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Abstract: This article discusses the use of a hand held electronic nose to obtain information on the 
presence of some aromatic defects in natural cork stoppers, such as haloanisoles, alkylmethoxypy-
razines and ketones. The proposed prototype has been developed as an instrumentation system 
with up to eight commercial gas sensors. Machine learning algorithms such as k-nearest neighbors 
and artificial neural networks has been used. The use of this system tries to improve the current 
aromatic defect detection process in the cork stopper industry, which is done by gas chromatog-
raphy or human test panels. 
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1. Introduction 
Cork stoppers are the main closures chosen to seal the wine bottles, and will influence 

the quality of the wine, mainly those that require long stays in the bottle. For this reason, 
the cork industry has strict quality systems, the goal of which is the total absence of de-
fects. In this sense, one of the main problems of the cork industry is the detection of the 
defect known as "cork taint".  

Halogenated aromatic compounds have been identified as the typical cause of the 
"cork taint" defect, specifically the 2,4,6-tricloroanisol (TCA) and, to a lesser extent, 2,4,6-
tribromoanisol (TBA) and 2,3,4,6-tetracloroanisol (TeCA) [1,2]. However, apart from these 
halogenated derivatives, cork present other volatile compounds with negative effects such 
as geosmin, with a strong smell of mold and wet earth, guaiacol with phenolic olfactory 
notes, 1-octen-3-ol and 1-octen-3-one, with a strong mushroom and earthy odor, or 2-
methoxy-3,5-dimethylpyrazine (MDMP) with a characteristic musty and moldy odor [3-
5].  

Most of the cork industries have a gas chromatography system coupled with mass 
spectrometry, which allows the quantification of different corky off-flavors in cork stop-
pers. This technique needs a previous step of sample preparation, usually destructive and 
time-consuming, that sometimes requires the use of organic solvents, such as purge and 
trap, solid phase microextraction, soxhlet extraction, stir bar sorption or pressurized fluids 
[5-7]. 

The control of the presence of typical and atypical compounds responsible of “cork 
taint” by chromatographic techniques is very useful, although due to their time-consum-
ing and destructive character, only can be applied to a representative sample of cork stop-
pers and cannot be included in the production lines. Also, some industries have a system 
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for detecting olfactory defects by the human sense, with a great degree of subjectivity. In 
this sense, it is of special interest to introduce in the quality control of the cork industry a 
non-destructive analytical technique of the aroma that allows the rapid and precise anal-
ysis of many cork samples in a relatively short time. Among the available techniques, the 
electronic nose (e-nose) stands out. An e-nose is an instrument composed of a set of chem-
ical gas sensors with partial specificity and an appropriate pattern recognition system, 
capable of recognizing simple or complex odors [8]. These sensors can be used for the 
analysis of volatile compounds in different matrices, by transducing chemical signals into 
electrical signals [9]. In the bibliography there are several studies about the use of this 
analytical tool in the wine industry, including aging control, wine discrimination or grape 
ripening monitoring [10-12]. However, there are practically no studies on their use in the 
cork industry. It is worth highlighting the determination of TCA in wines using a coupled 
system of headspace and mass spectrometry [13], or the use of a miniaturized sensor mod-
ule to detect TCA in cork stoppers [14]. 

In this work, the feasibility of a small wireless and portable e-nose (WiNOSE 6), ca-
pable of measuring up to eight microsensors, to detect typical and atypical off-flavor com-
pounds in natural cork stoppers, has been studied. The selected compounds belong to 
three different chemical families, haloanisoles, alkylmethoxypyrazines and ketones, TCA, 
MDMP and 1-octen-3-one, and they present a strong musty, moldy and earthy odor. 

2. Materials and Methods 
2.1 Cork samples 

 Flower quality natural cork stoppers without sensorial deviant odors were kindly 
provided by Gruart La Mancha S.A. (Valdepeñas, Ciudad Real, Spain). The cork stoppers 
became contaminated, by triplicate, with increasing amounts (5, 15, 30 and 60 ng per cork) 
of 2,4,6-thichoroanisole (TCA) (Merck KGaA, Darmstadt, Germany), 2-methoxy-3,5-dime-
thylpyrazine (MDMP) (Enamine Ltd., Kyiv, Ukraine) and 1-octen-3-one (Merck KGaA, 
Darmstadt, Germany). In the case of 1-octen-3-one, the cork stoppers became contami-
nated with 5, 15, 30, 60 and 120 ng per cork. Once the cork stoppers were contaminated, 
they were stored under vacuum until their analysis. 
2.2 Electronic nose 

A schematic and a photograph of the e-nose used are shown in Fig. 1. 
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Figure 1. E-nose; a) Schematic, b) photograph. 

The e-nose is a compact size and light instrument that has the possibility to measure 
up to eight commercial microsensors. It has a micropump to create a flow through the 
sensor chamber and an electrovalve to choose the sampling path. It also has an internal 
temperature and humidity sensor and the possibility to connect and measure an external 
temperature sensor. Different arrays of sensors are available to be used with this proto-
type. For this work, we used two different arrays from several manufacturers: MICS (SGX  
Sensortech,  Bern,  Switzerland), CCS (AMS, Premstaetten, Austria) and TGS (Figaro 
Engineering Inc, Osaka, Japan). Table 1 shows the composition of the arrays of sensors 
used in the experiments. The sensors have integrated heaters, capable of reaching 500 °C 
with low power consumption (typically from 10 to 80 mW). 

 
Table 1. Sensor setup. 

Set 1 Set 2 
MICS–2714 CCS801 
MICS–5524 CCS803 

MICS–4514–OX MICS–4514–OX 
MICS–4514–RED MICS–4514–RED 

MICS–5914 TGS8100 
MICS–6814–OX MICS–6814–OX 

MICS–6814–RED MICS–6814–RED 
MICS–6814–NH3 MICS–6814–NH3 

 
The instrument can be controlled using the touch screen or remotely by a software 

tool developed in LabVIEW (version 18, National Instruments, Austin, TX, USA). The pro-
gram also displays and controls the measurement parameters (sensor resistance and 
heater values, ambient temperature and humidity, valve status, battery status, pump 
power). 
2.3. Measurement protocol 

Corks were introduced in 50 mL vials with two orifices in the top, one for atmos-
pheric air and the other connected to the e-nose. Each measurement cycle consists in a 
desorption phase of 9 min followed by an adsorption phase of 1 min. For each sample 
cycles are repeated several times. Two groups of experiments have been carried out. The 
first one involves the measurements of all defect concentrations whereas in the second 
one only the maximum defect concentrations have been measured. The main difference is 
that in the first case, data processing has been performed offline and in the second case 
the data processing was performed online. 

In the offline experiment 8 measurement were performed for each sample while in 
the online experiment 15 measurements were obtained for each sample. 

The sensor responses were calculated as the relation between the equilibrium re-
sistance value in air, Ra, and the equilibrium resistance value in the presence of the sample 
Rs: 

r = Ra/Rs            (1) 
    

 
2.4 Data processing 

Several multivariate data processing techniques have been used: a linear unsuper-
vised one, principal component analysis (PCA) and nonlinear supervised K-nearest 
neighbors (kNN) [15] and two types of artificial neural networks: multilayer feed forward 
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neural network (MLFF) [16] and Radial basis neural networks (RBF) [17]. Principal com-
ponent analysis is a chemometric linear, unsupervised and pattern recognition technique 
used for analyzing and reducing the dimensionality of numerical datasets in a multivari-
ate problem. This method extracts the features from a data matrix in terms of a comple-
mentary set of scores (coordinates of the data in the new base) and loadings (contribution 
of the sensors to the components) plots. This method applies a linear transformation to 
the data and result in a new space of variables called principal components. The scores 
plot is usually used for studying the distribution of the data clusters. In the loading plot, 
sensors with similar contributions will be close together. Sensors close to the origin have 
comparably small contribution. The scores of the three first principal components were 
used in the training of the neural networks. 

As we did not have many measurements leave one out cross validation was applied 
to check the performance of the network [15]. This method consists of training N distinct 
nets (in this case, N is number of measurements) by using N − 1 training vectors, while 
the validation of the trained net is carried out by using the remaining vector, excluded 
from the training set. This procedure is repeated N times until all vectors are validated. In 
the offline experiment PCA was performed by OriginPro (2019 version, OriginLab Cor-
poration, Northampton, MA, USA) and kNN, RBF and MLFF were performed in Matlab 
(version 12, Mathworks Inc., Natick, MA, USA). 

On the online experiment all the classification algorithms were written in Labview 
using the Machine Learning Toolkit (MLT) [18]. 

3. Results 
After feature extraction using equation 1 data were preprocessed before PCA analy-

sis. The preprocessing involved autoscaling and centering: 
 
                     𝑟𝑟𝑖𝑖 = (𝑟𝑟 − 𝑟𝑟𝑖𝑖) 𝜎𝜎𝑖𝑖�         (2) 
 

 where 𝑟𝑟𝑖𝑖 is the mean and σi is the standard deviation of sensor i response over the input 
data. The distribution of values for each sensor across the entire database is set to have 
zero mean and unit standard deviation. The first three principal components accounted 
for more than 99 % of the cumulative variance. Ellipses in the score plots are drawn as-
suming a Gaussian data distribution and represent the curve with a 90 % probability. 

Fig. 2 to 4 show the PCA score plots of the two principal components for the three 
defects. 
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Fig. 2. PCA score plot for MDMP. 

 
Fig. 3. PCA score plot for TCA. 
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Fig. 4. PCA score plot for 1-octen-3-one. 

From the above plots a better separation of classes were obtained for MDMP and 
TCA. 

In general, the output of the neural network is given as a confusion matrix. From the 
confusion matrix a success rate is defined as the number of correct classified measures in 
each class over the total number of measures in this class. In our case, we have two success 
rates: a qualitative success rate and a quantitative success rate. In the quantitative case, 
each defect concentration is considered a separated class. In the qualitative case, we have 
only two classes: clean cork and cork with defects. 
3.1 Offline experiments 

The success rate are shown on Table 2 
 
 
 

Table 2. Success rate for the different pattern recognition techniques for the offline experiments. 

Defect Qualitative Quantitative 

 kNN MLFF RBF kNN MLFF RBF 

DMMP 100 100 100 98 100 100 

TCA 98 100 100 82 100 98 

1-octen-3 ona 90 97 97 49 77 54 

All 85 99 99 50 98 95 
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3.2 Online experiments 
 In this experiment, the e-nose uses the set 2 sensor configuration. Only the maxi-

mum concentration of each compound is measured. In this case, we have enough meas-
urements to split the data in train + validation and test. The multivariate data processing 
techniques have been developed in Labview in order to integrate the measurement, con-
trol and data processing in one program. The qualitative success rate is 100 % for all tech-
niques. The quantitative success rate is shown on Table 3. 

 

Table 3. Success rate for the different pattern recognition techniques for the online experiments. 

Method Success rate 

kNN 96 

MLFF 99 

RBF 98 
 
As can be seen in the table above MLFF is the best classification technique although 

the other two give also an excellence performance. Once selected the best technique for 
the application the system is ready to perform measurement classification in real time. In 
order to test the performance of the system we made a simplified triangle test which is a 
discriminative method used in sensory science to assess if an overall difference is present 
between two products [21]. In this test, we used the blank sample (B) and the TCA sample 
(T) The e-nose measured the samples in the following order: BBT, BTB and TBB. The sys-
tem gave the correct answer for all the sequences. 

The results demonstrate the ability of the e-nose used to differentiate natural corks 
contaminated with different concentrations of TCA or MDMP, even as low as 5.0 ng. This 
is especially interesting since both compounds are the main responsible for the olfactory 
defect in wines called "cork taint". MDMP has a low odor threshold (2.1 ng L-1 in white 
wine) and a great affinity for wine, even higher than TCA, with a detection threshold of 
4.3 ng L-1 in white wine [4, 5, 19]. In the case of MDMP, it is considered a very low risk of 
wine contamination if its concentration in the cork is less than 5.0 ng [5]. While for TCA, 
a mean percentage of migration from cork to wine of 4.7 % [20] has been estimated, which 
shows that the e-nose can detect TCA in corks at concentrations below those that could 
cause olfactory defects in wines. 

4. Conclusions 
The nose used in this work, composed of non-specific cross-sensitivity sensors that 

respond to a wide variety of compounds, can be applied in the wine industry to provide 
qualitative information about the sample and predict or detect the presence of cork-asso-
ciated anomalies. Electronic nose has many advantages over traditional methods (gas 
chromatography, test panels). In addition, this sensory method could easily be applied to 
other beverages where cork odors or other off-flavors might be present.  The system pre-
sented here has demonstrated to be very useful in the detection of aromatic defects in 
natural cork stoppers. We obtained near 100 % classification rates in the discrimination of 
defects such as MDMP, TCA and 1-octen-3-one. Real time sample classification has been 
developed with this prototype.  

Electronic noses will probably not completely replace complex analytical instru-
ments, but it offers fast real time detection and discrimination solutions and opens the 
way for their adaptation and integration into the internet of things. 
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