 1,2,12 173.30,10,87.15 8,1,12 11.12,207.20,86.28 

23 8,12,1 10,59.63,187.21 2,1,12 36.33,213.13,66.79 8,12,1 11.64,57.52,180.04 

24 8,12,1 10,35.87,187.81 12,1,2 23.07,89.04,19.91 2,1,12 54.13,200.46,35.66 
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Table 4. Optimal DGs’ Sizes and Locations for all scenarios 

Algorithms 
DG 1 

Location 

DG 2 

Location 

DG 3 

Location 

DG 1 Size 

(*1000) 

DG 2 Size 

(*1000) 

DG 3 Size 

(*1000) 

GA 1 12 2 181.119 62.568 10.504 

APSO 1 12 2 208.643 70.117 33.410 

BRO 1 12 2 200.221 69.168 29.152 

Table 5. Optimal MO Values 

Scenarios BRO GA APSO Scenarios BRO GA APSO 

1 0.5027 0.5143 0.5027 13 0.0973 0.1006 0.1070 

2 0.5643 0.5643 0.5642 14 0.1207 0.1245 0.1207 

3 0.6560 0.5580 0.5580 15 0.1433 0.1474 0.1567 

4 0.5642 0.5642 0.5642 16 0.1683 0.1682 0.6334 

5 0.4984 0.4869 0.7834 17 0.1416 0.1332 0.1292 

6 0.2326 0.2326 0.2537 18 0.0934 0.0933 0.1027 

7 0.1118 0.1118 0.1083 19 0.0734 0.0734 0.0762 

8 0.0893 0.0924 0.0924 20 0.0953 0.0953 0.1048 

9 0.1015 0.0922 0.0954 21 0.1457 0.1414 0.1456 

10 0.0822 0.0822 0.1991 22 0.2060 0.2116 0.2116 

11 0.1207 0.1170 0.1170 23 0.3659 0.3570 0.3570 

12 0.0920 0.0834 0.0920 24 0.5788 0.5318 0.5318 

Table 6. Summary of Results 

Algorithm Before DG GA APSO Proposed BRO 

Maximum Fitness --- 6.39 6.69 6.48 

V min (pu) 0.4622 0.7326 0.7056 0.7261 

V max (pu) 1.0958 1.2269 1.2159 1.2250 

P loss (%) Red 0 55.88 53.03 55.69 

Q loss (%) Red 0 47.77 46.23 48.47 

Min Line Losses (P,Q) 

(kW,kVAR) 

0.346432, 

0.498524 

1.392466, 

1.992093 
1.45, 2.074574 

1.384796, 

1.98112 

Max Line Losses (P,Q) 

(kW,kVAR) 

14569.43, 

16907.7 

6619.197, 

9493.322 

7199.756, 

10325.97 

6465.435, 

9272.794 

Average Active Power loss 

(All Scenarios) 
26617.93 11743.23 12502.73 11794.14 

Average Reactive Power loss 

(All Scenarios) 
26805.49 13999.75 14412.65 13813.91 

Active Energy loss 

(All Scenarios) 

(kWh) 

638830.3 281838 300065.4 283059.7 

Reactive Energy 

Losses 

(All Scenarios) 

(kVARh) 

643331.89 335994.1 345903.6 331534.010 
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Findings achieved through simulations are summarized in Table 6. DGs' active and reac-

tive powers are the same and are expressed in kW and kVAR, respectively. The optimal 

MO value for each scenario is calculated at 2000 iterations with 100 population size using 

all algorithms and values are listed in Table 5. 

5.1. MO and Fitness Values 

GA, APSO, and BRO are used to find optimal locations and sizes of DGs for the sake 

of active and reactive power loss minimization and bus voltage improvement. It has been 

performed by searching out the minimum value of MO for each scenario. The minimum 

MO values obtained by each algorithm for all scenarios are shown in Figure 7, whereas 

the MO convergence curve of APSO, GA, and BRO algorithms for a single scenario is 

shown in Figure 6. The mentioned results depict that APSO has better performance in 

terms of MO. Furthermore, these MO values are used to calculate the fitness values, for 

each considered DG, during each scenario. In the next step, the maximum fitness value of 

all DGs is calculated. These values resulted in 6.39, 6.69, and 6.48 for the APSO, GA, and 

BRO, respectively. The aforesaid results are mentioned in Table 6.   

5.2. Active Power Losses 

The active power loss curves for all scenarios using various algorithms are shown in 

Figure 8. Herein, the orange curve shows the losses before the placement of DGs. A sum-

mary of these results is also presented in Table 6. The active power loss curves of branch 

1 to branch 15, for all scenarios, are shown in Figure 9, whereas the average active power 

losses of the branches are represented in Table 7.   

 Figure 6. Convergence Curve  Figure 7. MO Values 

Figure 8. Active Power Losses 
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 (i)  (j) 

 (k)   (l) 

(m)  (n) 

(o) 

Figure 9. Active Power Losses of (a) Branch1, (b) Branch2, (c) Branch3, (d) Branch4, (e) Branch5, (f) 

Branch6, (g) Branch7, (h)Branch8, (i) Branch9, (j) Branch10, (k) Branch11 ,(l) Branch12, (m) Branch13, 

(n) Branch14, (0) Branch15
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5.3. Reactive Power Losses 

The reactive power loss curves for each scenario of the studied case are illustrated in 

Figure 10. A summary of these results is also presented in Table 6. The reactive power loss 

curves of branch 1 to branch 15, for all scenarios, are shown in Figure 11, whereas average 

reactive power losses of branches are presented in Table 8. 

Table 7. Average Active Power Losses along Branches (kW) 

Algorithms 
Branch 

1 

Branch 

2 

Branch 

3 

Branch 

4 

Branch 

5 

Branch 

6 

Branch 

7 

Branch 

8 

Branch 

9 

Branch 

10 

Branch 

11 

Branch 

12 

Branch 

13 

Branch 

14 

Branch 

15 

Before DG 789.4 159.9 4678.5 50.1 9.7 442.7 1.7 473.2 882.7 14.4 59.0 3214.7 8124.1 2405.8 5312.2 

GA 320.1 249.1 2724.1 172.4 9.3 437.6 1.5 488.2 1381.5 68.8 239.8 1697.0 2074.6 535.3 1343.9 

APSO 163.4 230.0 2845.2 158.8 9.1 431.0 1.6 500.7 1337.9 60.5 212.8 1792.6 2489.7 642.7 1626.6 

Proposed 

BRO 
263.2 235.1 2671.2 170.2 9.2 434.3 1.5 495.6 1374.3 67.0 234.5 1661.6 2194.6 584.0 1398.0 

Table 8. Average Reactive Power Losses of Branches (kVAR) 

Algorithms 
Branch 

1 

Branch 

2 

Branch 

3 

Branch 

4 

Branch 

5 

Branch 

6 

Branch 

7 

Branch 

8 

Branch 

9 

Branch 

10 

Branch 

11 

Branch 

12 

Branch 

13 

Branch 

14 

Branch 

15 

Before DG 1129.3 228.3 6709.9 71.6 13.9 634.6 2.4 674.2 1268.8 20.7 85.1 4595.2 5829.0 1730.1 3812.3 

GA 458.0 355.6 3906.9 246.3 13.2 627.2 2.2 695.8 1985.9 99.0 345.9 2425.8 1488.5 385.0 964.4 

APSO 233.7 328.4 4080.6 226.9 13.1 617.8 2.3 713.6 1923.2 87.0 307.1 2562.4 1786.4 462.2 1167.3 

Proposed 

BRO 
376.5 335.7 3831.0 243.1 13.1 622.5 2.2 706.3 1975.5 96.4 338.2 2375.1 1574.6 420.0 1003.3 

Figure 10. Reactive Power Losses 
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 (i)  (j) 

 (k)  (l) 

  (m)  (n) 

   (o) 

Figure 11. Reactive Power Losses of (a) Branch1, (b) Branch2, (c) Branch3, (d) Branch4, (e) Branch5, 

(f) Branch6, (g) Branch7, (h)Branch8, (i) Branch9, (j) Branch10, (k) Branch11 ,(l) Branch12, (m)

Branch13, (n) Branch14, (0) Branch15
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5.4. Bus Voltage Profiles 

Voltage curves of buses for all scenarios of the existing system are shown in Figure 

12. A summary of these results is also incorporated in Table 6, whereas the average volt-

ages of all buses are illustrated in Table 9. After the placement of DGs for all scenarios, the

voltage curves of bus 3 to bus 14 are shown in Figure 13. The voltage curves of bus1 and

bus2 are not presented because of their negligible variations in all scenarios.

Figure 12. All Buses Voltage Profile (Before DG) 

 (a)  (b) 

(c)  (d) 

Table 9. Average Bus Voltages 

Algorithms Bus1 Bus2 Bus3 Bus4 Bus5 Bus6 Bus7 Bus8 Bus9 Bus10 Bus11 Bus12 Bus13 Bus14 

Before DG 1.0300 1.0300 1.0138 0.9365 0.9444 0.9370 0.9168 0.9137 0.8906 0.9403 0.9389 0.9302 0.6654 0.7762 

GA 1.0300 1.0300 1.0797 1.0447 1.0626 1.0554 1.0353 1.0322 1.0088 1.0712 1.0629 1.0488 0.9358 0.9735 

APSO 1.0300 1.0300 1.0768 1.0359 1.0530 1.0458 1.0259 1.0227 0.9990 1.0605 1.0527 1.0391 0.9088 0.9545 

Proposed BRO 1.0300 1.0300 1.0770 1.0434 1.0612 1.0539 1.0340 1.0309 1.0073 1.0696 1.0613 1.0473 0.9293 0.9699 
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(e)    (f) 

(g)  (h) 

(i)  (j) 

(k)     (l) 

Figure 12. Votage Profiles of (a) Bus3, (b) Bus4, (c) Bus5, (d) Bus6, (e) Bus7, (f) Bus8, (g) Bus9, 

(h)Bus10, (i) Bus11, (j) Bus12, (k) Bus13 ,(l) Bus14
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6. Discussion

5.1. Active Power Losses 

The results from Section 5 demonstrate appealing features of the designed method-

ology. Active power losses are analyzed in two ways, i.e., active power losses occurring 

at the overall system and active power losses occurring at each branch of the system. Fol-

lowing results are deduced after analyzing the active power losses of the system by using 

the designed methodology. 

• Figure 8 and Table 6 depict the maximum active power loss that is 51604.96kW that

occurs in the 19th scenario. This loss is minimized to 25471.47kW, 23123.32kW, and

22925.5kW by optimally allocating DGs via the usage of APSO, BRO, and GA algo-

rithms.

• The Average active power loss arise at the existing system is 26617.93 kW along

with all scenarios, which is reduced up to 11743kW, 12502.73kW, and 11794.14

kW using GA, APSO, and BRO algorithms, respectively.

• The existing active power loss from scenarios 2 to 4 are lesser than the losses calcu-

lated after the placement of DGs. Hence, the results described above signifies that the

proposed method, when applied to allocate DGs in the system, aids in reducing the

overall total active and reactive power losses in the system for all considered scenar-

ios. Therefore, the planned DGs are delivering the same active power for a whole

day. However, the power demand for scenarios 2 to 4 is lesser than the generated

power, and it causes an increase in active power losses.

• The total active power losses for all scenarios are considered as active energy losses

of 24 hours. After placement of DGs optimally, the active energy losses are calculated

as 300065.4kWh, 281838kWh, and 283059.7kWh for APSO, GA, and BRO, respec-

tively. Hence, it shows that 53.03%, 55.88%, and 55.69% of reduction in active energy

loss has been seen in the system compared to the actual energy loss before the place-

ment of DGs.

• Figure 9 elucidates that the active power losses are lower for most branches' initial

and last scenarios. These scenarios incorporate off-peak hours, including late-night

hours in which load requirement is lower than peak hours that are daytime. There-

fore, the system losses are lower during the late-night period.

• The maximum loss occurs in the 19th scenario at most of the branches. The actual

peak active power loss of 14569.43kW occurs among all branches of the system. This

loss is minimized to 6619.197kW, 7199.756kW, and 6465.435kW by the optimal allo-

cation of DGs using GA, APSO, and BRO cases, respectively.

• The actual minimum loss of 0.346432kW occurred among all branches of the system

is further increased up to 1.392466kW, 1.45kW, and 1.384796kW while placing DGs

using GA, APSO, and BRO algorithms, respectively.

5.2. Reactive Power Losses 

Reactive power losses are analyzed in two ways, i.e., reactive power losses occurring 

at the overall system and reactive power loss occurring at each branch of the system.  The 

main analysis of the outcome after analyzing the reactive power losses of the system is 

mentioned here under; 

• Figure 10 and Table 6 show that the maximum reactive power loss is 53490.16kVAR

which occurs for the 19th scenario. This loss is minimized up to 28191.04kVAR,

25669.27kVAR, and 25836.27kVAR, after the incursion of DGs in the system by using

the APSO, BRO, and GA.

• The actual average reactive power loss for all scenarios is 26805.49kVAR. This loss is

minimized up to 14412.65kVAR, 13813.92kVAR, and 13999.75kVAR, after the place-

ment of DGs by using the APSO, BRO, and GA. It shows that the BRO has a better

performance in the case of reactive power loss minimization.
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• The present system's reactive power losses from scenarios 1 to 5 are lesser than the

existing system before the placement of DGs. The proposed method is applied to al-

locate the optimal size and location of DGs while reducing the system's overall total

reactive power losses for all considered scenarios. Therefore, the planned DGs are

delivering the same power for a whole day. However, the power demand from sce-

narios 1 to 5 is lesser than the generated power and which has caused the increase in

loss.

• The total reactive power losses for all scenarios are considered as reactive energy

losses of 24 hours. After the placement of DGs, reactive energy losses are to be found

as 345903.6 kVARh, 335994.1kVARh, and 331534.010kVARh by using APSO, GA, and

BRO, respectively.

• The actual peak loss of 16907.7kVAR arises at branches is minimized to

9493.322kVAR, 10325.97 kVAR, and 9272.794kVAR by using GA, APSO, and BRO.

• The actual minimum loss of 0.498524 kVAR at branches is increased up to 1.98112

kVAR, 2.074574 kVAR, and 1.992093 kVAR by the usage of GA, APSO, and BRO.

• Figure 11 shows that reactive power losses for initial and last scenarios are lower.

These scenarios represent late-night hours, and their load requirement is lower com-

pared to daytime hours. Accordingly, the system losses are lower during the late-

night period.  

• The maximum reactive power loss arises for the 19th scenario at most branches. The

maximum average reactive power loss occurs at branch 3. This loss is best minimized

to 3811 kVAR by using the BRO.

• The average reactive power losses across branches 3, 5, 7, 12, and 13 are also best

minimized by using the BRO.

• The average reactive power losses across branches 1, 2, 4, 6, 9, 10, and 11 are best

minimized by using the APSO.

• The GA attains a better reactive power losses minimization for branches 8, 14, and

15.

• For busses 2, 4, 8, 9, 10, and 11, the average reactive power losses are increased after

the placement of DGs.

5.3. Bus Voltage Profiles 

The following analysis has been devised while studying bus voltage profiles. 

• Figure 12 and Table 6 show that the actual minimum voltage across all buses is

0.4621pu. It has raised up to 0.726061pu, 0.705585pu, and 0.732564pu by individually

using BRO, APSO, and GA.

• The maximum voltage before allocation of DGs is 1.0958pu which has enhanced up

to 1.225032pu, 1.215942pu, and 1.226702pu by using the BRO, APSO, and GA.

• Figure 13 shows that the proposed method improves bus voltage profiles for all sce-

narios. The proposed BRO algorithm attains better performance in terms of voltage

profile improvement as compare to the ASPO and GA.

• The average minimum voltage before placement of DGs is 0.6654pu at bus 13, which

is improved to 0.9358pu, 0.9088pu, and 0.9293pu by using the GA, APSO, and BRO.

5.4. Main Findings and Comparison of Algorithms 

MO, Maximum fitness, and other results are discussed in detail. Summary of main 

findings and comparison among BRO, APSO, and GA is presented in Table 6. The con-

vergence curve of APSO, BRO, and GA is shown in Figure 6, which shows that APSO has 

best convergence among all three, BRO stands at second while GA has slowest conver-

gence curve among all three. For the first time, the current work enlightened BRO algo-

rithms for DGs’ allocation. Figure 7 shows the comparison of convergence of APSO, BRO, 

and GA. Hence, APSO outperforms in attaining the least values of MO. The maximum 
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fitness values of APSO, GA, and BRO, are 6.39, 6.69, and 6.48 respectively. This shows that 

APSO has least maximum fitness value. The performance of the GA is better than the BRO 

in terms of Maximum fitness, Vmin, Vmax, and total active power losses (active energy 

losses) as (ref Table 6). On the other hand, the BRO secures better outcomes in minimum 

and maximum branch losses (active and reactive) and total reactive power losses (reactive 

energy losses).  

6. Conclusion

This paper exhibits an original work on optimal DGs allocation for the 24-hour load 

profile by using the min-max regret criteria. The study is conducted while considering the 

supplied power fluctuations in the renewable energy-based DGs. The performance is 

tested by using the CIGRE benchmark model. 24 scenarios are designed for studying spe-

cific load and generation profiles during the day hours. For each scenario, DGs' sizes and 

locations are determined on behalf of minimum MO values. Onward, a robust DGs allo-

cation is determined for all scenarios on account of min-max regret criteria. Results 

achieved are promising and further shows validation of the minimization of total system 

losses, and bus voltage profiles are significantly improved by using the devised 

method. The BRO algorithm is first time implemented for optimal DGs allocation. 

The maximum active and reactive line losses in the actual system are respectively 

14569.43 kW and 16907.7 kVAR. These are minimized to 6465.435 kW and 9272.794 kVAR 

by using BRO. The maximum losses reduction obtained with GA are respectively 6619.197 

kW and 9493.322 kVAR. In case of APSO, maximum line losses are lessened to 7199.756 

kW and 10325.97 kVAR. The minimum actual busses voltages for all scenarios, are in-

creased up to 0.726061 pu, 0.732564 pu and 0.705585 pu respectively by using BRO, GA 

and APSO. The system results show that the total active energy losses (active power losses 

for all scenarios) are minimized up to 55.69%, 55.88% and 53.03% using BRO, GA and 

APSO algorithms respectively for all scenarios. The reactive energy losses of the system 

(reactive power losses for all scenarios) are reduced up to 48.47%, 47.77% and 46.23% us-

ing BRO, GA and APSO algorithms respectively.  

It confirms that the proposed BRO-based DGs deployment outperforms in terms of 

the system reactive power losses compared to GA and APSO-based deployment. Moreo-

ver, the busses voltage profile improvement obtained by BRO provided better results as 

compared to the results obtained from GA and APSO. The aforementioned outcomes 

achieved by using the proposed technique affirms the potential of integrating the pro-

posed BRO-based DGs deployment approach in contemporary smart grids. The losses in 

few branches have been found to be increased by using the suggested method. A study 

on the minimization of this impact is in progress.  

In the future, a battery storage system can also be introduced, and a detailed analysis 

of system faults and stability must be studied at multi-points. The incorporation of differ-

ent types of hybrid DGs can improve a system's stability while minimizing its losses. In-

vestigating this point is another future research axis. 
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Appendix A 

Table A1. Active Power Loads (kW) 

Time 

(Hrs.) 

Bus1 

(kW) 

Bus2 

(kW) 

Bus3 

(kW) 

Bus4 

(kW) 

Bus5 

(kW) 

Bus6 

(kW) 

Bus7 

(kW) 

Bus8 

(kW) 

Bus9 

(kW) 

Bus10 

(kW) 

Bus11 

(kW) 

Bus12 

(kW) 

Bus13 

(kW) 

Bus14 

(kW) 

1 5477.40 0.00 146.86 110.61 186.42 140.44 25.82 150.38 193.64 144.75 84.51 5535.11 11.48 165.32 

2 5979.11 0.00 154.41 126.80 213.70 160.99 24.86 172.39 186.47 161.72 96.88 6034.69 11.05 169.00 

3 4072.67 0.00 111.79 79.59 134.13 101.05 20.66 108.20 154.91 105.99 60.81 4118.84 9.18 127.96 

4 3595.82 0.00 90.93 78.24 131.86 99.33 13.87 106.37 103.99 98.47 59.78 3626.81 6.16 97.88 

5 4597.97 0.00 134.90 80.93 136.41 102.76 28.21 110.03 211.57 114.19 61.84 4661.03 12.54 161.34 

6 5909.31 0.00 173.52 103.87 175.06 131.88 36.34 141.21 272.53 146.67 79.36 5990.53 16.15 207.65 

7 9490.97 0.00 265.10 180.75 304.64 229.50 50.72 245.74 380.40 244.12 138.10 9604.35 22.54 307.12 

8 13296.34 0.00 365.78 258.99 436.50 328.83 67.89 352.11 509.20 345.53 197.88 13448.10 30.18 419.34 

9 14403.68 0.00 401.49 275.18 463.78 349.38 76.50 374.12 573.75 371.00 210.25 14574.68 34.00 464.45 

10 14187.40 0.00 395.38 271.13 456.96 344.24 75.31 368.62 564.79 365.49 207.16 14355.73 33.47 457.32 

11 14935.67 0.00 410.45 291.36 491.06 369.93 76.02 396.12 570.16 388.40 222.62 15105.60 33.79 470.20 

12 12840.91 0.00 344.61 258.99 436.50 328.83 60.70 352.11 455.27 339.14 197.88 12976.60 26.98 388.18 

13 14914.63 0.00 387.12 314.30 529.71 399.05 63.11 427.30 473.34 402.18 240.14 15055.71 28.05 425.34 

14 13909.77 0.00 373.27 280.57 472.88 356.23 65.74 381.45 493.07 367.38 214.37 14056.73 29.22 420.44 

15 12629.51 0.00 349.24 244.15 411.49 309.99 65.50 331.94 491.27 327.07 186.54 12775.93 29.11 401.81 

16 11659.24 0.00 333.05 214.48 361.48 272.31 66.46 291.59 498.45 295.24 163.87 11807.79 29.54 391.61 

17 10841.01 0.00 309.47 199.64 336.47 253.47 61.68 271.42 462.59 274.65 152.53 10978.88 27.41 363.73 

18 12347.42 0.00 303.26 277.88 468.33 352.81 42.55 377.79 319.15 343.80 212.31 12442.54 18.91 318.65 

19 14323.99 0.00 332.06 342.62 577.45 435.02 38.25 465.81 286.88 411.27 261.78 14409.49 17.00 331.29 

20 16001.41 0.00 357.46 396.58 668.39 503.52 35.14 539.17 263.57 467.92 303.00 16079.96 15.62 343.89 

21 14305.18 0.00 320.67 353.41 595.64 448.72 32.03 480.48 240.26 417.63 270.02 14376.79 14.24 309.57 

22 12028.67 0.00 275.30 291.36 491.06 369.93 30.12 396.12 225.91 347.60 222.62 12096.00 13.39 271.30 

23 10175.30 0.00 236.45 242.80 409.22 308.28 27.49 330.10 206.19 291.79 185.51 10236.75 12.22 236.44 

24 7669.13 0.00 188.29 172.66 291.00 219.22 26.39 234.74 197.94 213.58 131.92 7728.12 11.73 197.79 

Table A2. Reactive Power Loads (kW) 

Time 

(Hrs.) 

Bus1 

(kVAR) 

Bus2 

(kVAR) 

Bus3 

(kVAR) 

Bus4 

(kVAR) 

Bus5 

(kVAR) 

Bus6 

(kVAR) 

Bus7 

(kVAR) 

Bus8 

(kVAR) 

Bus9 

(kVAR) 

Bus10 

(kVAR) 

Bus11 

(kVAR) 

Bus12 

(kVAR) 

Bus13 

(kVAR) 

Bus14 

(kVAR) 

1 5180.28 0.00 124.96 66.23 111.62 84.08 28.04 90.04 210.27 97.84 50.60 5233.01 12.46 153.49 

2 5664.39 0.00 128.11 75.92 127.95 96.39 27.00 103.21 202.48 107.59 58.00 5715.17 12.00 153.67 

3 3847.52 0.00 96.56 47.65 80.31 60.50 22.43 64.78 168.22 72.41 36.41 3889.71 9.97 120.21 

4 3409.69 0.00 74.33 46.84 78.95 59.47 15.06 63.68 112.92 64.96 35.79 3438.01 6.69 87.88 
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5 4329.62 0.00 121.23 48.46 81.67 61.52 30.63 65.88 229.74 80.59 37.02 4387.24 13.61 156.15 

6 6974.13 0.00 156.01 62.19 104.81 78.96 39.46 84.55 295.94 103.55 47.51 5638.40 17.54 201.03 

7 8958.81 0.00 231.48 108.22 182.40 137.40 55.08 147.13 413.07 168.12 82.69 9062.39 24.48 290.95 

8 
12559.9

6 
0.00 316.39 155.06 261.34 196.88 73.73 210.82 552.94 236.28 118.48 12698.62 32.77 394.39 

9 
13597.4

2 
0.00 350.11 164.75 277.68 209.18 83.07 223.99 623.03 255.26 125.88 13753.66 36.92 439.57 

10 
13393.3

9 
0.00 344.74 162.33 273.59 206.11 81.77 220.70 613.29 251.43 124.03 13547.19 36.34 432.78 

11 
14109.2

0 
0.00 354.79 174.45 294.01 221.49 82.55 237.17 619.13 265.46 133.28 14264.46 36.69 442.00 

12 
12143.8

4 
0.00 293.40 155.06 261.34 196.88 65.92 210.82 494.37 229.34 118.48 12267.81 29.30 360.55 

13 
14126.4

0 
0.00 322.31 188.18 317.15 238.92 68.53 255.83 514.00 268.12 143.77 14255.29 30.46 387.89 

14 
13154.7

2 
0.00 317.78 167.98 283.12 213.28 71.39 228.38 535.41 248.43 128.35 13288.99 31.73 390.51 

15 
11927.1

3 
0.00 303.06 146.18 246.37 185.60 71.13 198.74 533.47 224.19 111.69 12060.91 31.61 378.85 

16 
10993.4

7 
0.00 294.73 128.41 216.42 163.04 72.17 174.58 541.25 205.55 98.11 11129.21 32.07 374.77 

17 
10222.3

0 
0.00 273.76 119.53 201.45 151.76 66.98 162.50 502.31 191.15 91.32 10348.27 29.77 347.98 

18 
11722.9

4 
0.00 242.61 166.37 280.40 211.23 46.21 226.19 346.56 224.27 127.11 11809.84 20.54 280.61 

19 
13631.7

2 
0.00 253.68 205.14 345.73 260.45 41.54 278.89 311.51 262.80 156.73 13709.84 18.46 279.10 

20 
15250.0

4 
0.00 264.43 237.44 400.18 301.47 38.16 322.81 286.20 295.37 181.42 15321.82 16.96 280.08 

21 
13631.6

8 
0.00 237.94 211.60 356.62 268.66 34.79 287.68 260.89 263.91 161.67 13697.10 15.46 252.97 

22 
11453.1

2 
0.00 208.03 174.45 294.01 221.49 32.71 237.17 245.32 221.16 133.28 11514.64 14.54 226.02 

23 9682.61 0.00 181.00 145.37 245.01 184.57 29.85 197.64 223.90 186.61 111.07 9738.75 13.27 199.60 

24 7281.36 0.00 150.59 103.38 174.23 131.25 28.66 140.54 214.94 139.30 78.98 7335.26 12.74 174.14 
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