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Abstract: By 2020, over 100 countries expanded electric and plug-in hybrid electric vehicle (EV/PHEV) 1

technologies, with global sales surpassing 7 million units. Governments are adopting cleaner vehicle 2

technologies due to proven environmental and health implications of internal combustion engine 3

vehicles (ICEVs), evidenced by the recent COP26 meeting. This article proposes an agent-based 4

model of vehicle activity as a tool for quantifying energy consumption by simulating a fleet of 5

EV/PHEVs within an urban street network at various spatio-temporal resolutions. Driver behaviour 6

plays a significant role in fuel consumption, thus, simulating various levels of individual behaviour 7

enhancing heterogeneity should provide more accurate results of potential energy demand in cities. 8

The study found that 1) energy consumption is lowest when speed limit adherence increases (low 9

variance in behaviour) and is highest when acceleration/deceleration patterns vary (high variance 10

in behaviour) and 2) on average, for tested vehicles, EV/PHEVs were £116.33 cheaper to run than 11

ICEVs across all experiment conditions. The difference in the average fuel costs (electricity and petrol) 12

shrinks at the vehicle level as driver behaviour is less varied (more homogeneous). This research 13

should allow policymakers to quantify the demand for energy and subsequent fuel costs in cities. 14

15Keywords: agent-based model; electric vehicles; traffic simulation; energy intake; urban environ-
ment; fuel costs; public policy; electric mobility 16

1. Introduction 17

According to the World Health Organization (WHO), 55% of the world’s population 18

lives in urban areas, increasing to 68% in 2050. Electric vehicle sales increased from 5.1 19

million in 2018 to over 7 million across 100 countries in 2019. Given that the majority of 20

people live in urban areas and infrastructure development targeted at these areas [1], it 21

could be assumed that the majority of Electric Vehicles (EVs) will be driven in these areas. 22

Many renewable energy sources (e.g., wind turbines and solar) can power electric vehicles 23

and the total energy use among EVs is 3.4 times lower than ICEVs that rely on petroleum, 24

diesel or gas. Furthermore, CO2 emissions are 4.5 times higher for ICEVs than EVs when 25

electricity is harvested from renewable sources [2,3]. Almost all vehicle manufacturing 26

companies have started building and testing EV/PHEVs for the commercial market [4]. 27

Governments are facilitating benefits to persuade people to replace ICEVs with EVs through 28

economic incentives or legislation. However, not all countries have renewable technology 29

to power these vehicles; some countries, such as China, still depend on coal to power the 30

majority of their electric grid infrastructure [5]. In Australia, only 24% of the electricity 31

is generated from renewable sources [6]. In their review of EVs and their impact on the 32
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climate, [7] found that vehicles using electricity from sources with lower Global Warming 33

Potentials (GWP) [8] are better than ICEVs. In contrast, [9] found it was counterproductive 34

to promote EV uptake in countries where electricity is produced from fossil fuels. The 35

statistics mentioned above reaffirm the need to explore the impact these technologies have 36

on future cities. 37

This study demonstrates how agent-based modelling (ABM) can be harnessed to 38

quantify energy demand in cities from electric-powered vehicles at various spatio-temporal 39

resolutions. To test the model, two variables are configured across multiple test scenarios to 40

demonstrate the subtle differences in outcomes. These variables are the speeding behaviour 41

(known as adherence to speed limits) and the number of vehicles on the street network 42

(density of vehicles). Through experimentation, we show that individual vehicle behaviours 43

and the number of vehicles on the street network impact the total energy usage (the amount 44

of energy required by the vehicles to complete their drive cycle in kWh). 45

This article contributes an energy calculation extension (Figure 1) which can be used 46

in conjunction with the agent-based model [10] to quantify EV energy usage. While the 47

focus is centred around electric-powered vehicles, to demonstrate the effectiveness of the 48

model, we illustrate how ICEV vehicles can also be incorporated by converting energy 49

to petrol (l), allowing a direct comparison between individual-level behaviours/patterns 50

using two types of vehicles and their relative impact on costs and efficiency. 51

2. Background 52

A traffic system is characterised by multiple individual actors (e.g., drivers) and a 53

street network made up of individual rules indicated by (for example) traffic lights and 54

posted speed limits. Given the nature of this system’s individual-level components, it 55

is amenable to being studied using individual-based modelling methods. According to 56

[11], individual-based modelling refers to simulation models that treat individual entities 57

as unique and discrete components with at least one property (e.g., age, height, speed), 58

and these properties change during the life cycle of the entities. Therefore, in this study, 59

vehicles can be thought of as individual heterogeneous entities with their properties and 60

rules, while the urban street network is the environment within which these vehicle entities 61

are observed. 62

Agent-based modelling (ABM) is an individual-based modelling method. It provides 63

the means to plan, design and experiment with micro heterogeneous agents in an artificial, 64

computational environment. ABMs have been utilised in various domains to explain 65

complex phenomena such as those that occur in crime [12,13], ecology [14–16], economics 66

[17,18], sociology [19,20], geography [21,22] and transportation [23,24]. One advantage of 67

using ABMs is that they are able to represent a richer and more detailed set of individual 68

actors and therefore potential policy alternatives and outcomes than alternative statistical 69

models [25]. 70

Several agent-based models have focused on electric vehicle research. [26] developed 71

an agent-based model that measured consumer needs and decision strategies by policy- 72

makers to shift from ICEVs to EVs. They found that effective policy requires a long-lasting 73

implementation of a combination of monetary, structural and informational measures. 74

Similarly, [27] developed a spatially explicit agent-based vehicle consumer choice model 75

to identify the various influences that can affect the uptake of PHEVs. The study found 76

that providing consumers with ready estimates of expected lifetime fuel costs associated 77

with other vehicle types, including the rise of petrol costs, can generate preferences for 78

purchasing EV/PHEVs over ICEVs. 79

Several studies have also explored the total cost of ownership between EVs and ICEVs 80

from a consumer perspective to quantify the economic differences in ownership between 81

vehicle types. Findings differ geographically due to international differences in the price of 82

petrol, diesel, and electricity. In a study focused on New Zealand, [28] estimated that the 83

per-kilometre cost of ownership (PCO) for a used EV was twelve percent lower than that of 84

a used petrol-powered car over twelve years (25.5 NZ cents and 31.5 NZ cents for petrol 85
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vehicles). Although this study primarily focused on the differences in fuel costs, others 86

have included additional factors such as insurance, vehicle depreciation and maintenance. 87

[29] analysed these factors between 1995 and 2015 and found that in the UK, USA and 88

Japan, owners of both mid-size battery EVs (BEVs) and hybrid EVs (HEVs) incurred lower 89

costs than owners of ICEVs during the same period. 90

Fuel and electricity prices need to be estimated beyond the current year to provide 91

insight into the future costs in ownership between EVs and ICEVs. This is difficult given 92

inherent fluctuation in oil and electricity markets. However, when investigating the rela- 93

tionship between oil and electricity prices [30] found that the Engle-Granger co-integration 94

method identified a short-term relationship between these fuel types. [28] on the other 95

hand, assumed that changes in fuel prices would follow the past decade trends, which 96

exhibit a 1.4% per year increase for petrol and 1.1% for electricity. Their findings for New 97

Zealand, therefore, cannot be easily transferred to an international context because user-end 98

electricity costs differ dramatically between countries, with higher household electricity 99

costs in Germany, Denmark and Italy and lower costs in Mexico, Korea, and Turkey [31]. 100

Such discrepancies in findings are reflected in international studies [32] which have found 101

that without subsidies, limited models of BEVs and HEVs incurred lower running costs 102

than ICEVs at the time. Given the complexities mentioned above of integrating fluctuating 103

costs of petrol and electricity into our analyses, we will use the most recent cost of electricity 104

per kWh and petrol per litre in the UK. 105

As the discussion above indicates, EV modelling is a relatively new area of research. 106

Prior studies also focused on a narrow set of issues such as market penetration and charging 107

infrastructure, which may ultimately be driven by price considerations made by individual 108

prospective owners. We, therefore, contend that planning and developing forecasts of elec- 109

tric energy consumption alongside pricing in urban street networks is of critical importance 110

because electricity demand and pricing will influence uptake. 111

3. Model Description 112

This section describes the agent-based model adopted for this study. The Overview 113

Design and Details (ODD) protocol will be utilised to explain all aspects of the model [33]. 114

3.1. Purpose 115

The agent-based model used in this research is the 3D Urban Traffic Simulator (UTS) in 116

Unity [10]. The model was developed to allow researchers to simulate hypothetical vehicle 117

drive cycle scenarios in a 3D urban environment. The model provides heterogeneous 118

autonomous vehicle agents with granular features such as mass, velocity and traction 119

control. Similarly, the road network is designed around a built-up environment that 120

contains all the characteristics of a dense urban street network with varying speed limits 121

and intersection rules adopted from the UK Speed Limits [34]. Lastly, the model was used 122

by researchers looking at how driver behaviour impacts collision rates [24]. 123

3.2. Variables 124

The model requires input parameters to run an experiment and produces output 125

results for later analysis. The parameters that can be tuned are listed in Table 1. 126
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Table 1. Model entities and parameter values (source: [24]).

Entity Parameter Values

Vehicle Mass [1000, 3000] (kg)
Top Speed [30, 45] (mph), [48, 72] (km/h)
Gap acceptance [1, 10] (m)

Environment N. Of Vehicles [1, 500]
Speed Adherence [0, N]
Roads 1295
Intersections 354

The model has two entities: the vehicle agents and the model environment in which 127

these agents are based. The vehicle parameters are: 128

• The vehicle mass parameter, the value of which is drawn from a random uniform dis- 129

tribution between 1000 and 3000 kilograms (inclusive); the model distributes vehicles 130

arbitrarily across the environment with varying weights (source [35]). 131

• The top speed measure is between 30 and 45mph (48, 72 km/h) and is only applied 132

to vehicles that do not adhere to speed limits. This measure is applied only if Speed 133

Adherence is ≥ 1 (source [36]). 134

• The gap acceptance parameter can be between 1 to 10 for each vehicle. The variable 135

assigns a distance between two vehicles in meters. 136

The environment-specific parameters are: 137

• The number of vehicles generated in the model, N; this can be between 1 and 500. 138

• The speed adherence variable can be between 0 ≤ x ≤ N. This quantifies the 139

proportion of vehicles that will not adhere to the speed limits applied to the road they 140

are driving on. 141

• The urban road network consists of 1295 roads which vehicles drive on and 354 142

intersections which consist of traffic rules (Algorithm 1, [24]). The road network has 143

been designed to depict a small urban town. 144

The parameters above are used to produce output variables that observe various data 145

points at every step of the simulation run, collecting individual-level data from each vehicle. 146

Table 2 describes the output variables that the model produces. 147

Table 2. Model output variables.

Variable Output Type

AgentID Integer
xAxisPos Float
zAxisPos Float
collisions Integer
topSpeed(mph) Float
currentSpeed(mph) Float
distanceOfTravel(meters) Float
gapAcceptance Integer
velocityMagnitude Float
vehicleMass Integer
downforce Float
date-time DateTime

The ABM outputs thirteen variables that can be used for analysis (refer to Table 2). 148

As the agent ID variable is present, a micro-level analysis of the agent behaviours during 149

model execution (e.g., observing individual drive cycles). The collisions variable tracks the 150

number of times a vehicle has collided with another. Top speed is the speed limit associated 151
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with the road that the vehicle is driving on, which the vehicle tries to match. However, in 152

scenarios where some vehicles do not adhere to speed limits, this would be a value between 153

30 and 45mph (48, 72 km/h). The current speed value is the vehicle’s speed at the current 154

time step of the model. The distance of travel tracks the vehicle’s distance from the starting 155

position on the road network each time step in metres. The gap acceptance length is the 156

distance the vehicle keeps from vehicles ahead. The velocity magnitude is a scalar value 157

indicating the rate of motion at that specific time step. The vehicle mass variable assigns 158

a weight to the vehicle between 1000 to 3000 in kilograms. The physics engine requires 159

that every object have a mass assigned to it to ensure gravity is applied. The downforce 160

coefficient is set to 0.1; for this research, it is left at 0.1 to have no impact on the vehicles. 161

Lastly, date-time stamps are included in each row of data recorded such that time-series 162

analysis can be applied. These output data are then used as input to the energy calculation 163

extension, which calculates energy intake and outputs energy-specific data Table A1. 164

3.3. Model Overview 165

The agent-based model was developed using the Unity development stack. Unity is a 166

3D game engine consisting of a rendering and physics system and a graphical user interface. 167

The primary programming language is C#. Unity has received widespread adoption in 168

several industries, including gaming, automotive, and film [37]. 169

The following workflow diagram (Figure 1) describes the processes that the model 170

[10] undergoes during run-time. In addition, the energy consumption calculation extension 171

is also depicted. 172

Figure 1. Workflow diagram depicting processes the UTS undergoes during run-time including the
Energy Calculation Extension.

The UTS [10] workflow (Figure 1) starts by taking input values for the five variables 173

described in Table 1. The software then resets all settings to launch the simulation scene to 174

render the agents and environment. Once the reset process is complete, the model processes 175

all agents, their starting locations and environment parameters. Next, the model can run 176

each frame, and every change that occurs is captured and stored with a time-stamp in a 177

CSV file. Fixed Update is used to compute physics elements such as vehicle wheels, mass, 178

velocity. Update, on the other hand, computes variables for each frame. The model uses 179

Fixed Update due to the sheer number of physics components involved; these variables 180

are tracked multiple times each frame. Once the user stops the model, the sixteen output 181

variables are saved in a directory, and the model is destroyed (stopped). The output dataset 182

is then used as input to an energy calculation notebook (Figure 1) that uses the outputs 183
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to calculate F from Equation A3, with vehicle parameters from Table 3 and 5. The output 184

from this calculation is then used to calculate Equations A6 and A7 (sub-section 4.1). 185

3.4. Agent 186

The vehicles in the model are classed as autonomous agents; the vehicle population 187

is heterogeneous, meaning every vehicle will have varying features. These agents inherit 188

similar characteristics as real-world vehicles; they have four wheels, steering angle, traction, 189

mass and drag. Each agent applies a set of rules outlined in the article [24]. 190

The rules described in [24] allow autonomous vehicle agents to navigate the envi- 191

ronment and act as data collectors. Each vehicle follows the same condition-action rules. 192

However, the parameters vary and depend on the input values from Table 1. These vehicle 193

agents are a simplification of real-world vehicles. Therefore, they are not expected to mimic 194

the actions and behaviours of real-world vehicles perfectly, but they do include the essential 195

behaviours that all vehicles demonstrate such as stop/start and give-way behaviour. 196

If a vehicle is not adhering to the speed limits, it can increase its speed between 30 and 197

45mph (48, 72 km/h). If vehicle A is ahead of B, B should decrease speed to match vehicle 198

A’s speed. When a vehicle arrives at an intersection, if it has the right of way (i.e., on a 199

horizontal lane and no vehicles are on the intersection), it drives through the intersection at 200

10mph (16km/h). If the vehicle is at the intersection and does not have the right of way, it 201

should wait until the intersection is cleared. If the vehicle is at an intersection and does not 202

have the right of way, and there are no other vehicles at the intersection, the vehicle is free 203

to reduce speed to 10mph (16km/h) and drive through the intersection. Lastly, all vehicles 204

that adhere to the speed limit increase or decrease speed to match the road’s speed limit. 205

3.5. Environment 206

The agents described in the last sub-section require an environment to function within. 207

The UTS [10] deploys an urban street network that is described as a T-type network pattern 208

in [38] which contains similar characteristics as downtown Philadelphia, PA [39] and San 209

Francisco [40]. T-network patterns are like grid-shaped networks but include t-junctions. 210

Several added features such as eight-lane intersections described in [41] also exist. The 211

street network contains 1295 roads and 354 intersections, arbitrarily generated to cover a 212

small town. The individual roads, speed limits and intersection rules are described in the 213

following Figure 2. 214

Figure 2. Urban Street Network roads and intersections, (source: [24]).

The environment consists of three road types with varying speed limits and intersec- 215

tions with right of way rules. The model environment is a simplification of the real world. 216

Therefore, it does not capture all intersection types. However, it does contain the basic 217
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characteristics of an urban street network which have also been observed in several cities 218

across the United States [39,40,42]. The following list describes each road and intersection 219

in Figure 2: 220

• (A) two-way local road with a speed limit of 20mph (32km/h). 221

• (B) a two-way corner road with a speed limit of 10mph (16km/h). 222

• (C) two-way fixed road with a speed limit of 30mph (48km/h). 223

• (D) an eight-way intersection, right of way is for traffic on horizontal lanes, speed 224

limit 10mph (16km/h). 225

• (E) a two-way t-junction, right of way is for horizontal lanes, speed limit 10mph 226

(16km/h). 227

The speed limits for the three types of roads (Figure 2 A, B and C) were derived 228

from UK government sources such as [36], where urban street networks consist of local 229

20 mph (32km/h) and fixed 30 mph (48km/h) zones; however, corner roads sometimes 230

require lower speeds such as 10 mph (16km/h) as vehicles require more room to turn. 231

The ‘setting local speed limits’ report by the UK Government’s Department for Transport 232

outlines that most urban streets (roads in built-up areas) have a fixed speed limit of 30 mph 233

(48km/h). However, for dense areas — usually city centres — this may be designated 20 234

mph (32km/h) by local councils to keep pedestrians safe from collisions [24,43]. 235

4. Results 236

This section will analyse the experiments designed to quantify electric energy con- 237

sumption across multiple vehicle densities and adherence levels. Once this is achieved, 238

the model will quantify fuel consumption by simulating an ICEV drive cycle as a direct 239

comparator between PHEV/EV and ICEV fuel consumption. The aforementioned com- 240

parator experiment will present novel insight by comparing drive cycle, fuel consumption 241

and costs of ICEV and compare these patterns to the alternative PHEV/EV outputs. The 242

output data from the energy calculation extension notebook can be found in Table A1. 243

Before running the experiments and analysing outputs, the model must be tested 244

against either 1) empirical data, which entails vehicle drive cycle and energy consumption 245

in kWh, or 2) model outputs from a different model utilised in research by the research 246

community. Without a baseline comparator, there is no way in knowing if the model 247

utilised in this research, namely [10] outputs energy consumption accurately. Almost all 248

agent-based models are validated using the former or latter processes [13,24,44–48]. 249

The data used to compare model outputs were adopted in the following study [49]. 250

This study utilised German automotive statistics from empirical sources to generate drive 251

cycles of EV journeys using a mathematical model. The variables of interest are kilo-watt 252

hour over distance travelled in kilometres. The specific dataset used contains the drive 253

cycle of 200 vehicles where input parameters are derived from the statistics mentioned 254

above and physical properties of vehicles used in Germany [50]. The main drawback of this 255

model is that it produces outputs at a time resolution of 15 minutes; our model, on the other 256

hand, has a time resolution of 1 second. This way, we can capture finer detail such as the 257

impact of traffic lights on acceleration/deceleration and momentary traffic congestion. The 258

second drawback of [49] was that trips are split into commuters and non-commuters. Thus, 259

the modelled scenarios revolve around two profiles of drivers. Our model manipulates the 260

entire system from the street network to traffic rules and vehicles; thus, no single driver 261

profile is modelled, but a heterogeneous set of behaviours are captured. These factors 262

play an essential role in the electric energy consumption post-simulation run. The main 263

strength of [49] is that variables such as heat transfer, weather, road condition and slope are 264

all introduced as parameters to produce more robust energy consumption results. In our 265

study, we make some basic assumptions, such as our road surfaces are flat, and no weather 266

parameters are introduced; these variables add complexity to the agent-based model and 267

can hamper computation which, in turn, can affect outputs. Adding these additional levels 268

of complexity is an area for future development. 269
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4.1. Electric Energy Consumption Calculation 270

As the vehicle agents are not configured to mimic a specific vehicle, the goal is to adopt 271

parameters from empirical statistics to ensure our findings are consistent with those within 272

the UK given the environmental parameters adopted, such as local and fixed speed limits 273

(Figure 2). Currently, the most popular EV/PHEV in the UK is the Mitsubishi Outlander 274

(source [51]), with over 46,400 units sold as of June 2020. Therefore, this is the chosen 275

vehicle in our analyses. However, the model can be readily adapted to other vehicles and 276

can replicate a heterogeneous fleet. 277

Table 3. Vehicle Parameters (PHEV).

Parameter Value

Height (m) 1.71
Width (m) 1.80
k 65% (source [52]) 1

m (kg) 1,925
CD 0.33

Equations A3, A6 and A7 were applied to the model outputs to calculate electricity 278

intake: 279

• For Equation A3, F is calculated by using the following parameter variables: θ = 0 as 280

the surface area is flat, CD = 0.33, A = 3.078m (where height = 1.71m, width = 1.80m), 281

m = 1, 925kg (Table 3), a = ∆v
∆t where ∆v is the velocity change over time period ∆t, 282

lastly, v = velocityMagnitude (Table 2). 283

• For Equation A6, Eout is calculated by multiplying the output from Equation 2 with 284

total_distance (d) travelled in meters per second for each agent, Table 2. 285

• Lastly, Equation A7 is calculated by multiplying the output from Equation A3 (F) with 286

the distance travelled d divided by the engine efficiency k = 0.65. Ein is then divided 287

by 3.6e+6 to convert from joules to kilowatt-hours (kWh). 288

To compare, both emobpy [50] with UTS [10], we ran UTS for one hour, where fifteen 289

vehicles were present. To add complexity, we set five of these vehicles to break speed limits; 290

this allows us to capture the subtle differences between rule followers and rule breakers 291

and their relative impact on electric energy consumption. In comparison, fifteen vehicles 292

were taken from emobpy and plotted against our model outputs. 293

1 The official engine efficiency statistic is not provided by the vehicle manufacturer, therefore, an average engine
efficiency for PHEVs was acquired from the cited academic source.
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Figure 3. Model Output Comparison: Electric Energy Consumption (kWh) against Distance Travelled
(km), with 15 vehicles over a 1 hour drive cycle (5 vehicles break speed limits).

We aggregated the fifteen vehicles from [10] to five gradient colours to simplify the 294

legend in Figure 3. 295

Figure 3 distinguishes between the rule followers and rule breakers; we can see the 296

clustered lines at the bottom of the graph, these are vehicles that fully adhere to speed 297

limits; on average, these vehicles consumed roughly 1-1.1 kWh over 16-16.5 km. The 298

five vehicles that broke speed limit rules travelled further as they were speeding and, on 299

average, consumed more energy as expected. Furthermore, the urban environment has 300

impacted the distances these vehicles could cover (differences in distance travelled). The 301

furthest a vehicle has travelled is 28 km. We also found that the maximum energy usage 302

was 9kWh for UTS and 11 kWh for emobpy. One reason for this could be the differences in 303

traffic rules applied in Germany compared to UK city centres, vehicle parameters such as 304

weight, engine efficiency or environmental factors such as weather and slope. 305

This small sample shows that the confidence intervals for emobpy are small. This 306

means that vehicles are likely to follow similar drive cycle patterns and configurations, 307

leading to similar energy consumption outputs. However, due to heterogeneity, our model 308

captures a more diverse range of outputs from the same environment, which is a strength 309

of the ABM approach over standard mathematical models. 310
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Figure 4. Model Output Comparison: Electric Energy Consumption (kWh) for both UTS (model) [10]
and emobpy [50]

The average cumulative energy consumption (kWh) is almost identical for both 311

emobpy and UTS Figure 4. These preliminary results are promising as they show that 312

UTS is capable of producing patterns of realistic drive cycles of electric vehicle energy 313

consumption that have also been observed in a completely different model [49]. However, 314

the distribution of electric energy consumption will vary if the number of rule breakers is 315

increased. Now that we have shown that UTS produces valid estimates of electric energy 316

consumption, we can devise experiments to quantify the effects of speed limit adherence 317

and vehicle density on electric energy and petrol consumption. 318

4.2. Experiments 319

Due to the computational processes required to render 3D vehicles through space and 320

time [10] and the hardware capacity at hand, nine computationally cheaper experiments 321

were designed. The independent variables were density and adherence to speed limits. 322

These experiments are formally described in Table 4. 323

Table 4. Experiment Conditions.

Variable Low Adherence Medium Adher-
ence

High Adherence

Low Density Condition 1, 10
vehicles, 10 Non-
Adherence

Condition 2, 10
vehicles, 5 Non-
Adherence

Condition 3, 10
vehicles, 0 Non-
Adherence

Mid Density Condition 4, 50
vehicles, 50 Non-
Adherence

Condition 5, 50
vehicles, 25 Non-
Adherence

Condition 6, 50
vehicles, 0 Non-
Adherence

High Density Condition 7, 100
vehicles, 100 Non-
Adherence

Condition 8, 100
vehicles, 50 Non-
Adherence

Condition 9, 100
vehicles, 0 Non-
Adherence

These experiments should, in theory, allow us to explore energy consumption in 324

different environmental and behavioural scenarios. The experimental conditions should 325

yield an array of patterns that quantify energy consumption under these conditions. To 326

explore these data, we produce several visualisations and later interpret outcomes. 327
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(1) 10 vehicles, 10
Non-Adherence

(2) 10 vehicles, 5
Non-Adherence

(3) 10 vehicles, 0
Non-Adherence

(4) 50 vehicles, 50
Non-Adherence

(5) 50 vehicles, 25
Non-Adherence

(6) 50 vehicles, 0
Non-Adherence

(7) 100 vehicles, 100
Non-Adherence

(8) 100 vehicles, 50
Non-Adherence

(9) 100 vehicles, 0
Non-Adherence

Figure 5. Distribution of the Cumulative Energy Consumption (kWh) for each Experiment Condition.

As more vehicles adhere to speed limits, we see that the energy consumption is at 328

its lowest 0.1 - 2 kWh (Figures 53, 56 and 59). On the contrary, as more vehicles break 329

speed limits, we see energy consumption at its highest (Figures 51, 54 and 57). As density 330

increases, the energy consumed also increases (Figures 57, 58 and 59) regardless of speed 331

limit adherence. 332
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(1) Cumulative Energy Consumption (kWh)

(2) Distance Travelled (km)
Figure 6. Box plots of Cumulative Energy Consumption (kWh) and Distance Travelled (km) across
all Experiment Conditions.

As adherence to the speed limit increases, it was observed that the overall distance 333

travelled by vehicles was smaller Figure 62. Similarly, energy consumption also decreases 334

Figure 61. 335

According to official Mitsubishi statistics [53], the range of the Outlander (kWh/km) 336

is 0.169. To compare, the outputs in Figure 6 show that as adherence increases (Experiment 337

Conditions 3, 6, 9), the cumulative energy consumed aligns with the manufacturer’s 338

statistics. For example, in Experiment Condition 3, the average distance travelled is roughly 339

7 km. Therefore, given 0.169 kWh, the scenario mentioned above gives an average energy 340

consumption of 1.183 kWh; this is observed in Figure 61. The similarity in high adherence 341

cases and energy consumption compared to official statistics can be explained because 342

these statistics were based on fixed/local speed limits in urban environments and do not 343

account for speeding behaviour or consumption levels resulting from motorway speeds. 344

These data show that the Energy Calculation Extension notebook Figure 1 enables the UTS 345

[10] to quantify the electric energy consumption in line with official manufacturer statistics, 346

so long as the parameters outlined in Table 3 are provided, and vehicles are fully adhering 347

to speed limits. 348

To recap, the previous sub-section 4.1 developed experiments comparing outputs from 349

the UTS [10] to a mathematical model of energy fuel intake emobpy [49] for validation. 350

We found the UTS and Energy Calculation Extension notebook Figure 1 produced results 351

consistent with the mathematical model of driver behaviour [49] Figures 3 and 4. The 352

subsequent section, across nine experimental conditions compared the effect that adherence 353
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to speed limits and vehicle density had on electric energy consumption by modelling a 354

specific vehicle type Table 3 and subsequent results Figure 5. 355

4.2.1. Fuel Consumption of Internal Combustion Engine Vehicle Fleet 356

Following on from the aims set out in section 1, to produce estimates of petrol con- 357

sumption (l), an ICEV must be modelled. This process is straightforward as the UTS is not 358

vehicle specific; other fuel types such as petrol, diesel can be modelled using the formulae 359

from sub-section A.1. 360

As previously discussed in sub-section 4.1, a specific type of vehicle must be identified 361

to model energy consumption. From January 2020 to December 2020, the Ford Fiesta ST 362

was purchased (registered) 49,174 times in the UK, making it the most purchased ICEV 363

according to [54]; therefore, it was the chosen ICEV. The vehicle parameters can be observed 364

in Table 5. 365

Table 5. Vehicle Parameters (source [55]) (ICEV).

Parameter Value

Height (m) 1.469
Width (m) 1.941
k 0.33% ([56])2

m (kg) 1,635
CD 0.341

Equations A3, A6 and A7 were applied to the model outputs to calculate petrol intake: 366

• For Equation A3, F is calculated by using the following parameter variables: θ = 0 367

as the surface area is flat, CD = 0.341, A = 2.851m (where height = 1.469m, width = 368

1.941m), m = 1, 635kg (Table 5), a = ∆v
∆t where ∆v is the velocity change over time 369

period ∆t, lastly, v = velocityMagnitude (Table 2). 370

• For Equation A6, Eout is calculated by multiplying the output from Equation A3 with 371

total_distance (d) travelled in meters per second for each agent, Table 2. 372

• Lastly, Equation A7 is calculated by multiplying the output from Equation A3 (F) 373

with the distance travelled d divided by the engine efficiency k = 0.47. Ein is then 374

multiplied by 2.923 to convert joule to gasoline/petrol (l). 375

To ensure comparability, the experiment conditions in Table 4 will be re-run using the 376

vehicle specific parameters from Table 5. 377

2 The official engine efficiency statistic is not provided by the vehicle manufacturer, therefore, an average engine
efficiency for ICEVs was acquired from the cited source.
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(1) Cumulative Fuel Consumption (l)

(2) Distance Travelled (km)
Figure 7. Box plots of Cumulative Fuel Consumption (l) and Distance Travelled (km) across all
Experiment Conditions.

As engine efficiency for ICEVs is relatively low compared to EV/PHEVs, the amount 378

of petrol converted to power that moves the vehicle is also low. Roughly 70% of energy 379

is lost during this process [56]. Given those mentioned above, it is likely that the fuel 380

consumption outputs Figure 7 deviate from the true value by some margin. 381

As expected, the energy calculation extension notebook used in conjunction with UTS 382

[10] produced outputs for the nine experimental conditions in Table 4 with a different fuel 383

type Table 5. The drive cycle distances for the ICEV scenario Figure 72 are similar to those 384

of the PHEV scenario Figure 62. At an individual level, the outliers for both conditions 385

(Figures 72, 62) could be due to traffic congestion, vehicle weight and routes travelled. 386

According to the vehicle’s technical specification [55], in extra-urban environments, the 387

vehicle is claimed to do 5.1l/100km. On average, if the vehicle has driven 13km/s, the 388

expected fuel consumption would be roughly 0.6l, evidenced in Figure 7 Experiment 389

Condition 1. However, as adherence increases, distance travelled decreases, and the fuel 390

consumption levels deviate from the vehicle manufacturers technical specifications, where 391

the model starts to underestimate fuel consumption. One reason for this could be that the 392

tests carried out to measure the fuel economy are conducted while the vehicle is driven at 393

an average speed of 62.6 km/h (39 mph) and a top speed of 120 km/h (74.6 mph), according 394

to European Fuel Economy standards, specifically ECE-15 [57]. Thus, as vehicles fully 395

adhere to speed limits (in the model), the maximum speed achievable is 30 mph (48.28 km). 396
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Two examples of simulated fuel types have been quantified with a reasonable degree 397

of accuracy. This has resulted in enough data to quantify the costs of running these vehicles 398

in the hypothetical urban street network. 399

4.2.2. Monetary Costs of Fuel and Electric Consumption 400

The domestic cost of fuel per litre and electricity per kilowatt-hour fluctuates over 401

time. The price for each varies, depending on vehicle fuel efficiency, distance travelled, 402

weight and the fuel price [58]. Therefore, to quantify the cost in Great British Pounds (GBP), 403

the current cost of petrol and electricity is adopted, these are £1.43 (per litre) [59] and £0.17 404

(per kWh) [60] respectively. 405

To calculate the cost of petrol, the amount of petrol intake calculated for each vehicle 406

is multiplied by 1.428 while the amount of electric energy intake was multiplied by 0.17. 407

Producing a rough estimate of the fuel costs per car for each experiment condition for the 408

UK. 409

Figure 8. The total sum of petrol/electric costs (GBP) for each experiment condition across all vehicles.

The total cost of electric and petrol across all experiment conditions were £241.49 410

and £357.82 respectively 3. Overall, it is £116.33 cheaper to run PHEVs over ICEVs. As 411

engine efficiency is greater for EVs [61], it is likely that these vehicles would be more 412

fuel-efficient, thus cost less than both PHEVs and ICEVs. In Figure 8, a pattern emerges, 413

whereas driver adherence decreases (speeding increases) the cost of electricity and petrol 414

increases (Experiment Conditions 1, 4 and 7) relative to vehicle density. Furthermore, as 415

adherence increases, the difference in price between the fuel types shrinks (Experiment 416

Conditions 3, 6 and 9) as vehicles have travelled roughly the same distances Figures 62 417

and 72. Similarly, these trends are broken down in the average cost per km in Table A2. 418

However, interestingly, when density is high, the cost of running the PHEVs is greater 419

than ICEVs. One reason for this could be that the drive cycle for ICEVs at a density of 100 420

succumbed to more congestion than the PHEV scenario. Thus, more energy was consumed 421

for the same duration of travel. However, when the total cost of each model condition 422

3 These costs are merely estimates produced from the vehicle-specific parameters Tables 3, 5 and drive cycle
scenarios from Table 4 in an urban street network. These costs will not be the same in different types of street
networks such as highways, motorways and rural roads.
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results are compared, we see a clear distinction between costs, and overall, PHEVs are 423

cheaper Figure 8. 424

A core strength of ABMs over mathematical models, as specified earlier, is the spatio- 425

temporal resolution variability of data. For instance, the individual level (vehicle level) 426

data is attained and should provide a more enhanced snapshot of the impact behaviour 427

had on fuel costs. 428

Figure 9. The total sum of electric costs (GBP) for each PHEV, model conditions 1 to 3.

An individual-level break-down of the fuel expenditure costs across all vehicles and 429

types are discerned in Figures 9, 10 and in the Appendix, Figures A2, A3, A4 and A5. These 430

results re-enforce our earlier made suppositions. For instance, as more vehicles regulate 431

speed, the difference in average costs decreases Figures 9(3) and 10(3). Despite these 432

trends, it could be argued that as variability amongst acceleration/deceleration increases 433

(heterogeneity), PHEV owners will save more money compared to ICEV owners. The net 434

benefits may not be substantial sums of money, but the environmental benefits (which have 435

not been modelled) could be a bonus for consumers. Furthermore, as empirical evidence 436

indicates, Autonomous Electric Vehicles (AEVs) are more efficient than PHEVs/ICEVs [62]. 437

Consequently, we could expect a greater extent of financial savings and environmental 438

benefits for owners of AEVs. 439
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Figure 10. The total sum of petrol costs (GBP) for each ICEV, model conditions 1 to 3.

To conclude, when vehicle fleet is heterogeneous (more variability among speeds), this 440

leads to greater savings in adopting PHEVs over ICEVs as the engine efficiency is greater. 441

Consequently, more energy is converted to power than ICEVs (Experiment Conditions 4, 442

7). In contrast, as speeds become more regulated and similar, the average monetary costs 443

between the two vehicle types reduce Figures 9(3) and 10(3). Furthermore, these findings 444

are consistent for all fleet sizes Figures A2(3), A4(3) and A3(3), A5(3). 445

5. Discussion 446

This article set out to quantify the energy consumption by a fleet of vehicles in an urban 447

street network using agent-based modelling. Given the current global agenda on climate 448

change through various institutions and policies (i.e., COP 26, Paris Climate Accord 2015, 449

Organisation for Economic Co-operation and Development, Green Economic Recovery 450

(UK)), political discourse worldwide has shifted focus to green agendas, particularly, 451

renewable technologies to facilitate a reduction of carbon emissions. The work conducted 452

in this article plays a significant role in aiding national governments in modelling the 453

potential landscape of energy consumption by EV/PHEVs. Previous literature has focused 454

on mathematical models; however, this method is limited. Agent-based models are better 455

suited to modelling individual-level drive cycle behaviours than mathematical models. 456

The former typically provides an aggregated average of energy expenditure, while the 457

latter provides a finer spatio-temporal resolution of individual-level energy consumption, 458

highlighting the immediate environment’s impact on a vehicle’s drive cycle, which affects 459

energy consumption. 460

This work makes a novel methodological contribution to the modelling of vehicle 461

energy consumption using agent-based modelling. While several attempts to model vehicle 462

activity to quantify energy have been made, the majority of these models have hard-coded 463

driver behaviour, which is bounded by constant speeds [50,63]. This we believe is not 464

informative of energy consumption in urban space where the stochastic environment plays 465

a more significant role in affecting energy intake, such as urban speed limits, stop-go rules, 466

and other vehicles in the street network. 467
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Another vehicle technology that is beginning to gain traction is Autonomous Vehicles 468

(AVs). UK Government projections show a net gain of 823,000 jobs and over £82 billion 469

from manufacturing and shipping of AVs [64]. AVs are likely to be electric, so their 470

ascendance may also be considered in relation to electric energy usage of vehicles of the 471

future. [62] outline how AVs and electric vehicles may reduce energy consumption due 472

to their connected environment, as route choice can be optimised to avoid congestion, 473

undertake routes with fewer stops and ensure multiple passengers are catered for at once 474

due to dynamic ride-sharing capabilities. Additionally, AVs may be able to drive in an 475

optimally efficient manner due to the incorporation of traffic conditions received through 476

communication and sensors. [62] estimate the energy consumption from these smoother 477

driving cycles would decrease current energy use between -10% and -20%. 478

In more revolutionary scenarios in which proportions of fully autonomous vehicles 479

outweigh human-operated vehicles, vehicle-to-vehicle (V2V) communication could enable 480

velocity synchronisation and shorter spaces between vehicles (i.e., platooning). [65] and [66] 481

outline how this can improve string stability and increase network capacity as vehicles 482

will operate with decreased acceleration noise and maintain closer distances to nearby 483

vehicles, thus reducing aerodynamic drag. [62] outline the energy and emissions reduction 484

from autonomous vehicle platooning to be between 7% and 35%. Although sophisticated 485

autonomous fleets (levels 4 and 5) are yet to be technologically perfected, as currently, 486

the highest level of autonomy achieved in vehicles on sale is level 3 [67], these findings 487

provide insight into the combined benefits of electric autonomous vehicles (EAVs) fleets in 488

the future. 489

6. Conclusion 490

A future avenue to explore would be to extend the model environment to cater for AVs. 491

This should be achievable as the model can currently model specific vehicles and adherence 492

levels. By modelling AVs, the variation of energy consumption scenarios of typical EVs 493

and AVs can be compared. Furthermore, this could allow policymakers to model charging 494

infrastructure in cities to test how these different vehicles can adapt optimally to these 495

environmental changes. 496

A significant limitation of this work is computational tractability. The compute de- 497

mand exponentially grows as we increase the number of vehicles or induce complex 498

environmental settings. This can prevent users from simulating greater capacity of vehicles 499

or more complex cities. Secondly, we assume the world as a flat plane in the model. How- 500

ever, this diverges from the real world. This assumption was due to computational demand, 501

and we tried to configure the most simple environmental setting to ensure computation 502

was not hampered. However, as cloud computing technologies become mainstream, this 503

problem can be overcome. 504

Another limitation of this article is that it utilises an urban road typology only. While 505

necessary, as most EV infrastructure is focused on cities, this does not necessarily imply 506

that energy consumption from urban street networks would remain identical to other road 507

typologies (e.g., motorways, dual-carriageways, rural roads). Therefore, in the future, the 508

model can be extended by analysing vehicle behaviours and their subsequent impact on 509

energy consumption in various road typologies. 510

This study highlights the importance of individual-based modelling methods such as 511

ABMs in investigating future transport systems in cities. As some of the most important 512

global policy agendas focus on the diffusion of low carbon-emitting technologies, this 513

research is well-timed and crucial in planning for the future city. 514
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Appendix A. 533

Appendix A.1. Electric Energy Calculation 534

To calculate electricity energy consumption required to move the vehicles, the applica- 535

tion of classical mechanics [69] including the drag equation from fluid dynamics [70] were 536

adopted for this article. 537

When a vehicle is moving at a constant velocity, its forces are balanced (i.e., the forces
driving it forward are equal to those resisting). However, vehicle velocity is not constant
when driver behaviour changes over the drive cycle period (e.g., halting at traffic lights,
matching the speed of vehicles ahead). Therefore, we assume velocity v is not constant in
this model. A vehicle travelling at a non-constant speed results from an imbalance in the
forces acting on it, i.e. the net force acting on the vehicle is non-zero. Considering the drive
force from the engine, the force of gravity and the drag force, the net (or total) force acting
on a vehicle, Ftotal , can be calculated as:

Ftotal = F − mg × sin(θ)− 1
2

ρCD Av2, (A1)

where: 538

• F is the force provided by the engine driving the vehicle forward (N), 539

• m is the mass of the vehicle (kg), 540

• g is the gravitational acceleration (m/s2), 541

• θ is the angle of the surface on which the vehicle is driving on, 542

• ρ is the density of air (1.225kg/m3), 543

• CD is the drag coefficient, 544

• A is the reference area of the vehicle (m2) (width × height), 545

• v is the velocity (m/s). 546

The total force acting on the vehicle can be expressed as the product of the vehicle’s mass
and its acceleration, i.e. Ftotal = ma, and consequently, we can write Equation A1 as:

ma = F − mg × sin(θ)− 1
2

ρCD Av2. (A2)

In this investigation, we are concerned with the force produced by the engine, F, and
the associated energy expended to produce this force. As a consequence, we may wish to
rearrange Equation A2 as:

F = ma + mg × sin(θ) +
1
2

ρCD Av2. (A3)
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In the scenario where the road surface is flat, θ = 0, and consequently the gravitational
aspect of the forces resisting motion is zero, i.e. mg × sin(θ) = 0. Equation A3 therefore
becomes:

F = ma +
1
2

ρCD Av2, (A4)

which returns the force output by the car’s engine to accelerate at rate a. In cases when the
vehicle is travelling at a constant speed, Equation A4 simplifies to:

F =
1
2

ρCD Av2. (A5)

Once the force exerted by the engine, F, and the distance of travel over which it is
being exerted d are both known, the energy expended by the engine, Eout, can be calculated:

Eout = F × d. (A6)

In this case, Eout is the energy output by the engine. To find the energy provided to the
engine in the form of fuel, the engine efficiency is needed, k. Assuming that the efficiency
of the engine is constant, i.e. that it has the same efficiency for all scenarios, the energy that
needs to be provided to the engine can be found using the following equation:

Ein = F × d
k

, (A7)

Appendix B. 547

Appendix B.1. Tables 548

Table A1. Energy Calculation Extension notebook output data (EV/PHEV example).

Variable Output Type

VelocityChange Float
Acceleration Float
Deceleration Float
Braking Energy (kWh)4 Float
Drag_Force Float
Acceleration_Force Float
Total_Force Float
Drag_Work Float
Acceleration_Work Float
Total_Work Float
Energy_Input (kWh) Float
Energy_Input_Sum (kWh) Float

4 An amount of energy is generated every time a vehicle brakes (decelerates) also known as regenerative braking.
This is accounted for in the notebook using the braking energy formula from the following source: [71]
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Table A2. Average cost (£) per km for both vehicle types.

MC PHEV ICEV

1 0.46 0.62
2 0.31 0.31
3 0.18 0.24
4 1.78 2.77
5 1.10 1.47
6 0.77 0.98
7 3.67 2.26
8 2.37 1.24
9 1.65 1.29

Appendix C. 549

Appendix C.1. Figures 550

Figure A1. Box plots of Braking Energy Recovered in kWh for each Experiment Condition.
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Figure A2. The total sum of electric costs (GBP) for each PHEV, model conditions 4 to 6.

Figure A3. The total sum of electric costs (GBP) for each PHEV, model conditions 7 to 9.
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Figure A4. The total sum of petrol costs (GBP) for each ICEV, model conditions 4 to 6.

Figure A5. The total sum of petrol costs (GBP) for each ICEV, model conditions 7 to 9.
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