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Abstract: Numerical methods, including machine learning methods, are now actively used in the
applications related to guided wave propagation. The method proposed in this study for material
properties characterization is based on the algorithm of the clustering of multivariate data series
obtained as a result of the application of the matrix pencil method to the experimental data. In the
proposed technique, multi-objective optimization is employed to improve the accuracy of particular
parameter identification. At the first stage, the computationally efficient method based on the
calculation of the Fourier transform of Green’s matrix is employed iteratively and the obtained
solution is used for the filter construction with decreasing bandwidth, which allows us to obtain
nearly noise-free classified data (with mode separation). The filter provides data separation between
all guided waves in a natural way, which is needed at the second stage, where the slower method
based on the minimization of the slowness residuals is applied to the data. The method might be
applied for material properties identification in plates with thin coatings/interlayers, multi-layered
anisotropic laminates etc.
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1. Introduction

Noninvasive characterization of material mechanical properties is vital for condition
monitoring to control the quality of samples and to identify possible damage or structural
degradation during its service period [1]. Vibration-based techniques have proven their
efficiency for the evaluation of elastic properties of small-scale samples [2]. However, due to
the “global” nature of these approaches, their applicability for the characterization of certain
structural parts, especially in large-scale engineering assemblies, might be restrained.
Meanwhile, methods relying on ultrasonic guided waves (UGWs) provide an appropriate
compromise between “global” and “local” structural evaluation and thus might serve as a
suitable basis for corresponding non-destructive testing and structural health monitoring
applications [3–8]. UGWs are multi-modal waves and using them for material properties
identification often requires laborious signal processing. On the other hand, the benefit
of the multi-modal nature is the availability of information on the wave characteristics in
a wide frequency range, which improves the identification procedure. For instance, Cui
and Lanza di Scalea [9] applied the advanced simulated annealing optimization algorithm
to match pseudo-experimental phase velocity curves for fundamental modes (S0, A0,
SH0) to computed velocity curves with varying constants in anisotropic laminate. It was
shown in [10], where the fuzzy-based inversion technique was applied for the identification
problem, that the inclusion of all UGWs better consolidates the identified uncertainties of
the material properties compared to single-mode analysis in a broader frequency range. For
the identification algorithms, the UGWs separation is necessary, which is still challenging,
since the dispersion effect leads to modal amplitudes of different levels and overlapping of
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the wave packages in the time-frequency domains. A significant number of researchers use
the frequency-wavenumber representation, where the energy distributions of individual
modes are naturally separated from each other. There are examples of the successful
application of the matrix pencil method (MPM) and estimation of signal parameters via
rotational invariance techniques (ESPRIT) based on the eigenvalue decomposition, such as
singular value decomposition (SVD) [11–13]. Unfortunately, the number of modes is often
not easily determined from thresholds using only eigenvalue intensities or singular values,
and Okumura et al. [14] proposed an algorithm applying information-theoretic criteria
efficient for SVD and ESPRIT methods. In [15], to obtain a time-frequency representation, an
inverse synchronized wavelet transform was used, which makes it possible to automatically
select individual modes after image processing. A time-frequency method of multi-modal
dispatcher dispersion was also proposed for mode separation by Xu et al. [16]. However,
the problem of automatic UGW separation is not fully solved at the moment.

Machine learning methods are now actively used in UGW propagation problems
like the mode separation related to unsupervised and self-supervised methods. Non-
negative matrix factorization was employed for mode separation with subsequent classic
clustering algorithm (DBSCAN) [17]. Convolutional neural network (CNN) were applied
for automatic selection of dispersion curves for the fundamental and higher modes of the
2D seismic profile [18], while a deep neural network (DNN) was trained to reconstruct
plane wave ultrasound images from RF channel [19]. The clustering of series of data
points algorithm based on the feature extraction from multi-dimensional data was used
for estimating complex frequencies and amplitudes of signals [13]. For machine learning
algorithms related to the identification of waveguide parameters, supervised learning
methods have been also used recently, for instance, in [8,20–22], and the learning took place
on synthetic data.

The principle of the method discussed in the current paper is based on the algorithm
of the clustering of multivariate data series obtained as a result of the application of the
MPM to the experimental data. In the proposed technique, multi-objective optimization
is employed, which is usually used to improve the accuracy of particular parameter
identification [23]. At the first stage, the computationally efficient method based on the
calculation of the Fourier transform of Green’s matrix (GMM) is employed (see [24] and
references therein) iteratively, and the obtained solution is used for the filter construction
with decreasing bandwidth, which allows us to obtain nearly noise-free classified data (with
mode separation). The filter provides data separation between all UGWs in a natural way,
which is needed at the second stage, where the slower method based on the minimization
of the slowness residuals (SRM) is applied to the data. The second step is important since
the SRM is more accurate than the GMM. On the other hand, the first step is indispensable
to providing mode separation needed for the SRM.

2. Data extraction and initialization

Various scanning techniques (laser Doppler vibrometry, phased arrays, air-coupled
transducers) can be applied to obtaining data, which is necessary for data extraction in the
first step. Let us consider an elastic plate, where the Cartesian coordinates are introduced
so that the scan line goes along the Ox-axis, and the source exciting GWs is situated at
the origin of coordinates. Further on, it is assumed that the laser Doppler vibrometry is
employed as a method for data acquisition at the surface z = 0 of the specimen (out-of-
plane velocities or displacements) since it provides minimal distortion to the measured
wavesignals [25].

It should be noted here that the method of data acquisition at the surface z = 0 of
the specimen (out-of-plane velocities or displacements) is not important for the proposed
method (see Figure 1). Let us assume that velocities or displacements denoted for simplicity
as v(x, 0, 0, t) are measured at points (xi, 0, 0) at the moments of time tk, and v(xi, tk) = vik.
According to the MPM, the Fourier transform is applied to v(xi, tk) with respect to time-
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variable for a certain set of frequencies fn, n = 1, Nf, which gives V(xi, fn) = Vn
i . The MPM

is applied to determine the relation between the wavenumber k and the frequency f .
Thus, for a certain frequency fn and a given set of scan points xi, the following

approximation is to be constructed:

Vn
i ≈

M

∑
m=1

An
mzi−1

mn =
M

∑
m=1

An
mei kmn ∆x (i−1), (1)

where ∆x is the spatial step in the line scan, An
m are amplitudes related to poles zmn, which

corresponds to guided waves with wavenumbers kmn propagating at frequency fn.

Source

Scan points

x

z

y

Figure 1. Geometry of the problem considered.

Therefore, for n-th frequency fn from a certain set of frequencies, matrix pencil of two
Hankel matrices X and Y are composed from the values Un

i . Employing the singular value
decomposition, for X = U ·Λ ·V, where U and V are unitary matrices and Λ̃ = diag(λ1, . . .)
is rectangular diagonal matrix. Then, the eigenvalues of matrix pencil (X, Y) are determined
using reduced singular value decomposition of matrix X = Ũ · Λ̃ · Ṽ, which is obtained via
the reduction of the first largest M singular values in Λ, i.e. Λ̃ = diag(λ1, . . . , λM) and Ũ
and Ṽ are corresponding unitary matrices. Therefore, the problem can be reduced to the
eigenvalue problem for

Ũ∗ · X · Ṽ∗ − zΛ̃

with respect to z-values, which gives values of knj. It should be mentioned that the number
of poles M can be chosen specifically for each frequency.

An example of the MPM application to determine dispersion properties of an alu-
minium plate of 2 mm thickness is depicted in Figure 2, where slownesses snm = knm/ fn
have been calculated for 200 frequencies fn ∈ [0.5, 2.4] MHz.

Thus, the MPM described in this section is applied at the first step to extract slowness-
frequency pairs ğ =

{
(s̆nm, fn), m = 1, M

}
from the raw experimental signals (the parame-

ter M of the MPM should be chosen with an assurance that it is larger than the number
of propagating guided waves). Unfortunately, the data is usually noisy, and certain noise
removal is needed.

The amplitudes An
m obtained after decomposition (1) are normalized for each fre-

quency:
An

m := An
m/max

m
(An

m), n = 1, Nf.

Further, the points with amplitudes An
m < 0.1 are removed from the dataset to clean up

the noise. It should be noted that the increase of this threshold of 0.1 leads not only to
the removal of the noise but also deletes the points belonging to the dispersion curves
themselves (it could lead to a full disappearance of some modes which have not been
intensively excited in the experiment). Such a noise removal gives the set of slowness-
frequency pairs

ğ := {(snm, fn), m ∈ Bn, n = 1, Nf},

where the fact that the number of pairs varies from frequency to frequency is taken into
account via the introduction of sets Bn = {m| Ănm > 0.1}. Here Nf is the total number of
frequencies fn in the set g.
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Figure 2. The slownesses calculated for 2 mm thickness aluminium plate using the MPM at M = 6.

3. Objective functions
3.1. Method based on the calculation of the Fourier transform of Green’s matrix

At the first stage of the proposed identification procedure the GMM avoiding time-
consuming root search procedures is applied. In the GMM, the minimization of objective
function G(θ, g) is performed so that the estimate is determined as follows:

θ̂ = arg min
θ∈Θ

G(θ, ğ).

Here, θ is the vector of the parameters of the model and Θ denotes the bounds of the model
parameters. The objective function G(θ, ğ) for the GMM is defined via the replacement
of the frequency f and slowness s into the inversion of the Fourier transform of Green’s
matrix component K−1

33 ( f , s, 0, θ):

G(θ, g) =
1
N

Nf

∑
n=1

∑
m∈Bn

min
(
|K−1

33 ( fn, s̆nm, 0, θ)|, 1
)

, (2)

N =
Nf

∑
n=1
|Bn|.

An upper limit is introduced to avoid large values of objective function (2), which improves
the effectiveness of the inversion procedure, since extremely large values could strongly
influence the objective function [24]. For the examples considered in this study, the Fourier
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transform of Green’s matrix of an elastic homogeneous layer is used, but the proposed
identification approach is also applicable for other kinds of waveguides.

Let us briefly describe the scheme of Green’s matrix composition in the case of a
homogeneous stress-free elastic layer V = {|x| < ∞,−H ≤ z ≤ 0} of thickness H with
the mass density ρ, Young’s modulus E and Poisson’s ratio ν (see Figure 1). At least one
parameter must be already determined for identification, otherwise, the solution is not
unique. For the steady-state motion with the angular frequency ω = 2π f , the displacement
vector u in an elastic homogeneous isotropic media satisfies the governing equations:

1− ν

1− 2ν
∇ · ∇u− 1

2
∇× (∇× u) +

(1 + ν) ρ

E
ω2u = 0. (3)

The stress-free boundary conditions (the Hooke’s law relates the components of the dis-
placement vector u and the stress tensor σik) are assumed at the surfaces of the waveguide

σi2(x, 0) = σi2(x,−H) = 0, ∀x. (4)

The application of the Fourier transform to governing equations (3) with respect to x1 and
boundary conditions (4) leads to the system of ordinary differential equations, where the
unit vector is given in the right-hand side. The solution of the obtained system allows
calculating the Fourier transform of Green’s matrix (see [26] for more details).

3.2. Method based on the slowness residuals

In the second approach, the minimization of the residuals between measured slow-
nesses s̆nm and theoretical slownesses snm(θ, fn) calculated employing the mathematical
model (e.g. described in Section 3.1) with the parameter θ at given frequency fn, see [24]
for more details. To calculate the objective function

S(θ, g) =
1
N

Nf

∑
n=1

∑
m∈Bn

|s̆nm − snm(θ, fn)|, (5)

an accurate procedure for the mode separation is needed since the distance between
theoretical and experimental slownesses corresponding to the same guided wave should
be compared. Another disadvantage of the use of this objective function is related to
the numerical search of the roots of the dispersion equation, which is obtained via the
application of the Fourier transform with respect to x1 to governing equations (3) and
boundary conditions (4) for each frequency fn. The latter makes solution of the optimization
problem

θ̂ = arg min
θ∈Θ

S(θ, ğ)

computationally expensive.

4. Multi-stage algorithm for material properties characterization

The method proposed here is a combination of two approaches for material properties1

identification, which convergence and accuracy was analysed by Golub et al. [24]. It was2

shown in [24] that the method based on the slowness residuals (SRM) is time-consuming3

since it needs multiple calls for mode separation and search-root procedures. The compu-4

tational time for the second method based on the calculation of the Fourier transform of5

Green’s matrix (GMM) is hundred times smaller than for the SRM, but the accuracy of the6

SRM is better (the GMM usually overestimates parameter values). All the stages of the7

proposed algorithm for waveguide properties identification are briefly described in the8

flowchart shown in Figure 3, whereas detailed description of the stages can be found in9

Sections 2–3.10

Step 1. In the first step, extraction of the information on dispersion characteristics of11

an inspected waveguide is performed. To this end, the MPM is applied to the experimental12
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The matrix pencil method application to the data

obtained during the measurements

Data extraction

j > 1

Do convergence 

criteria meet?

Noise removal and determination slowness-frequency 

pairs g for the objective function 1

Setting initial values to start the loop: 

 •  initial filter’s bandwidth δ(1) 

 •  the coefficient of compression α ϵ (0,1)

 •  Flag = True; j = 0; Ω(1) = ℝ2;

Noise removal & initialization

j += 1;

Solution of the optimization problem using the method

based on the Fourier transform of Green’s matrix

Minimization (Objective function 1)

“Twin points” removal

Filter Ω(j+1) update :

 •  filter’s bandwidth δ(j+1) = α∙δ(j)  

 •  theoretical slowness-frequency pairs for θ (j)

Mode separation

Exit

The application of the method based on slowness residuals 

with initial value θ (j) calculated at the previous stage

Material properties are determined as 

Refinement (Objective function 2)

NO

NO

NO

NOYES

YES

(ε(j) < 0.01, Ɐl=1,3) & Flag

Flag = False

(ε(j) > 0.01, Ɐl=1,3) & not (Flag)

YES YES

(j > Mmax) ˅ (δ(j) < δmin)

Start

l

l

ﬞ 

̂

θ
θ̂ := arg min S(θ, g ∩ Ω(j+1))ﬞ 

θ
̂ ﬞ θ (j) = arg min G(θ, g ∩ Ω(j))

Ω(j+1) := Ω(j)   θ (j) := θ (j-1) ̂ ̂

Figure 3. Flowchart of the proposed multi-stage algorithm.

signal and some noise is removed as described in Section 2. Before starting the loop at13

the next step, the bandwidth of filter δ(1), the coefficient of filter bandwidth compression14

α ∈ (0, 1) and bounds Θ, where the solution is allowed, are chosen. Also, initial values15
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Ω(1) = R2, ğ(1) = ğ and j = 0 necessary for the first stage of the identification procedure16

are determined at this step.17

Step 2. An iterative procedure is repeated at the second step until the convergence
criteria described further are met. According to the GMM, the solution of the optimization
problem

θ̂
(j)

= arg min
θ∈Θ

G(θ, ğ(j)) (6)

is obtained at j-th iteration using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.
Here Ω(j) describes the action of the filter

ğ(j+1) = ğ ∩Ω(j+1)

extracting from ğ only the pairs laying in δ(j)-vicinity of the theoretical slowness curves, i.e.

Ω(j+1)) =
{
(s, f )|s(θ̂(j), f )− δ(j) ≤ s ≤ s(θ̂(j), f ) + δ(j)

}
.

The bandwidth of the filter decreases at each iteration:

δ(j+1) = α · δ(j).

The process is repeated at least two times. At the first iteration no criteria are checked, then
relative error

ε
(j)
l =

θ̂
(j)
l − θ̂

(j−1)
l

θ̂
(j)
l

is considered to break the loop. Two-step criteria is proposed, and logical variable Flag18

(initial value is Flag=True) is used in the flowchart to explain the algorithm. Starting from19

the second loop, the condition ε
(j)
l < 0.01 is checked, and as soon it is satisfied logical20

variable changes it value (Flag=False). This condition is demanded to assure that the21

search becomes stable. The second condition is checked only if the first one is satisfied.22

The condition examines whether the search procedure is still stable and if the condition23

ε
(j)
l < 0.01 is not satisfied anymore the loop is finished at j-th iteration setting θ̂

(j)
l := θ̂

(j−1)
l24

and Ω(j+1)) := Ω(j)). Of course, the criteria related to the largest number of iterations25

(j > Mmax) and the minimum bandwidth of the filter (δ(j) < δmin) are also checked before26

continuing each loop for j > 2.27

Step 3. The converged solution θ̂
(j)
l obtained at Step 2 applying the GMM in (6) is

subsequently refined at the last step using the SRM method:

θ̂ = arg min
θ∈Θ

S(θ, ğ(j)). (7)

Since filter Ω(j+1)) separates modes, numbers of guided waves are easily distinguished28

in the SRM. To have better estimates, the optimization can be run several times using θ̂
(j)

29

with a random additive less than 1% as an initial value for the minimization procedure. In30

this case, mean or median can be chosen to obtain a statistically accurate estimate for the31

material properties.32

5. Examples of material properties identification using experimental data33

The proposed algorithm has been verified and tested using experimental data mea-34

sured for three different plates. Their thickness H and elastic properties, i.e. Young’s35

modulus and Poisson’s ratio, are unknown while density ρ is assumed being known in36

advance. Ultrasonic GWs have been excited in rectangular plates made of aluminium37

(ρ = 2660 kg/m3 and H = 2 mm), duralumin (ρ = 2721 kg/m3 and H = 1.9 mm) and steel38

(ρ = 7843 kg/m3 and H = 1.975 mm) by a circular piezoelectric actuator of 5 mm radius39

and 0.5 mm thickness manufactured from PZT PIC 151 (PI Ceramic GmbH, Germany).40
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Figure 4. Experimental slownesses ğ(j) filtered during the iterative process of Step 2 for aluminium plate with the mass
density ρ = 2660 kg/m3 and thickness H = 2 mm.
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Figure 5. Experimental ğ(j) filtered during the iterative process of Step 2 for duraluminium plate with the mass density
ρ = 2721 kg/m3 and thickness H = 1.9 mm.
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Figure 6. Experimental slownesses ğ(j) filtered during the iterative process of Step 2 for steel plate with the mass density
ρ = 7843 kg/m3 and thickness H = 1.975 mm.
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Out-of-plane velocities of propagating wave packages are measured at the surface of the41

specimen by PSV-500-V laser Doppler vibrometer (Polytec GmbH, Germany) [27]. The42

actuator has been driven by broadband 0.5 µs rectangular pulse tone burst voltage whose43

spectrum is non-zero for frequencies up to 3 MHz.44

Figures 4–6 exhibit experimental slownesses ğ(j) filtered during the iterative process45

of Step 2 for the three considered plates with the known mass density. The parameter46

values θ̂
(j)
l for all the stages are shown in the table at the bottom of the figures. The solution47

of the optimization problems has been implemented in Python programming language,48

whereas the calculation of the Fourier transform of Green’s matrix and the search root49

procedure has been implemented in the FORTRAN programming language to speed up50

the computations. One can see that though Step 2 already provides quite good estimations51

(at least for the thickness value, which might be easily obtained from the measurements),52

the SRM at Step 3 improves and statistically improves the results.53

6. Discussions54

The proposed numerical method of material properties identification allows for the55

processing of experimental line scans automatically with the minimal manual tuning of56

the parameters. Besides, its core functionality is not limited by the MPM as a tool for the57

evaluation of dispersion curves (i.e., the latter might be replaced by conventional wave-58

number frequency analysis [28] with further image processing to extract particular (s̆nm, fn)59

pairs) and laser Doppler vibrometry as an experimental technique for UGW sensing (some60

other types of laser interferometers as well as broad-band air-coupled transducers could be61

adopted). Of course, the method might be improved by involving parallel computing of62

(7) for various initial values at Step 3, which is the most computationally expensive part.63

Another extension might be related to the data extraction using the MPM, where adaptive64

schemes are possible to reduce noise and smooth dispersion curves.65

The employment of multi-objective optimization has allowed for the reduction of66

computational costs with the optimal accuracy of particular parameter identification.67

Efficient algorithms are available within the boundary integral equation method used in68

the present study [26,29,30] for the calculating the Fourier transform of Green’s matrix and69

dispersion characteristics of multi-layered waveguides. Besides, The semi-analytical finite70

element method (SAFEM), which is one of the most popular techniques for computing the71

dispersion of guided waves, is also very effective for modelling guided waves propagation72

in laminates. Therefore, the improved unsupervised learning method presented here might73

be extended for inverse problem solutions involving multi-layered structures. The possible74

applications of the method include material properties identification in plates with thin75

coatings/interlayers anisotropic and laminates with a large number of sub-layers [31] as76

well as characterization of the severity of the degradation in laminates with degraded77

adhesive bondings [32].78
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