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Abstract. In this note, we provide some effective treatments of a general linear model with adding-up re-
strictions via algebraic operations of given vectors and matrices in the model, including analytic expressions of
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unknown parameters in the model.

Keywords: General linear model; adding-up restrictions; estimability; OLSE; BLUE

AMS Classifications: 62H12; 62J05.

1 Introduction

We begin with introducing the common matrix and vector notation and ready-made matrix manipulations
that will be used in this note. Throughout, let Rm×n stand for the collection of all m× n matrices with
real numbers; A′, r(A), and R(A) stand for the transpose, the rank, and the range (column space) of a
matrix A ∈ Rm×n, respectively; and let Im denote the identity matrix of order m. The Moore–Penrose
inverse of A, denoted by A+, is defined to be the unique solution G satisfying the four matrix equations
AGA = A, GAG = G, (AG)′ = AG, and (GA)′ = GA. Further, let PA, EA, and FA stand for the
three orthogonal projectors (symmetric idempotent matrices) PA = AA+, EA = A⊥ = Im−AA+, and
FA = In −A+A. Two symmetric matrices A and B of the same size are said to satisfy the inequality
A < B in the Löwner partial ordering if A−B is nonnegative definite.

Consider a general linear model

M : y = Xβββ + εεε, E(εεε) = 0, Cov(εεε) = σ2ΣΣΣ, (1.1)

where y is an n × 1 observable random vector, X is an n × p known model matrix of arbitrary rank, βββ
is a p× 1 vector of fixed but known parameters, σ2 is an arbitrary positive scaling factor, ΣΣΣ is an n× n
known nonnegative definite matrix of arbitrary rank.

In the parametric regression analysis, it is quite common to add certain restrictions on unknown
parameters, such as, a system of linear matrix equations Bβββ = c in (1.1). In addition to imposing
restrictions on unknown parameters in a given regression model, it is natural to take into account as
well the situations of adding certain limitations and restrictions upon observable random variables in the
model from theoretical and applied points of view. Under the model assumption in (1.1), we further
assume that the observable random vector y satisfies a consistent linear matrix equation

Ay = b, (1.2)

where A is an m × n known matrix with rank(A) = k ≤ min{m, n} and b is an m × 1 known vector
with b ∈ R(A). In this case, (1.1) together with (1.2) can be written as

N : y = Xβββ + εεε, Ay = b, E(εεε) = 0, Cov(εεε) = σ2ΣΣΣ, (1.3)

and the equation Ay = b is called adding-up restrictions to y in (1.1). This kind of restrictions were
noticed and recognized in certain fields of applied statistics. For example, economists demonstrated cer-
tain appearance of adding-up restrictions and considered a number of estimation and inference problems
concerning linear regression models with adding-up restrictions; see Haupt & Oberhofer (2002, 2006);
Ravikumar et al (2000).

Notice that the observable random vector y occurs in the two equations in (1.3), there are some
alternative methods to approach estimation and inference problems of unknown parameters in the model.
We next show how to convert (1.3) into common linear models with implicit and explicit restrictions to the
unknown parametric vector βββ, respectively. Since y is a random variable, the expectation and covariance
matrix of both sides of the given equation Ay − b = 0 with respect to y are given by

E(Ay − b) = AXβββ − b = 0 and Cov(Ay − b) = σ2AΣΣΣA′ = 0. (1.4)
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Note that the matrix ΣΣΣ in (1.3) is positive semi-definite. Then it is easy to verify that the matrix equality
AΣΣΣA′ = 0 is equivalent to ΣΣΣ = FAΣΣΣFA. Thus, the adding-up equation Ay = b in fact implies

AXβββ = b and ΣΣΣ = FAΣΣΣFA. (1.5)

These two conditions arising from the adding-up equation enable us to merge the adding-up equation
into (1.1) in certain feasible ways. For instance, substituting the first equation into the second equation
in (1.3) and noting (1.5), we can equivalently rewrite (1.3) in the following implicitly restricted linear
model

Na :

[
y
b

]
=

[
X

AX

]
βββ +

[
εεε

Aεεε

]
, E

[
εεε

Aεεε

]
= 0, Cov

[
εεε

Aεεε

]
= σ2

[
FAΣΣΣFA 0

0 0

]
. (1.6)

Also replacing Ay = b with (1.5), we can rewrite (1.3) with probability 1 in the following explicitly
restricted linear model

Nb : y = Xβββ + εεε, AXβββ = b, E(εεε) = 0, Cov(εεε) = σ2FAΣΣΣFA. (1.7)

The two alternative expressions in (1.6) and (1.7) make clear insights actionable into regression analysis
of (1.3) via regular statistical inference. Recall as a classic topic in regression analysis that there has
been some general discussion regarding estimation and inference problems of a linear model with implicit
and explicit restrictions to unknown parameters in the model; see e.g., Tian et al (2007) and references
therein. Thus, we are able to make statistical inference of (1.3) via the two alternative forms in (1.6) and
(1.7) through use of common theory and methodology of dealing linear regression models under various
assumptions.

In this note, we reconsider some basic estimation and inference problems regarding N in (1.3). The
note is organized as follows. In Section 2, we introduce some basic formulas, results, and facts in matrix
theory, as well as two groups of established results concerned with OLSEs and BLUEs under (1.1). In
Sections 3 and 4, we present the description of the estimability of unknown parametric vector Kβββ under
Na and Nb in (1.6) and (1.7), and the derivations of analytical expressions of the OLSEs and BLUEs of
Kβββ through Na and Nb, respectively. Section 5 gives some remarks regarding further research problems
associated with general linear models with adding-up restrictions.

2 Some preliminaries

The theory of generalized inverses of matrices is a main source of the techniques that were brought into
linear regression analysis in 1950s, and thus plays a key role for carrying out the estimation and inference
in a wide variety of situations; see e.g., Bingham & Krzanowski (2022); Puntanen et al (2011); Searle
(1982). In order to simplify various matrix expressions involving generalized inverses of matrices, we need
to use the following rank formulas.

Lemma 2.1 (Marsaglia & Styan (1974)). Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rl×n. Then,

(a) r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA).

(b) r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC).

In particular,

(c) r[ A, B ] = r(A)⇔ EAB = 0⇔ R(B) ⊆ R(A).

(d) r

[
A
C

]
= r(A)⇔ CFA = 0⇔ R(C′) ⊆ R(A′).

Lemma 2.2 (Penrose (1955)). Let A ∈ Rm×n and B ∈ Rm×k, Then the linear matrix equation AX = B
is solvable for X if and only if r[A, B] = r(A), or equivalently, AA+B = B. In this case, the general
solution of the equation can be written in the following parametric form X = A+B + ( In − A+A )U,
where U ∈ Rn×k is an arbitrary matrix.

We turn now to certain basic definitions, and best-known facts and results in linear model theory
regarding estimability, OLSEs, and BLUEs of unknown parameters in (1.1); see e.g., Puntanen et al
(2011); Tian (2013).
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Definition 2.3. Let M be as given in (1.1) and let K ∈ Rk×p be given. The vector Kβββ of parametric
functions is said to be estimable under M if there exists an L ∈ Rk×n such that E(Ly −Kβββ) = 0 holds
for all βββ under M .

Definition 2.4. Let M be as given in (1.1), and let K ∈ Rk×p be given.

(a) The OLSE of the parametric vector βββ under (1.1), denoted by OLSEM (βββ), is defined to be

β̂ββ = argmin
βββ

( y −Xβββ )′( y −Xβββ ). (2.1)

The OLSE of Kβββ under (1.1) is defined to be OLSEM (Kβββ) = KOLSEM (βββ).

(b) The BLUE of the vector of parametric functions Kβββ under (1.1), denoted by BLUEM (Kβββ), is
defined to be linear statistic Ly, where L is a matrix such that Cov(Ly−Kβββ) = min in the Löwner
partial ordering subject to E(Ly −Kβββ) = 0.

The conventionality of OLSEs and BLUEs under linear regression models attracted statisticians’
long attention in the historical development of parametric regression theory, and numerous formulas and
facts regarding the OLSEs and BLUEs of βββ and Kβββ under (1.1) were established via various acceptable
algebraic operations of the given vectors and matrices and their generalized inverses, including, e.g., the
two groups of well-known results in the following two lemmas.

Lemma 2.5. Let M be as given in (1.1), and let K ∈ Rk×p be given. Then the general expression of
OLSEs of βββ in M can be written as

OLSEM (βββ) = X+y + FXv, (2.2)

where v ∈ Rp×1 is arbitrary; and the OLSE of Kβββ under M can be written as

OLSEM (Kβββ) = KX+y + KFXv. (2.3)

Lemma 2.6. Let M be as given in (1.1), K ∈ Rk×p, and suppose Kβββ is estimable under M . Then the
BLUE of Kβββ under Na can be written as

BLUEM (Kβββ) = PK;X;ΣΣΣy, (2.4)

where PK;X;ΣΣΣ is the solution of the matrix equation

G[ X, ΣΣΣX⊥ ] = [ K, 0 ]. (2.5)

This equation is always solvable for G, that is, R([ K, 0 ]′) ⊆ R([ X, ΣΣΣX⊥ ]′). In this case, the general
solution of (2.5) can be expressed as

PK;X;ΣΣΣ = [ K, 0 ][ X, ΣΣΣX⊥ ]+ + UE[X,ΣΣΣX⊥ ], (2.6)

where U ∈ Rk×n is arbitrary. Moreover, the following results hold.

(a) r[ X, ΣΣΣX⊥ ] = r[ X, ΣΣΣ ] and R[ X, ΣΣΣX⊥ ] = R[ X, ΣΣΣ ],

(b) The product PK;X;ΣΣΣ can uniquely be written as PK;X;ΣΣΣΣΣΣ = [ K, 0 ][ X, ΣΣΣX⊥ ]+ΣΣΣ.

(c) The expectation and covariance matrix of BLUEN (Kβββ) are given by

E( BLUEM (Kβββ) ) = Kβββ and Cov( BLUEM (Kβββ) ) = [ K, 0 ][ X, ΣΣΣX⊥ ]+ΣΣΣ([ K, 0 ][ X, ΣΣΣX⊥ ]+)′.

3 Estimation results under Na

In what follows, we denote

ŷ =

[
y
b

]
, X̂ =

[
X

AX

]
, Σ̂ΣΣ =

[
FAΣΣΣFA 0

0 0

]
.
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We first describe the consistency problems associated with Na in (1.6). Note that [ X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+[X̂, Σ̂ΣΣ] =

[X̂, Σ̂ΣΣ] from the definition of the Moore–Penrose inverse. Hence, it turns out under the assumptions in
(1.5) that

E([X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ŷ − ŷ) = [X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+X̂βββ − X̂βββ = 0,

Cov([X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ŷ − ŷ) = σ2([X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ − I)Σ̂ΣΣ([X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ − I)′ = 0.

These two equalities imply [X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ŷ = ŷ holds with probability 1, or equivalently,

ŷ ∈ R[X̂, Σ̂ΣΣ] (3.1)

holds with probability 1. In view of this, we use the following definition.

Definition 3.1. The linear model in (1.6) is said to be consistent if (3.1) holds with probability 1.

We next introduce the definitions of the OLSEs and BLUEs of vectors of parametric functions, and
then presents exact formulas for calculating BLUEs under (1.6) and (1.7).

Definition 3.2. Let Na be as given in (1.6), and let K ∈ Rk×p be given. The vector Kβββ of parametric
functions is said to be estimable under Na if there exists an L ∈ Rk×(n+m) such that E(Lŷ −Kβββ) = 0
holds for all βββ under Na.

Definition 3.3. Let Na be as given in (1.6), and let K ∈ Rk×p be given.

(a) The OLSE of the parametric vector βββ under (1.6), denoted by OLSENa
(βββ), is defined to be

β̂ββ = argmin
βββ

( ŷ − X̂βββ )′( ŷ − X̂βββ ). (3.2)

The OLSE of Kβββ under (1.5) is defined to be OLSENa(Kβββ) = KOLSENa(βββ).

(b) The BLUE of the vector of parametric functions Kβββ under N , denoted by BLUENa(Kβββ), is defined
to be linear statistic Lŷ, where L is a matrix such that Cov(Lŷ−Kβββ) = min in the Löwner partial
ordering subject to E(Lŷ −Kβββ) = 0.

Applying the above definitions to Na be as given in (1.6), we obtain the following results.

Theorem 3.4. Let Na be as given in (1.6), and let K ∈ Rk×p be given. Then Kβββ is estimable under Na

⇔ R(K′) ⊆ R(X′). In particular, Xβββ is always estimable under Na.

Proof. It follows from E(Lŷ −Kβββ) = 0 ⇔ R(K′) ⊆ R(X′)−Kβββ) = X̂βββ −Kβββ = 0 for all βββ ⇔ X̂ = K

⇔ R(K′) ⊆ R(X̂′) ⇔ R(K′) ⊆ R(X′) by Lemma 2.2.

Applying Lemmas 2.5 and 2.6 to (1.6), we obtain the following two results.

Theorem 3.5. Let Na be as given in (1.6) and suppose Kβββ is estimable under Na. Then the OLSE of
βββ under Na can be written as

OLSENa
(βββ) = X̂+ŷ + FXv, (3.3)

where v ∈ Rp×1 is arbitrary; and the OLSE of Kβββ under Na can uniquely be written as

OLSENa
(Kβββ) = KX̂+ŷ (3.4)

with

E( OLSENa
(Kβββ) ) = Kβββ and Cov( OLSENa

(Kβββ) ) = σ2KX̂+Σ̂ΣΣ(KX̂+)′. (3.5)

Theorem 3.6. Let Na be as given in (1.6) and suppose Kβββ is estimable under Na. Then the BLUE of
Kβββ under Na can be written as

BLUENa(Kβββ) = P
K;X̂;Σ̂ΣΣ

ŷ, (3.6)

where P
K;X̂;Σ̂ΣΣ

is the solution of the matrix equation

G[ X̂, Σ̂ΣΣX̂⊥ ] = [ K, 0 ]. (3.7)
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This equation is always solvable for G, that is, R([ K, 0 ]′) ⊆ R([ X̂, Σ̂ΣΣX̂⊥ ]′). In this case, the general
solution of (3.7) can be expressed as

P
K;X̂;Σ̂ΣΣ

= [ K, 0 ][ X̂, Σ̂ΣΣX̂⊥ ]+ + UE
[ X̂, Σ̂ΣΣX̂⊥ ]

, (3.8)

where U ∈ Rk×(n+m) is arbitrary. Moreover, the following results hold.

(a) r[ X̂, Σ̂ΣΣX̂⊥ ] = r[ X̂, Σ̂ΣΣ ] and R[ X̂, Σ̂ΣΣX̂⊥ ] = R[ X̂, Σ̂ΣΣ ],

(b) The product P
K;X̂;Σ̂ΣΣ

can uniquely be written as P
K;X̂;Σ̂ΣΣ

Σ̂ΣΣ = [ K, 0 ][ X̂, Σ̂ΣΣX̂⊥ ]+Σ̂ΣΣ.

(c) The expectation and covariance matrix of BLUENa(Kβββ) are given by

E( BLUENa
(Kβββ) ) = Kβββ and Cov( BLUENa

(Kβββ) ) = [ K, 0 ][ X̂, Σ̂ΣΣX̂⊥ ]+Σ̂ΣΣ([ K, 0 ][ X̂, Σ̂ΣΣX̂⊥ ]+)′.

(d) BLUENa
(Kβββ) is unique iff ŷ ∈ R[X̂, Σ̂ΣΣ] holds with probability 1.

4 Estimation results under Nb

In what follows, we denote Ã = AX and Σ̃ΣΣ = FAΣΣΣFA. Note that AXβββ = b is solvable for βββ iff
b ∈ R(Ã). By Lemma 3.2, the general solution of βββ and the corresponding Kβββ can be written in the
following parametric forms

βββ = Ã+b + FÃγγγ, (4.1)

Kβββ = KÃ+b + KFÃγγγ, (4.2)

where γγγ ∈ Rp×1 is arbitrary. Substituting (4.1) into (1.6) yields

Ñb : z = XFÃγγγ + εεε, E(εεε) = 0, Cov(εεε) = σ2Σ̃ΣΣ, (4.3)

where z = y−XÃ+b. This is a common linear model in form, thus the estimablility, OLSE, and BLUE
of the vector of parametric functions KFÃγγγ can be obtained from various known results as follows.

Definition 4.1. Let Nb be as given in (1.7), and let K ∈ Rk×p be given. The vector Kβββ of parametric
functions is said to be estimable under Nb if there exist L ∈ Rk×n and c ∈ Rk×1 such that E(Ly+c−Kβββ) =
0 holds under Nb.

Lemma 4.2. Let Nb be as given in (1.7), and let K ∈ Rk×p be given. Then Kβββ is estimable under Nb

iff R(K′) ⊆ R(X′).

Theorem 4.3. Let Nb be as given in (1.7), let K ∈ Rk×p be given, and suppose Kβββ is estimable under
(1.7). Then the OLSE of βββ under Nb can be written as

OLSENb
(βββ) = (Ã+ − FÃ(XFÃ)+XÃ+)b + FÃ(XFÃ)+y + FÃFXFÃ

u, (4.4)

where u ∈ Rp×1 is arbitrary. The OLSE of Kβββ under Nb can uniquely be written as

OLSENb
(Kβββ) = (KÃ+ −KFÃ(XFÃ)+XÃ+)b + KFÃ(XFÃ)+y, (4.5)

In this case,

E( OLSENb
(Kβββ) ) = Kβββ and Cov( OLSENb

(Kβββ) ) = σ2KFÃ(XFÃ)+Σ̃ΣΣ(KFÃ(XFÃ)+)′.

Proof. According to Lemma 2.5, the OLSE of γγγ under (4.3) can be written as

γ̂γγ = (XFÃ)+z + FXFÃ
u,

where u ∈ Rp×1 is arbitrary. Substituting this formula into (4.1) gives the OLSE of βββ under (1.6):

OLSENb
(βββ) = Ã+b + FÃ(XFÃ)+z + FÃFXFÃ

u

= (Ã+ − FÃ(XFÃ)+XÃ+)b + FÃ(XFÃ)+y + FÃFXFÃ
u,

establishing (4.4) and (4.5).
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Theorem 4.4. Let Nb be as given in (1.7) and suppose Kβββ is estimable under (1.7). Then the BLUE
of Kβββ under Nb can be written as

BLUENb
(Kβββ) = ( I−P

KFÃ;XFÃ;Σ̃ΣΣ
)XÃ+b + P

KFÃ;XFÃ;Σ̃ΣΣ
y, (4.6)

where

P
KFÃ;XFÃ;Σ̃ΣΣ

= [ KFÃ, 0 ][ XFÃ, Σ̃ΣΣEXFÃ
]+ + U1E[XFÃ, Σ̃ΣΣEXF

Ã
]
, (4.7)

and U1 ∈ Rk×n is arbitrary. Moreover,

(a) r[ XFÃ, Σ̃ΣΣEXFÃ
] = r[ XFÃ, Σ̃ΣΣ ] and R[ XFÃ, Σ̃ΣΣEXFÃ

] = R[ XFÃ, Σ̃ΣΣ ].

(b) P
KFÃ;XFÃ;Σ̃ΣΣ

Σ̃ΣΣ = [ KFÃ, 0 ][ XFÃ, Σ̃ΣΣEXFÃ
]+Σ̃ΣΣ holds.

(c) The expectation and covariance matrix of BLUENb
(Kβββ) are given by

E[ BLUENb
(Kβββ) ] = Kβββ, Cov[ BLUENb

(Kβββ) ] = P
KFÃ;XFÃ;Σ̃ΣΣ

Σ̃ΣΣP′
KFÃ;XFÃ;Σ̃ΣΣ

.

(d) BLUENb
(Kβββ) is unique if and only if

[
y
b

]
∈ R

[
X Σ̃ΣΣ

Ã 0

]
holds with probability 1.

Proof. According to Lemma 2.6, the BLUE of KFÃγγγ under (4.3) is given by

BLUENb
(KFÃγγγ) = P

KFÃ;XFÃ;Σ̃ΣΣ
z.

Substituting this BLUE into the equality in (4.2) gives the BLUE of Kβββ under (1.7)

BLUENb
(Kβββ) = KÃ+b + BLUENb

(KFÃγγγ) = KÃ+b + P
KFÃ;XFÃ;Σ̃ΣΣ

( y −XÃ+b ), (4.8)

as required for (4.6).
Result (a) follows from Lemma 2.6(a).
It can be seen from (4.7) that P

KFÃ;XFÃ;Σ̃ΣΣ
is unique if and only if E

[XFÃ, Σ̃ΣΣEXF
Ã

]
= 0, i.e.,

r[ XFÃ, Σ̃ΣΣEXFÃ
] = n. Also from (a) and Lemma 2.1(b) that r[ XFÃ, Σ̃ΣΣEXFÃ

] = r[ XFÃ, Σ̃ΣΣ ] =

r

[
X Σ̃ΣΣ

Ã 0

]
− rÃ, so that Result (b) follows.

Result (c) follows from (4.6).

It can be seen from (4.6) and that BLUEb(Kβββ) is unique if and only if E
[XFÃ, Σ̃ΣΣEXF

Ã
]
(y−XÃ+b) = 0,

i.e.,

r[ y −XÃ+b, XFÃ, Σ̃ΣΣEXFÃ
] = r[ XFÃ, Σ̃ΣΣ ] (4.9)

holds with probability 1 by Lemma 2.1(c). It is easy to derive from Lemma 2.1(b) and elementary block
matrix operations that

r[ y −XÃ+b, XFÃ, Σ̃ΣΣEXFÃ
] = r[ y −XÃ+b, XFÃ, Σ̃ΣΣ ]

= r

[
y −XÃ+b X Σ̃ΣΣ

0 Ã 0

]
− rÃ

= r

[
y X Σ̃ΣΣ

b Ã 0

]
− rÃ,

r[ XFÃ, Σ̃ΣΣ ] = r[ XFÃ, Σ̃ΣΣ ] = r

[
X Σ̃ΣΣ

Ã 0

]
− rÃ.

So that (4.9) is equivalent to r

[
y X Σ̃ΣΣ

b Ã 0

]
= r

[
X Σ̃ΣΣ

Ã 0

]
, i.e.,

[
y
b

]
∈ R

[
X Σ̃ΣΣ

Ã 0

]
holds by Lemma

2.1(c).
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5 Conclusions

The previous facts and results provide an available computation procedure to deal with general linear
regression models with adding-up restrictions to observable random variables via a series of algebraic
operations of the given vectors and matrices in the models. Note that the OLSEs and BLUEs are defined
by different optimality criteria in mathematics and statistics. Hence their expressions and properties are
not necessarily the same, and thus it is natural to seek possible connections between these estimation
results. It is, in fact, a subject area in regression analysis is to characterize relationships between different
estimation results, which has deep roots with strong statistical explanation and usefulness in the theory
of linear statistical models and applications; see e.g., Markiewicz et al (2021); Tian (2010) and references
therein for the background and study of this subject. Based on the analytic expressions of OLSEs and
BLUEs obtained, we can consider more problems in the statistical inference of general linear regression
models with adding-up restrictions. Especially, it is natural to propose the following five equalities
between the OLSEs and BLUEs under the two models in (1.1) and (1.3):

(a) OLSEM (Kβββ) = OLSEN (Kβββ),

(b) OLSEM (Kβββ) = BLUEN (Kβββ),

(c) BLUEM (Kβββ) = OLSEN (Kβββ),

(d) BLUEM (Kβββ) = BLUEN (Kβββ).

(e) OLSEN (Kβββ) = BLUEN (Kβββ).

This kind of equalities for different estimators have deep roots with strong statistical explanation and
usefulness in the theory of linear statistical models and applications; see e.g., Markiewicz et al (2021); Tian
(2010) and references therein for the background and study of this subject area. It is believed that this
work will provide remarkable insights into intrinsic natures hidden behind the adding-up restrictions, so
that the algebraic treatments presented in this note will prompt other similar studies regarding different
kinds of regression models with adding-up restrictions to observable random variables under various
assumptions.
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