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Abstract: The practice of quantified-self sleep tracking is increasingly common nowadays among
healthy individuals as well as patients with sleep problems. However, existing sleep-tracking
technologies only support simple data collection and visualization, and are incapable of providing
actionable recommendations that are tailored to users” physical, behavioral and environmental
context. Here we coined the term context-aware sleep health recommender system (CASHRS) as
an emerging multidisciplinary research field that bridges ubiquitous sleep computing and context-
aware recommender systems. In this paper, we presented a narrative review to analyze the type
of contextual information, the recommendation algorithms, the context filtering techniques, the
behavior change techniques, the system evaluation, and the challenges in peer-reviewed publications
that meet the characteristics of CASHRS. Analysis results identified current research trends, the
knowledge gap, and future research opportunities in CASHRS.

Keywords: Sleep tracking; context aware recommender system; quantified self; personal informatics;
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1. Introduction

Having sufficient and good sleep is crucial for our physical and mental health. There
is established evidence that poor sleep may increase an individual’s risk for cardiovas-
cular disease [1,2], metabolic disorders [3,4] and mental problems [5]. Just as health
is a multidimensional concept, sleep health can also be elaborated along multiple di-
mensions, including duration, continuity or efficiency, timing, daytime alertness, and
overall subjective assessment of quality [6]. When it comes to the measurement of sleep,
Polysomnography (PSG) is the gold standard sleep study procedure that simultaneously
monitors electroencephalogram (EEG), electro-oculogram (EOG), electromyogram (EMG),
electrocardiogram (ECG), pulse oximetry, as well as airflow and respiratory effort. Despite
of the comprehensive information generated, the use of PSG has been limited to sleep
clinics and laboratories due to its high cost, obtrusiveness, and low usability.

In recent years, the rapid expansion of sleep-tracking product market provides a
significant opportunity to promote sleep monitoring and sleep health in daily life. Popular
consumer sleep-tracking wearables (e.g., Fitbit, Apple Watch, Oura Ring) and mobile
apps (e.g., SleepAsAndroid, SleepCycle) have attracted increasing interest in the research
community as well as among end users. A large body of research surrounding these
technologies has intensively studied their accuracy and validity [7-10], as well as user
perceived properties including usability and credibility [11-13]. Some studies have also
attempted to develop novel sleep staging algorithms that work with the processed data
available from consumer sleep trackers [14-16], as well as devising new analytic methods
for personalized sleep data analysis and knowledge discovery [17-19].

Despite of their popularity, consumer sleep-tracking technologies face several barriers
to improving sleep quality. Two major barriers include "not identifying reasons for sleep
problems" and "not knowing how to act" [20]. Research effort has been made to address these
barriers. For example, several systems have been developed to assist users to explore the
relationships between sleep and a flux of behavioral and environmental data [11,21-23].
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However, these systems still leave users to interpret the statistical results on their own,
without providing specific and readily actionable recommendations based on the results.

Recommender systems (RS) represent a promising solution to the current gap in
ubiquitous sleep computing research. An RS is an application that suggests relevant items
to users [24]. Depending on the application context, the items could be movies, products,
restaurants, travel routes, etc. At a high level, an RS attempts to predict whether a given
recommendation item will be appreciated by the user as relevant. Early RS operated in
a two-dimensional (2D) User xItem space and have been criticized for lacking analysis
of contextual information [25,26]. More recently the RS research community has shifted
focus to the so-called context-aware recommender systems (CARS) [27-29], which aims to
effectively and efficiently exploit the dynamic context of a user to offer suitable and relevant
recommendations [30,31]. In CARS, the classical 2D paradigm is extended to a 3D paradigm
of User xItem x Context. The concept of CARS has also been introduced to health research
and many health CARS have been developed [32,33].

The concept of recommending behavioral interventions as treatment to sleep problems
is not new in sleep science. One of the most active research areas is the development of
digitally aided cognitive behavior therapy for insomnia (CBT-I). CBT-1 is a standardized
multi-component treatment for insomnia as recommended in the American Academy of
Sleep Medicine Practice Guidelines [34]. A CBT-I program comprises sleep restriction ther-
apy, stimulus control, relaxation strategies, sleep hygiene education, and modification of
maladaptive beliefs about sleep. Several web and mobile applications have been developed
to improve the accessibility and availability of CBT-1, such as iREST [35] and Sleep Bunny
[36]. These systems are often implemented in the form of mobile health (mHealth) apps,
aiming to deliver a cost-effective method of treatment that can be easily accessed at home.
Meta-analysis of digital CBT-I has demonstrated significant improvements in sleep quality
[37,38] and long-term benefit compared to pharmacotherapy [39]. However, most of the
existing digital CBT-I systems merely translated self-help manuals to a digital format to
provide general sleep hygiene recommendations. It was not until recently that new digital
CBT-I systems started to offer recommendations that are shallowly tailored to limited user
features.

On the other hand, sleep health RS for the general population is relatively new and
has only started to attract research interest very recently [47-50]. Popular consumer sleep
trackers such as Fitbit and Oura all provide generic sleep hygiene tips to facilitate stimulus
control and relaxation before bed. While these recommendations may be shallowly tailored
to a user’s gender and age, they do not consider the dynamic context of a user, such as
changes in their sleep quality baseline, sleep goal, health state, daily schedule, and personal
preference.

To this end, the research and development of sleep health systems that provide
recommendations fully personalized and adapted to users’ static and dynamic context has
only been at its infancy. Here we coined the term context-aware sleep health recommender
system (CASHRS) as an emerging multidisciplinary research field that sits at the intersection
of multiple research domains, including health RS, ubiquitous and mobile computing,
context-aware computing, persuasive technology, human-computer interaction, consumer
electronics, and health informatics.

This paper aims to assess the extent and nature of the peer-reviewed publications
that serve as a foundation for CASHRS. Interestingly, most of the systems reviewed in
this article has not formally self-identified as RS despite of offering tailored actionable
recommendations for improving sleep. There have been promising reviews on sleep apps
but they are notably limited to the traditional scope of mHealth [40-43,94,97,141]. To our
knowledge, the present study is the first to examine digital sleep health systems through the
lens of CARS and to formally introduce the concept of RS to ubiquitous sleep computing
research. The results identified research trends in the literature, unveiled limitations of
prior studies, and pointed into directions for future research.
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2. Methods

This study links together scattered assortment of articles in multiple research domains
on full-automated digital sleep health systems that provide personalized/tailored sleep
health recommendations. Systems that solely offer general sleep tips or that require manual
prescriptions by clinicians were not of our interest and were thus excluded. The narrative
nature of this study allows obtaining a broad perspective on the topic of interest rather than
a formal, exhaustive and non-biased systematic appraisal [44,45]. A search was conducted
using electronic databases including Google Scholar, PubMed, Scopus, IEEE Xplore, ACM
Digital Library. The following keywords were used: ‘sleep recommender system’, ‘sleep
hygiene recommender system’, ‘self-experimentation sleep recommendation’, ‘'mHealth
sleep’. Snowballing was performed to find related references. Articles were included if the
recommendations provided were personalized/tailored to a certain degree, regardless of
whether the systems were intended for clinical interventions or general-purpose use.

We were interested in what was considered as context and how context was coupled to
the recommendation algorithms, how these system were evaluated and whether they were
effective in improving sleep, what theories or techniques were used to facilitate behavior
change, as well as the challenges and barriers identified in literature. Primary research
questions in the current study were as follows:

e RQI1: What was considered as context in CASHRS? How was it measured?

e  RQ2: How was context coupled to the recommendation algorithms?

e  RQ3: What approaches and algorithms were used for managing the life cycle of context
(i.e., context acquisition, context modelling, context reasoning, context dissemination)?

o RQ4: What theories or techniques were applied to encourage compliance to the
recommendations and to promote positive behavior change?

o  RQ5: Were CASHRS effective in fostering good sleep hygiene and improving sleep
quality? Were the systems evaluated in other dimensions?

e  RQ6: What challenges and barriers were identified in prior studies?

In answering these questions, this research seeks to understand the scope and level of
maturity of context-aware sleep recommendation technology, and to lay a foundation for
future CASHRS research.

3. Results

We identified 12 systems that meet the characteristics of CASHRS (Table 1), among
which 7 were developed within the scope of ubiquitous self-tracking tools and 5 were
developed as a digital CBT-I solution for clinical use. These systems were implemented
either as a stand-alone mHealth app or as a comprehensive system that integrates data
of wearable and IoT sensors to a mobile app. In line with the classic architecture of RS, a
CASHRS typically consists of three main components: the input data, a database, and the
recommendation algorithm. The input data are obtained either explicitly or implicitly to
initialize the recommendation process. The database stores information about the users
and the item profiles (e.g., sleep hygiene tips). The recommendation algorithm uses the
input data and the database to suggest a set of behavior interventions to target users.
In addition, a CASHRS needs to bridge the gap between recommendation and action,
to facilitate the initiation of behavior change, and to encourage sustained compliance to
the recommendations. In this section, we report a qualitative summary of the findings
to answer the research questions listed in the previous section. Note that RQ3 was left
unanswered as this topic was not explored in any of the studies reviewed.
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Table 1. Recommendation generation and context filtering.

Category CASHRS Year Region Note
General Lullaby [22] 2012 America -
purpose
ShutEye [46] 2012 America -
SleepCoacher [47] 2016  America Self-experimentation
CBSR [48] 2018 America -
PUM [49] 2020  America Self-knowledge discov-
ery
SleepBandit [51] 2020 America Self-experimentation
PARIS [50] 2021 America -
Clinical Sleepio [52] 2012  Europe -
Sleepcare [53] 2017  Europe -
SMSR [54] 2018  Asia -
SRT [55] 2021 Oceania -

Insomnia Coach [56] 2022 America -

3.1. Context in CASHRS (RQ1)

A CASHRS differs from traditional digital sleep hygiene education system in that
the recommendations provided in CASHRS are to a certain degree adapted to a user’s
context. In the field of computer science, context is defined as “any information that can
be used to characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the user and
application themselves” [59]. context-aware systems use "context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task" [60,66]. As such, the
actual meaning of a user’s context in CASHRS refers to any factor(s) that may influence the
quality and continuity of the user’s sleep at night.

A large body of sleep science studies has identified many factors that could influence
night sleep. Demographic characteristics such as age and gender are known to associate
to sleep quality and varied risk of sleep diseases [61]. Daytime events such as physical
activity, exercise, and diet could have impact on each sleep stage and sleep efficiency
[82-84]. Sleep hygiene [90], which relates to the regularity of sleep schedule as well as
minimizing potential sleep disturbing factors close to bedtime (e.g., avoid exposure to blue
light, optimize bedroom environment), also has a profound impact on sleep [85]. In the
field of ubiquitous sleep computing, it has been acknowledged that collecting information
on contextual factors of sleep is important for interpreting the self-tracking sleep data
[11,20,21,57]. Interventions to some of these factors may not only help improve the sleep
quality of healthy individuals with no diagnosed sleep problems, but also help patients
reduce insomnia and improve sleep apnea symptoms [86,87]. As such, these factors
constitute the context of interest in CASHRS. We found that exiting CASHRS incorporated
the monitoring of one or several factor(s) summarized in Table 2. Note that we only counted
the contextual information that was actually used in the recommendation algorithm of the
CASHRS, and the information that was captured by the system but was not coupled to
the recommendation algorithm was discarded. These contextual factors may fluctuate at
different frequencies. For example, resting heart rate and ambient temperature normally
do not change dramatically in a short period of time, while physical activity level and sleep
quality could vary a lot from day to day.

Interestingly, sleep quality of previous night(s) was the most widely used context
to personalize behavior intervention recommendations in existing CASHRS, followed by
physical activity. Especially, clinical CASHRS often relied on a user’s average sleep quality
in the past week, such as time in bed (TIB), total sleep time (TST), sleep efficiency (SE),
together with a user’s preference, to adjust the recommended sleep window (either TST or
bedtime/wake time) in a sleep restriction therapy [52-56]. On the other hand, temporal
context (e.g., time of the day, week day, meal time) was only considered in three CASHRS
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[22,46,49]. Environmental context describing the environmental situation when sleep takes
place, such as ambient temperature, light and noise levels, was considered in two CASHRS
[22,49]. In addition to monitoring the environmental context before bedtime or during
sleep, the design of the Lullaby system also placed strong emphasis on monitoring these
factors during daytime using the embedded sensors [22]. Psycho-social factors such as
stress and anxiety were rarely considered in the systems. Many clinical CASHRS provided
guided progressive relaxation before sleep, but without allowing users to assess or record
their stress/anxiety level. Taken together, the variety of context considered in CASHRS so
far is limited, and the improvisational aspects of users’ behavior context (which requires
intraday data collection at higher resolution) were left out of scope in all systems.

Table 2. Contextual factors and measurement sensors/instruments.

Contextual Factor Sensor/Instrument

Sleep quality of night(s) before ~ Simple sleep diary (in-app) [52,54,55]
Consensus Sleep Diary (in-app) [53,56]
Microsoft Band [48]

Garmin Fenix 5 & Sleep Cycle app [49]
Fitbit [55]

Survey (in app) [46,52,53]

Survey (in app) [47]

Microsoft Band [48]

Garmin Fenix 5 & Strava [49]

Philips Actiwatch Spectrum [50]

Sleep goal
Physical activity

Resting heart rate
Chronotype

Health condition

Stress level

Diet

Duration of wake phase
Meal time

Time of day

Week day

Bedroom temperature

Bedroom humidity
Bedroom light

Philips Actiwatch Spectrum [50]
Survey (in app) [47]

Survey (in app) [47]

Survey (in app) [47]

Survey (in app) [47]

Sleep Cycle app [49]
Smartphone camera [49]
Device’s internal clock [22]
Device’s internal clock [46]
Embedded temperature sensor [22]
IoT sensor [49]

IoT sensor [49]

Embedded light sensor [22]

Survey (in app) [47]

Bedroom noise Embedded microphone [22]

Activity of household members Embedded passive infrared (PIR) motion sensor
[22]
Survey (in app) [47]

User preference Survey (in app) [46,51,53]

3.2. Recommendation Algorithm and Context Filtering (RQ2)

There are several methods for generating recommendations. Recommendation algo-
rithms could be collaborative [68,88], content-based [73], knowledge-based [75,79], and
hybrid [74,76,78]. Collaborative algorithms attempt to estimate the unknown preference of
a user based on ratings from similar users. This approach is popular because of its simplic-
ity. Content-based algorithms recommend items that are similar to the ones that a target
user preferred in the past. The similarity between items is computed based on their own
characteristics (e.g., features or attributes) instead of other users’ ratings. Knowledge-based
algorithms exploit structured domain knowledge as auxiliary information to improve
the precision, diversity, and interpretability of the recommendations. Hybrid algorithms
combine two or more types of algorithms to overcome the limitation of each individual
type and to increase the quality of the recommendations.
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In a related vein, there are three approaches to incorporate contextual information
[69]: pre-filtering, post-filtering and contextual modeling. Pre-filtering applies contextual
information to filter the data before applying traditional recommendation algorithms. Only
items that are relevant to a given context are selected for generating recommendations. Post-
filtering considers the contextual information only in the final step of the recommendation
generation process. In other words, the recommendations are generated using traditional
methods and then contextualized for each user. These two methods consider the context as
an additional filtering constraint that can be applied to any traditional recommendation
algorithm. In contrast, contextual modelling implies a totally different approach by directly
incorporating the contextual information in the recommendation models. Contextual
modeling directly leverages the contextual information in the estimation of ratings. It firstly
models the contextual data and then parameterizes the recommendation algorithms as a
function of the contextual model. Studies comparing the different approaches demonstrated
no conclusive findings on their performance [70]. A few studies also proposed to combine
these approaches for better system performance [71].

Table 3. Recommendation generation and context filtering.

CASHRS Recommendation Algorithm  Context Filtering
ShutEye [46] Knowledge-based Post-filtering
Lullaby [22] Knowledge-based Post-filtering
Sleepio [52] Knowledge-based Post-filtering
SleepCoacher [47] Knowledge-based Post-filtering
Sleepcare [53] Knowledge-based Post-filtering
CBSR [48] Collaborative Post-filtering
SMSR [54] Knowledge-based Post-filtering
PUM [49] Hybrid (knowledge-based & Post-filtering
content-based)
SleepBandit [51] Knowledge-based Post-filtering
SRT [55] Knowledge-based Post-filtering
PARIS [50] Hybrid (knowledge-based & Post-filtering
collaborative)
Insomnia Coach [56] Knowledge-based Post-filtering

Table 3 summarizes the recommendation algorithm and the context filtering approach
adopted in the reviewed CASHRS. Knowledge-based algorithm was used in almost all
CASHRS. This is plausible as the generation of behavior interventions needs to be grounded
on evidence-based sleep science domain knowledge. Such knowledge was obtained
through population level large-sample sleep studies. A problem of relying on population-
level knowledge is that the recommendations may not ensure the desired homogeneous
response from individual users due to interpersonal differences [72]. Only three systems
implemented recommendation algorithms other than knowledge-based algorithm: CBSR
[48] and PARIS [50] used collaborative algorithm to overcome the cold-start problem, while
PUM [49] combined knowledge-based with content-based algorithms to leverage a user’s
self-knowledge extracted from self-tracking data. In a sense, the collaborative and content-
based algorithms used in the three systems still relied on some kind of knowledge, but
such knowledge was obtained using new approaches that deviated from the traditional
large-sample experiment design. CBSR [48] and PARIS [50] relied on crowd-sourcing
where the autonomous aggregation of data from a unprecedented scale of real world users
contributed to the discovery of new knowledge that would have been difficult to achieve in
a traditional experiment design. In comparison, the principle of PUM [49] and PARIS [50]
was centered on the discovery of user’s self-knowledge from their historical self-tracking
data. The three systems point into promising directions for devising novel recommendation
algorithms in CASHRS.
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With respect to context filtering, existing CASHRS all relied on post-filtering that
performs post-hoc selection based on certain type(s) of context. Clinical CASHRS that
offer digital CBT-I solutions tend to exploit the average sleep duration of the past one
week (either TIB or TST) together with a user’s sleep goal and preference to adjust the
recommended sleep window (either TIB or bedtime/wake time) in a sleep restriction
therapy. In contrast, CASHRS for general-purpose use focused more on other context,
including physical activity, meal time and bedroom environment, to tailor the behavior
intervention recommendations.

Table 4. Recommendation content and delivery.

CASHRS Context-aware Recommen- General Recom- Delivery
dations mendations
ShutEye [46]  Napping, meals, alcohol, re- None In-app
laxation
Lullaby [22] Bedroom environment (tem- None In-app
perature, movement of house
hold members, light, noise)
Sleepio [52] Bedtime, wake time Standard  CBT-I In-app, online
content Wikipedia
SleepCoacher  Contextual factors associated ~None In-app
[47] to sleep, optimal bed /wake
time, optimal TIB
Sleepcare [53] TIB (modified sleep restric- Sleep environment, In-app
tion) relaxation, meals
CBSR [48] TIB, regularity of sleep sched- None Email (daily)
ule, relax before bed, exercise
SMBSR [54] Bedtime Sleep hygiene tips In-app
on meals, bedroom
environment, and
guided relation.
PUM [49] Contextual factors associated None In-app
to sleep
SleepBandit Self-experimentation results None In-app
[51] on dim light before bed,
snack before bed, socks while
sleeping, caffeine, and elec-
tronics before bed
SRT [55] TIB None In-app
PARIS [50] Physical activity None In-app
Insomnia Bedtime, wake time, results- Sleep environment, In-app
Coach [56] based feedback (e.g., try look- guided relaxation

ing at the following tools:
Quiet Your Mind)

We found that personalization was not a yes-no characteristic. As shown in Table 4, a
large portion of the reviewed CASHRS provided a mixture of personalized and general
recommendations. Clinical CASHRS have only dominantly focused on tailoring sleep
window, while keeping the other recommendations consistent with the standard CBT-1
content in literature. General-purpose CASHRS provided personalized recommendations
in more aspects probably due to their ability to collect a wide range of self-tracking data
with multi-modal sensors. Notably, ShutEye [46] provided general sleep hygiene tips
but adjusted the recommendations by the time of day. For example, recommendation of
mealtime was presented to users since wake time to 3 hours before bed, while relaxation
tips were only presented from 1 hour before bedtime to bedtime. Lullaby [22] also leverage
temporal context (i.e., time of the day, week day) to recommend the optimal bedroom
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environment such as temperature, light, and noise. SleepCoacher [47] and PUM [49]
provided fully personalized recommendations based on statistical analysis and data mining
on users’ self-tracking data.

Two CASHRS pioneered the introduction of a new concept: self-experimentation.
SleepCoacher [47] and SleepBandit [51] developed design probes to support users to inves-
tigate personal sleep factors through self-experimenting and reflection. Despite of being
a less-known concept in the ubiquitous computing community, self-experimentation is a
promising method for generating fully personalized sleep health recommendations based
on a user’s self-knowledge in addition to population-level knowledge. Self-experimentation
is grounded on the principle of the N-of-1 trials or single-case design in personalized
medicine [121,122], which involves repeated, prospective and quantitative measurement of
outcomes of interest in a single subject to identify the optimal treatment for the particular
individual. The N-of-1 trials are considered an approach well suited to help people find
best behavior interventions for health [121]. Grounded on the principles of the N-of-1 trials,
self-experimentation helps address the heterogeneity of treatment effect (HTE) issue in
existing health RS. The traditional large-sample design widely used in clinical studies fails
to count in the characteristics of individual subjects (within-subject variation) [125,126].
Recommendations generated based on population-level knowledge thus may not general-
ize well to individuals due to the variation of individual treatment effects across people
[48]. Self-experimentation takes one step further from self-tracking by guiding users to
control confounding factors and to intentionally increase data variability, so that it becomes
feasible to discover patterns and knowledge that are specific to the specific user from whom
the data were collected.

3.3. Behavior Change Techniques Incorporated in CASHRS (RQ4)

A main goal of CASHRS is to influence the behavior of users. However, behavioral
modifications to improving sleep quality could be hard to achieve and sustain. The
raw outputs of the recommendation algorithms may barely have intervention effect and
need to be enhanced with behavior change techniques (BCT). In clinical term, both the
recommendation contents and the BCTs adopted are components making up the behavior
interventions. As such, theoretical models and techniques in health psychology and
behavioral medicine have become an essential part of CASHRS.

We found that all the 12 CASHRS incorporated one or more evidence based BCT(s),
and some BCTs noticeably appeared more often than others. We coded the techniques based
on the BTC Taxonomy V1 [130]. The taxonomy defines 16 principal methods of behavior
change and is widely considered as the gold standard for behavior change research design
and reporting. Eleven out of the 16 principal methods in the BTC Taxonomy V1 were
incorporated in the reviewed CASHRS. We further divided the adopted BCTs into three
categories. Category-1 BCTs (Table 5) target behavior interventions before sleep. Five BTCs
fall into this category: goals and planning, repetition and substitution, antecedents, shaping
knowledge, and regulation. Goals and planning sits at the beginning of the behavior change
trajectory and is a key feature of clinical CASHRS. Setting realistic goals for sleep and
behavior is usually the first step in a digital CBT-I program. Sleepio [52] has the richest
features in supporting goals and planning, followed by Sleepcare [53] and SMSR [54]. Habit
formation based on repetition and substitution was the most widely adopted BCT (i.e., used
in 8 out of the 12 CASHRS) under category-I. Allowing users to set reminders and providing
guided relaxation are also popular BCTs (i.e., used in 5 out of the 12 CASHRS). Notably, no
BCT in category-I was incorporated in Lullaby [22].
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Table 5. BCTs focusing on behavior interventions before sleep (Category-I BCT) .

Cluster label BCT Component Examples
Goals and plan- Goal setting Leveraging users” anchor to set realistic goals
ning (sleep outcome) for sleep targets [52,53]; managing desired

Repetition and

Goal setting (be-
havior)
Discrepancy be-
tween current
behavior and goal
standard

sleep schedules [46]
Allowing users to set behavior goals [52,54,56]

Focusing on the users current interest and con-
cerns, and aims to develop discrepancies be-
tween present behavior and important per-
sonal goals, values and beliefs [47]

Problem solv- Providing tips for overcoming obstacles in
ing/coping changing sleep hygiene; providing room for
planning negotiation about the recommendations [46,

Review behavior
goal(s)

Review of out-
come goal(s)
Habit formation

47,52,53].

Dashboard, plots, Email messages, SMS [52,
54,56]

Dashboard, plots, Email messages, SMS [52—
54]

Encouraging users to follow a continuous

substitution chain of repeating the recommendation [47,51-
56]

Antecedents Restructuring the Allowing users to set reminders to enter sleep
physical environ- diaries, review the CBT-I training plan, and
ment complete other activities [48,51-53,56]

Shaping knowl- Knowledge shar- Providing access to educational material on

edge ing on healthy sleep hygiene [46,52,54,56]
lifestyle
Antecedents mod- Prompting users to manage bedroom environ-
ification ment [22,46,47,51]
Behavioral experi- Guiding the design and implementation of
ments self-experimentation [47,51]
Instruction  on Providing supplementary materials on guided
how to performa relaxation [52-54,56,57]
behavior

Regulation Regulate negative  Supporting users in regulating nagative emo-

emotions

Conserve mental
resources

tions through cognitive techniques (mind-
fulness, thought restructuring) [52], self-
regulation practice [54] and gamification [55]
Recommending only one behavior change to
a user [48]

Category-1I BCTs (Table 6) focus on the future outcomes of sleep or the consequences
of poor sleep. These BCTs include feedback and monitoring, reward and threat, and natural
consequences. Self-tracking or daily logging of sleep was incorporated in all the reviewed
CASHRS. Indeed, the quantified-self practice of sleep-tracking serves as a foundation for
all sleep-related ubiquitous computing systems. Conversely, self-tracking or daily logging
of behavior was only incorporated in 5 systems, indicating that less attention was put into
the monitoring of behavior in current CASHRS research. Interestingly, social reward—a BCT
commonly used in other health domains (e.g., physical activity)-was only incorporated in
Sleepio [52].
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Table 6. BCTs focusing on future outcomes of sleep or consequences of poor sleep (Category-II BCT).

Cluster label = Component BCT Examples

Feedback and Feedback onbehavior Showing signs of progress and rewards[52—
Monitoring 54]; logging compliance to the recommen-
dations [51]
Self-monitoring of Self-tracking or daily logging of sleep [22,
outcome of behavior  46-56]
Self-monitoring of be-  Self-tracking or daily logging of behavior

havior (e.g., steps, exercise, diet) [49-51,53,54]
Reward and Social reward Holding virtual graduation ceremony on
threat course completion [52]
Natural conse- Health consequences Providing educational content on the con-
quence sequence of poor sleep [52,53,56]

In addition, two BCTs targeting social support have also been used in CASHRS, as
shown in Table 7. Sleepio [52,58] extensively applied the social cognitive theory to facilitate
behavior change. Peer influence and peer support was implemented throughout the whole
CBI-I program. When a user first logs in Sleepio, she will read about Sally’s personal
story with insomnia and all the ways the Sleepio has helped her improve her sleep and
life in general. The online Sleepio community engages users to connect with other users
facing similar issues or to seek personalized guidance and reassurance. The ability to
communicate with other users in the Sleepio community motivated users to complete the
program and promoted long-term engagement [52,58]. Sleepio users mentioned "reduced
sense of isolation", "community being supportive and nonjudgmental”, "positive comparison", and
“altruism" as some of the reasons that they engaged in the Sleepio online community [58].

Table 7. BCTs focusing on social support (Category-III BCT).

Cluster label Component BCT Examples

Social support Social support Building a community of users, moder-
ated by expert [52]

Comparison of Positive social com- Sharing the successful story of other

behavior parison users [52]

3.4. System Evaluation (RQ5)

While the evaluation of traditional RS has put emphasis on the accuracy of recommen-
dation algorithm in predicting a user’s preference, the evaluation of CASHRS embraces
more properties. Given the interactive nature of CASHRS, it became clear that system prop-
erties including efficacy in improving sleep outcomes and users’ experience and satisfaction
with the system are equally, if not more, crucial. Good sleep health recommendations
should not only accurately reflect and relate to a user’s needs, but also be achievable in
terms of a user’s physiological states/motivation and implementable given a user’s daily
schedule and living environment.

There are three methods for evaluating RS: offline, user studies and online experiments
[136]. The offline method leverages pre-collected datasets together with simulated users’
behaviors to examine the accuracy of different recommendation algorithms. User studies
and online experiments examine the overall system outcomes on target measures as well as
users’ interaction with the system, with the only difference between the two being whether
the experiments are conducted in a controlled laboratory environment or in a naturalistic
setting.

We found that none of the reviewed CASHRS was evaluated using the offline approach;
conversely, all of them were evaluated via user studies either in a controlled setting or
in the wild. For CASHRS, algorithm accuracy appeared to be less a concern than the
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overall efficacy and users’ experience with the system. In what follows, we first present an
evaluation of the system maturity, followed by reporting the evaluations centered on the
efficacy of the system in improving sleep and that centered on how users interact with the
system.

3.4.1. System maturity

Inspired by [55], we assessed the maturity levels of the reviewed CASHRS on a
continuum from pre-prototype to prototype to released. A pre-prototype refers to the
CASHRS that was at the stage of conception or algorithm design without a functional app
prototype. A prototype refers to the version of a CASHRS app with minimal working
functionality for user testing. A matured version refers to the version of a CASHRS app
that has undergone a redesign based on feedback from user testing. A released version
refers the version of a CASHRS app that is published in app stores for download. Using
this scale, we found that 3 systems were pre-prototypes, 4 were prototypes, 1 was matured
and 4 were matured.

Table 8. Maturity of the reviewed CASHRS.

Level of maturity CASHRS

Pre-prototype PARIS [50], PUM [49], CBSR [48]

Prototype SRT [57], SMSR [54], Lullaby [22], ShutEye [46]

Matured Sleepcare [53]

Released Insonia Coach [56], SleepBandits [51], SleepCoacher [47],

Sleepio [52]

3.4.2. Evaluation centered on efficacy

In a clinical setting, the evaluation of CASHRS was often centered on the efficacy of the
recommendations in helping users improve sleep quality. Human sleep can be measured
along multiple dimensions and sleep quality can be quantified using various metrics. The
sleep metrics of interest may vary in different systems. Table 9 summarizes the sleep metrics
considered in the evaluation of CASHRS, how the metrics were measured and the direction
of change before and after a clinical trial or field study. Both objective and subjective
measures of sleep were used. Clinical studies predominantly relied on retrospective
questionnaires and sleep diaries to capture self-reported appraisal of sleep. Objective
measures of sleep were noticeably underused in clinical studies. Most studies used simple
statistical test, while [53] used more advanced multilevel analysis. We only included
conclusive results with statistical significance. Some studies also considers additional
metrics including insomnia index, daytime sleepiness and attitudes/beliefs about sleep
[56]. Multiple studies consistently demonstrated increased SE, reduced ISI and reduced
day-time sleepiness. The efficacy on SOL, TST, WASO, subjective sleep rating was mixed.

We spotted several issues pertaining the existing evaluation paradigm. First, system-
level overall evaluation makes it impossible to pinpoint which intervention module(s) of
the CBT-I protocol contributed most/least to the system efficacy. Second, adherence to the
treatment plan and compliance to the behavior intervention recommendations, which will
be described in detail in the next subsection, could also confound the efficacy of CASHRS
but were not discussed. Third, all studies relied on statistical analysis rather than clinical
thresholds as an indication for whether a target sleep outcome was improved. For example,
the average PSQI in study [53] was reduced from 11.0 to 7.4, which was a significant
improvement. However, a PSQI score above 5 indicates that sleep problems still presented
despite of less severity. Future studies are needed to address these issues.
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Table 9. CASHRS evaluation centered on efficacy.

Sleep metric Sensor/Instrument Direction
of Change
Sleep onset latency (SOL)  Consensus Sleep Diary [113] (in-app) J [56]
Original sleep diary (in-app) 1 [52]
— [53]
Time in bed (TIB) Consensus Sleep Diary (in-app) — [53]
Total sleep time (TST) Microsoft Band 1 [48]
Consensus Sleep Diary (in-app) — [53,56]
Wake after sleep onset Consensus Sleep Diary (in-app) — [56]
(WASO)
4 [53]
Original sleep diary (in-app) $[52]
Number of awakenings Consensus Sleep Diary (in-app) 1 [53,56]
Sleep efficiency (SE) Consensus Sleep Diary (in-app) 1 [56]
Original sleep diary (in-app) 1[52]
1 [53]
Subjective sleep rating PSQI questionnaire [114] (in-app) 1 [53,56]
— [48]
PSQI questionnaire (paper-basd) 4 [55]
Insomnia index ISI questionnaire [111] (in-app) 4 [53,56]
ISI questionnaire (paper-based) 1 [55]
Day-time sleepiness PROMIS questionnaire [112] (in-app) 4 [56]
Epworth sleepiness scale (paper-based) | [48,55]
Attitudes about sleep DBAS-16 questionnaire [110] (in-app) — [53,56]

3.4.3. Evaluation centered on human-computer interaction

RS research always put emphasis on the need for engaging users and minimizing
users’ interaction effort, in addition to generating useful and trustworthy recommendations
[93]. Tt is crucial to understand how end users interact with CASHRS systems as they are
at the center of digital health technologies. As such, user-centered evaluation has been
adopted in addition to efficacy-centered evaluation to gain an understanding into users’
engagement with the system, compliance to the recommendations, as well as perceived
usability and usefulness of the system.

As shown in Table 10, the most widely used methods for user-centered evaluation
include open-ended questions in survey/questionnaires and semi-structured interviews.
These methods allow researchers to collect qualitative data that is not directly observable.
Such qualitative insights can generate answers to a wide set of questions, such as whether
the users enjoyed the user interface, why the users perceived the system as useful /useless
in affecting their behavior, and how the system can be improved.

Usability is an important aspect of CASHRS and can be assessed either quantitatively
or qualitatively. At the quantitative spectrum, the mobile apps rating scale user version
(uUMARS) [108] and the system usability scale (SUS) [109] are the most widely used. Some
studies also devised original surveys to collect users’ perception on system usability
[54]. Along the qualitative spectrum, researchers collected users’ feedback using open-
ended survey questions or semi-structured interviews. These qualitative data were then
analyzed using standard qualitative data analysis methods, such as thematic analysis. In a
related vein, [47] and [48] investigated users’ perceived usefulness of the recommendations.
Participants mentioned increased awareness of current sleep habits and their impact on
sleep and how social comparison motivated behavior change.
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Table 10. CASHRS evaluation centered on human-computer interaction.

CASHRS Dimension Method Result

ShutEye Usability Semi- Eleven out of the 12 participants

[46] structured found the interface easy to under-
interview stand.

Perceived Same as above  Eleven out of the 12 participants

usefulness mentioned about raised awareness
of what affects sleep.

Compliance Same as above  Most participants changed behavior
regarding caffeine consumption and
sleep schedule.

Lullaby [22] Adherence = Appusageanal- All 4 participants made regular use
ysis of the app, particularly around bed-
time.
SleepCoacher Adherence  Appusageanal- On average participants used the
[47] ysis app for 94%-95% of the nights.
Compliance Survey/app us- 20%-100%
age analysis

Perceived Survey Sleep habits were positively influ-

usefulness enced; increased awareness of how
daily activities affect sleep.

Sleepcare Adherence  Appusageanal- Participants with adequate dose
[53] ysis ranged from 10%-68% depending on
the intervention module
CBSR [48] Perceived Open-ended Increased awareness of how daily
usefulness survey  ques- activities affect sleep; the social com-
tions parison feature motivated behavior
change.
SMSR [54]  Usability Original usabil- 3.69-3.89 (good); interface was user-
ity survey & In-  friendly.
terview

Perceived Interview Useful in helping users learn about

usefulness sleep routines and motivate them to
modify the routine.

SRT [57] Adherence  Appusageanal- Participants logged 19 nights out of
ysis the 21 nights.

Perceived Semi- Three out of the 12 participants ex-

usefulness  structured perienced a shift in dysfunctional be-

interview liefs related to sleep duration. All
participants considered sleep im-
proved.
SleepBandits Adherence  Semi- App was used on average 60% of the
[51] structured time (SD=38%).
interview

Perceived Same as above  55%-65% participants considered

usefulness sleep improved. All would recom-
mend the app to others.

Insomnia Adherence  Appusageanal- App was used 50.2% of days during
Coach [56] ysis the treatment period and 30.3% of
days during the follow-up period

Usability uMARS Average rating was 4.08 (excellent)

SuUS Overall socre was 80.42 (excellent)

Semi- All participants considered sleep
structured improved; increased knowledge of
interview sleep and insomnia; all would rec-

ommend the app to others.



https://doi.org/10.20944/preprints202205.0029.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2022 d0i:10.20944/preprints202205.0029.v1

14 of 28

Users” adherence to a CASHRS system is important because it serves as a precursor
to subsequent behavior change. Prior CASHRS examined the adherence of users either
based on app usage patterns [56] or dropout rate during a trial [58]. In [56], the authors
approximated app usage patterns by analyzing app events which are captured and logged
with a time stamp each time the user taps in the app. A user’s overall app usage (including
app opening events and usage days) and use of each active components were assessed.
They found that the participants used the app 50.2% of days during the treatment period
and 30.3% of days during the follow-up period. In a clinical trial using Sleepio, it was
found that the dropout rate was less than 20% and 75% of patients completing follow-up
[58].

Another aspect pertaining the efficacy of CASHRS is users’ compliance to the rec-
ommendations. Adherence and compliance measures different aspects of user behavior.
Adherence only reflects whether a user consistently engaged with the system and is of-
ten obtained through analyzing app usage. Conversely, compliance refers to whether
a user follows a given recommendation. App usage does not by default indicates that
the user followed the given recommendations. Some studies relied on alternative ways
to collect information on users’ compliance to behavior intervention recommendations,
either by seeking users’ direct input (e.g., self-report) [48] or by only sending recommenda-
tions which could be verified from passively collected data [48]. Overall, adherence and
compliance varied significantly across CASHRS.

3.5. Challenges Identified in Prior Studies (RQ6)

Existing studies highlighted several challenges and barriers in developing CASHRS
that generate relevant, actionable, credible, and personalized recommendations.

Non-compliance to the recommendations provided in CASHRS was highlighted as a
challenge in several studies [46—48,56]. Compliance is a complicated issue when it comes
to behavior intervention as many factors could confound a user’s decision-making on
whether to follow a recommendation, and it is likely that not all the relevant factors are
within the user’s control. As such, non-compliance could occur either intentionally or
unintentionally. On one hand, people are less likely to make behavior change when the
effort needed to adjust to a new sleep behavior is perceived outweigh the potential benefits
they could get. In [46], some participants mentioned that they at times dismissed the
recommendations because they preferred to hang out with friends at night. On the other
hand, recommendations were not always actionable or achievable. Lifestyle, environment,
and resource constraints could all hamper compliance. For instance, living near a bar may
hinder a user’s ability to control ambience noise during sleep [46], and hectic work schedule
could make it difficult to extend sleep hours [46—48]. Oftentimes, lacking knowledge on
how to achieve a recommended behavior change plays a critical role in non-compliance.
People may have no knowledge on how to relax the body and mind even when the system
recommends relaxation before bedtime. It is therefore important to provide supplementary
materials or step-by-step guide on how to implement a behavior change plan.

Lacking perceived credibility is by itself a challenge, and could also exacerbate non-
compliance, especially if users feel better when they are not compliant [48,51]. Some
participants in [51] found the recommendations unconvincing and lacking novelty. Recom-
mendations that conflict users” mental model of sleep or poor phrasing of the recommenda-
tions may all negatively affect trustworthiness [48]. Technology dictatorship and privacy
concern are two related barriers [46,58]. Some participants complained about feeling like
the technology was dictating what they should and should not do [46], which may cause
mental stress and rumination. From a technical perspective, predicting what sleep metrics
interest a target user is a challenging task. Human sleep is multidimensional and can
be measured using a number of metrics. It was found that recommendations targeting
uninteresting sleep metrics may reduce perceived usefulness and trustworthiness [48].
One possible solution as suggested in [48] was to directly ask users about which sleep
dimension they intend to improve or they would like to focus on.
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4. Discussion

The purpose of this review was to assess the current landscape of CASHRS research.
Specifically, we aimed to examine what context has been considered and how it was
measured, what BCTs have been incorporated to promote positive behavior change, and
how were the systems evaluated.

The literature on CASHRS remains small and lacks a systematic frame. Sleep has
not been studied to the same extent as other health-related topics such as exercise and
diet in CARS research, probably due to the concerns that digital technologies may not
be well suited for sleep because they may interfere with sleep itself. However, most of
the studies reviewed in this work established evidence for the efficacy of CASHRS in
improving sleep. CASHRS also share unique features that are not seen in other health
CARS because sleep comprises multidimensional constructs that are oftentimes not directly
controllable. Meanwhile, we found that prior research has been mostly centered on the
clinical efficacy of the systems as well as how users interact with the systems. No study has
systematically delved deep enough into the technical aspects such as the recommendation
algorithms and the context life cycle. In what follows, we discuss current research trends
in CASHRS and opportunities for future research.

4.1. Research Trend in CASHRS

Our analysis results revealed three trends in current CASHRS research: algorithm
development, BCT incorporation, and self-experimentation.

Recommendation algorithm is a core element of a CASHRS. It uses the system’s
input data and the database to suggest a set of behavior interventions to the target user.
Eleven out of the 12 CASHRS in our review relied on knowledge-based recommendation
algorithm, which is plausible given the importance of incorporating evidence-based sleep
domain knowledge. However, there is no guarantee that the population-level knowledge
generalizes well to individuals. A few recent studies combine knowledge-based algorithm
with collaborative filtering (i.e., PARIS [49] and CBSR [48] or content-based filtering (i.e.,
PUM [50]). Prior studies on computer-tailored digital health programs concluded that
incorporating a collaborative filtering (e.g., based on demographic information) as a second
step to knowledge-based filtering could potentially enhance users’ experience with the
RS [99]. As such, these three systems are likely to have better prediction accuracy, but
algorithm-level evaluation is missing in current literature.

Incorporating behavior change theories and techniques is another trendy topic in
CASHRS. It is widely recognized that the design of health RS need to count in the details
of real needs and real use. A major drawback of previous system is that the design of
these systems was not grounded on behavior change theories [98]. Simply giving advice
or recommendations alone is rarely an effective trigger for behavior change, particularly
when users experience ambivalence or resistance to change. A prior study on sleep apps
found that social cognitive theory was the most aligned with the apps examined in the
study. Other potentially useful theories include the reinforcement theory [100] and the
self-regulation theory [54,96]. In this study, we found that 8 of the 16 principal methods of
behavior change as defined in the BTC Taxonomy V1 have been applied to CASHRS. Some
systems even combined multiple BCTs to maximize the effect. Self-monitoring of sleep was
the most widely used BCT and was found in all of the reviewed CASHRS. Asking users to
directly input their perception of sleep quality and their "qut feeling about sleep habits" could
prompt users to reflect on their sleep hygiene [48,95], which in turn may help boost users’
motivation for positive behavior change [89]. The quantified insight from wearable and IoT
sensors can provide complementary information of users’ sleep structure and daily activity,
which may serve as visual cues for behavior change. A recent review of mHealth sleep
apps revealed that category-I BCTs that focused on changing aspects of behavior before
sleep were more appropriate for sleep intervention than category-II BCTs that focused on
future outcomes or consequences of poor sleep [40], as the latter may lead to anxiety and
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rumination that interfere with the initiation and continuation of sleep. Indeed, our analysis
revealed that more category-I BCTs were used in current CASHRS.

While self-monitoring is becoming increasingly common in recent years, self-experimentation
is a relatively new concept in CASHRS. Two systems—SleepCoacher [47] and SleepBandits
[51]- provided tailored recommendations on how to investigate personal sleep factors
through self-experimentation and reflection. The two systems generated a set of hypotheses
based on sleep domain knowledge, and recommended micro self-experimentation plans
based on the self-knowledge discovered in a user’s self-tracking data and preference. Users
were able to identify causal relationships between personal concerned sleep factors and
sleep outcomes. In a sense, the two systems expanded the scope and variety of recommen-
dations based on the self-knowledge newly discovered from each user’s own data. New
recommendations went beyond the widely known sleep hygiene recommendations, e.g.,
how listening to audio book may influence SOL or how eating cheese in dinner may affect
deep sleep ratio. Self-experimentation is grounded on the principle of the N-of-1 trials in
personalized medicine [121,122], which rose in the mid-1980s in response to the limitations
of the conventional large-cohort trials [127,128]. The N-of-1 design has wide applicability
in clinical care and behavioral science [120], and has been considered an approach well
suited to help people find best behavior interventions for health [121]. Inheriting the
advantages of the N-of-1 trials, self-experimentation holds promise for generating behavior
intervention recommendations that are fully personalized to each user’s physiological,
behavioral, and environmental context. Self-experimentation also has great compatibility
with the self-tracking practice, as the wearable and mobile technologies widely adopted
for self-tracking can substantially reduce the burden of data collection and increase the
feasibility of conducting self-experimentation [63,129].

4.2. Opportunities for Future CASHRS Research

The results of this narrative review indicate that research on CASHRS is still in its
infancy. The context coupled to existing CASHRS was restricted to a limited range, with
dynamic context such as time, location, and social situation being left out of scope. This
is especially the case in clinical CASHRS in which the content was structured based on
established therapeutic guidelines [34]. Complying to medical standard undoubtedly im-
proves the rigidity of the content but comes at the cost of missing out novel and potentially
effective recommendations. From a technical perspective, little attention has been put
into the computing aspects of CASHRS. Most of the knowledge-based recommendation
algorithms are preliminary and incapable of incorporating dynamic context. Context life
cycle—an important topic in RS research-has not yet been covered in any of the studies
reviewed. The evaluation of CASHRS was dominantly performed on a high level (e.g.,
efficacy in improving sleep measures, users’ perceived usefulness, adherence), leaving
the algorithm-level performance (e.g., accuracy, coverage, diversity [136]) unexplored.
Future research should focus on re-framing CASHRS research with established methods,
approaches, and techniques in CARS. The major design opportunities concern addressing
users’ compliance to recommendations (02, O3) as well as developing and validating
context-aware recommendation algorithms for CASHRS (O1).

4.2.1. O1: Developing and validating new algorithms for recommendation generation,
context filtering and context life cycle management

Prior studies acknowledged that offering fully personalized recommendations was
challenging for digital CBI-I systems [137,138]. Addressing this issue requires increasing
the variety of contextual information in data collection and designing new algorithms to
incorporate such information.

A main gap in current CASHRS is the lack of integration of high-granularity and
improvisational dynamic context. In this study, we found that the context considered in
existing CASHRS was restricted to predefined, low granularity, daily aggregated contextual
information, such as sleep quality of previous night(s), physical activity level in a day, and
resting heart rate. A natural consequence of this design scheme was that the systems were
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not able to dynamically react to the changes of a user’s context. Prior studies on RS argued
that context can encompass multidimensional and dynamic information, including a user’s
location, physical and emotional states, the timing when the user engages in an activity,
social interaction with family and colleagues, and the environmental situation concerning
the user of system [64,65]. From an interactional view, context is a relational and occasioned
property rather than being a stable, objective set of features [60]. Context arises from the
situation that the target user is currently engaged in, thus the scope of contextual features
need to be defined dynamically [60].

The major design opportunity concerns not use of predefined context but rather how
can a CASHRS support the process by which context is continually manifest, defined,
and shared. In a sense, not all the factors listed in Table 2 are relevant to a user all the
time. The widespread and ubiquitous use of wearable (e.g., activity trackers) and mobile
devices (e.g., smartphones, touch pads) opens the door for collecting a huge amount of
high-resolution data to derive the actions and behaviors of the target users as well as the
rich and ever-changing context in which they interact with the system. However, the data
that were automatically and passively collected with wearable and mobile sensors have
not been incorporated in most of the CASHRS reviewed in this article. Future CASHRS
research needs to fully embrace the ubiquitous sensing and data-driven scheme.

Furthermore, the high dimensionality of the contextual information requires hybrid
method that incorporate the context at various stages in the recommendation generation
algorithms. In addition to the post-filtering approach adopted in all the CASHRS, pre-
filtering and context modelling based on machine learning and data mining are another two
promising context filtering approaches. Context modelling is also an important phase in the
context life cycle [62,81], which precede the context reasoning and context sharing phases
[80]. Researchers of CARS have devised a great number of algorithms and techniques
[77,139]. For instance, [67] proposed a hybrid multilevel context-filtering approach that
comprised pre-filtering using demographic information, collaborative filtering combined
with knowledge-based filtering, and post-filtering with dynamic context information.
Sequential recommendations based on sequential pattern mining was proposed in [123,124].
These algorithms may serve as a foundation for the development of novel recommendation
algorithms and context-filtering techniques tailored to CASHRS. Moreover, algorithm-level
evaluation (i.e., accuracy, coverage, diversity [136]) needs to be established as complement
to system-level evaluation (i.e., efficacy, usability).

4.2.2. O2: Enhancing the credibility of CASHRS

Credibility describes the believability of a system and embraces two key components:
trustworthiness and expertise [143]. Credibility matters when a computing systems "act
as knowledge sources", "report measurements", "instruct or tutor users", or "act as decision aids"
[143]. Perceived credibility also affects the adoption and retention of health technology
[119]. Credibility has been previously studied in general RS [142] and quantified-self sleep-
tracking technologies [12], and was further reaffirmed as a crucial property for CASHRS
[48].

One way to enhance the credibility of CASHRS is to support better communication
between the health coaching system and the users to build empathy [95]. In classic psy-
chotherapy research, it was found that effective human coaching relies on the patient
and therapist mutually agreeing on therapeutic goals, fulfillment of therapeutic tasks and
establishing a mutual trust [117,118]. As a CASHRS often plays the role of digital therapist
or coach, it needs to be perceived as legitimate and forms a bond with users. Empathy
building starts with goal setting by defining target sleep measures. Prior studies found
that subjective sleep quality was the most targeted and improved dimension of sleep by
mHealth sleep apps [40], while wearable device users target a wider spectrum of mea-
sures, ranging from SOL, TST, to the ratio of deep sleep and REM sleep [12,21]. Existing
CASHRS support users to set goals of sleep hours and sleep schedule (i.e., bedtime and
wake up time), but seldom target other sleep metrics such as sleep efficiency and sleep
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stages. Future CASHRS may enable sleep goal setting in as many dimensions as users
preferred. Identifying modifiable sleep factors may also help build empathy between the
system and the users. The determinants of poor sleep quality are multi-factorial, with some
but not all of them amenable to intervention. This requires CASHRS to focus on identifying
modifiable factors for each user, and to suggest what users can easily incorporate into
their daily schedule rather than what they ought to do [60]. Conversely, recommending
behavior changes that are difficult to achieve may stir up feelings of doubt and compromise
the credibility of the system. For instance, the SleepBandits system did not include sleep
duration or timing as the target sleep metrics because they are predominantly determined
by users’ schedule rather than behavioral factors [51]. Beyond identifying modifiable
factors, users may also want to receive detailed scaffolding on how to implement the
recommendations. For example, "why not trying 10 minutes of jogging and 10 minutes of
kickboxing after work" could be a more actionable recommendation than "20 fairly active
minutes to hit the daily goal". It it worth noting that behavioral modifications to some sleep
metrics (e.g., deep sleep, REM sleep) may not be well-supported by sleep science domain
knowledge, but it may be possible to identify modifiable factors specific to a user based on
well-designed self-experimentation. One study found that CASHRS may create a sense of
dictatorship [46]. It is hence important to allow users to negotiate the recommendations
or provide top-N recommendations and let users choose their favorite ones. Many of the
reviewed clinical CASHRS allow patients to negotiate sleep duration in a sleep restriction
plan [52,53,56], and [46] allows users to modify the effective window of caffeine based on
their tolerance level.

Another way to enhance credibility of CASHRS is to improve technology transparency
[12,13]. It may be helpful to provide some introductory technical explanation on how
the recommendations were generated, what metrics were used and how they were com-
puted, and how many days of data were needed to draw reliable conclusions. Prior study
found that observing how more data help fine-tune the recommendations boosted users’
perceived trustworthiness and motivated users compliance to self-tracking and the rec-
ommendations provided [51]. Exposing users to the technical details of the system may
also help resolve cognitive dissonance. Many users rely on their prior mental model of
sleep health-which is usually based on general sleep hygiene-to judge the usefulness and
trustworthiness of CASHRS [95]. When users receive recommendations that conflict their
mental models of sleep health, they may experience cognitive dissonance which may then
drive them to discard the recommendations, as has been shown in sleep tracking in general
[12]. Re-directing users’ attention to how the recommendations are generated (e.g., the
recommendations are tailored to their own data rather than the data of other people) may
help them understand the reason for the disparity as well as the potential limitations of the
CASHRS.

4.2.3. O3: Supporting better decision making and sustained behavior change for sleep
health

At its core, a CASHRS aims to help users improve sleep through behavioral mod-
ifications. However, behavioral modifications are hard to implement and sustain. The
major research opportunities include addressing users’ compliance to recommendations as
well as supporting behavior changes. Theories of human decision making and BCTs can
be systematically incorporated in CASHRS to achieve a balance between persuasion and
empowerment [140].

First, the design of future CASHRS should encourage users’ decision making that
favors compliance to the recommendations. The ‘dual process’ theories of cognition posits
that there are two systems of human decision making [107]. System one corresponds to
intuitive decision making, which is fast, automatic, and effortless. It is often emotion-
ally charged and hence difficult to control. System two corresponds to analytical and
deliberative decision making, which is slower, serial, effortful and deliberately controlled.
Assuming that people make rational decisions for health, the design of existing health RS
dominantly targets the decision process of system two. However, the nudge theory argues
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that people do not have unlimited cognitive abilities and complete self-control [101]. In
reality, people often rely on heuristics rather than analysis when they make health decisions
[106]. For example, the status quo bias stating that people sometimes prefer remaining in
the current state and avoiding change for loss aversion, even when the current state may
not be objectively superior [105]. This explains why a participant chose to hang out with
friends late at night instead of following the recommended bedtime in [46], because going
to bed comes at the cost of social life that the participant put more value on. While some
decision-making heuristics may lead to behaviors that go against the recommendation,
others may be exploited to design system features that support compliance [104]. The
availability heuristic refers to people’s tendency to judge the likelihood of an event by the
case with which relevant instances come to mind. Based on availability heuristic, sharing
successful stories of other users who followed a recommendation is likely to motivate
the target user to follow the said recommendation. One example is the Sally (a virtual
character) sharing her successful story with new Sleepio users in [52]. Another relevant
heuristic is the affect heuristic-a mental shortcut that helps people to make decision quickly
by bringing emotional response into play. If people have pleasant feelings about something,
they see the benefits as high and the risks as low, and vice versa. As such, the affect
heuristic serves as a first and fast response mechanism in decision making system one. One
way to exploit the affect heuristic for enhanced compliance is to remind users of their past
positive experience when they followed a recommendation.

Second, the latest advance in health psychology and behavioral medicine can be ex-
ploited to empower users to achieve sustained behavior changes. One promising direction
is to target multiple health behaviors [88]. Prior studies found that targeting multiple health
behaviors together could lead to greater health improvements than targeting one behavior
alone. This is because of spillover effects in which success with one health behavior aids in
the ability to succeed with other health behaviors [131,132,135]. This approach is promising
for improving sleep health as many health behaviors such as exercise and good diet are
known to have reciprocal relationships with sleep. In addition, BCTs such as feedback
and monitoring and goal setting have been commonly implemented across mHealth app
interventions targeting physical activity, diet and sleep [40]. Future research is needed to
examine the optimal combinations of co-targeted health behaviors as well as co-occurring
BCTs to maximize the benefits while avoid ego depletion [133]. Furthermore, different BCTs
may be applied based on individual progress through the intervention stages. For instance,
a novice user may receive information about the positive health benefits of 7-8 hours of
sleep. As the user makes progress to the maintenance stage, such information would
become unnecessary and the BCT should shift to relapse prevention strategies. In a related
vein, there is also argument that to maximize change in multiple behavior intervention,
each behavior must be targeted using appropriate behavior change techniques that are
specific to that behavior [91,92], but too much and too complex information may cause
cognitive overload and compromise the usefulness of the recommendations [57]. As such,
the recommendations must be simple, clear, and easy to follow. Last but not the lease,
group-based recommendations for sleep health (expanding the intervention target from
individual to family) is also be an interesting idea to explore [116,134].

5. Conclusion

This study conducted a narrative appraisal of peer-reviewed publications on CASHRS.
Our review demonstrated that CASHRS research is still in its infancy as we could only
identify a small number of systems (N=12) meeting the characteristics of CASHRS. Seven
systems were developed within the scope of ubiquitous self-tracking tools and 5 were
developed as a digital CBT-I solution for clinical use. Almost all of the reviewed sys-
tems relied on knowledge-based recommendation algorithms and incorporated context
information using post-filtering. In total 18 contextual factors were used to personalize
behavior intervention recommendations in existing CASHRS, among which sleep quality
of previous night(s) was the most widely used context, followed by physical activity and
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bedroom environment. Most of the reviewed CASHRS provided a mixture of personalized
and general recommendations. Notably, clinical CASHRS focused dominantly on tailoring
the recommended sleep window in a sleep restriction therapy, while keeping the other rec-
ommendations consistent with the standard CBT-I content in literature. General-purpose
CASHRS provided personalized recommendations in more aspects probably due to their
ability to collect a wide spectrum of self-tracking data using wearable and IoT sensors.
No information was found regarding how the systems handled the context life cycle (es-
pecially the context modelling and context reasoning phases), which presents a major
knowledge gap in CASHRS literature. All systems incorporated one or more BCTs, among
which goals and planning and self-tracking or daily logging of sleep were the most popular
ones. Interestingly, social reward and social support—two BCTs widely used in other health
domains (e.g., physical activity)-were only incorporated in one CASHRS (i.e., Sleepio).
Evaluation of CASHRS covered both the overall system efficacy in improving multidimen-
sional sleep outcomes and how users interacted with the systems (e.g., usability, perceived
usefulness, adherence, compliance). Identified challenges in prior studies included users’
non-compliance to the recommendations and lacking perceived credibility. Taken together,
we posit that CASHRS point into a promising direction for ubiquitous sleep computing
research, but this subdomain requires a formal re-framing using established methods and
approaches in health CARS research. To achieve this, future CASHRS research may focus
on addressing users’ compliance to recommendations as well as developing and validating
new algorithms for recommendation generation, context filtering and context life cycle
management.
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CBT-I Cognitive behavior therapy for insomnia

mHealth ~ Mobile health
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SE Sleep efficiency

SMSR Sleep management with self-regulation
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SRT Sleep restriction therapy

TST Total sleep time
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