

1

2 **PREPARATION OF A BACTERIUM INOCULUM AND ITS EVALUATION BY ANALYSING**
3 **VARIOUS CHARACTERISTICS OF COMPOST**

4

5 Ayesha Ameen¹, Neelma Munir² Imran Altaf³, Rasheeda Bashir¹, Shagufta Naz¹, Neha asghar⁴ Athar Hussain⁴

6 **¹Office of Research Innovation and Commercialization, University of Management and**
7 **Technology, Lahore Pakistan**

8 **²Department of Biotechnology, Lahore College for Women University, Lahore**

9 **³WTO, QOL, University of Veterinary and Animal Sciences, Lahore**

10 **Department of Life Sciences, University of Management and Technology, Lahore Pakistan**

11

12

13 *Corresponding author: neelma.munir@yahoo.com

14

15 **Abstract**

16 Composting is one of the most economical and environmentally safe methods of recycling organic waste. Soil
17 microorganisms play a significant role in decomposition and the availability of plant nutrients. This study was
18 designed to prepare a suitable microbial inoculum and its evaluation on composting heap to decrease the time of
19 waste degradation. The bacteria were isolated and molecular characterized from the soil near composting area by
20 using 16S ribotyping technique. The identified strains of *bacillus cereus* used as an inoculum gives better results
21 to expedite the degradation of organic waste. The prepared bacterial inoculum with molasses was also compared
22 with commercial inoculum by optimizing physical and chemical parameters (temperature, oxygen, C: N, pH, and
23 moisture content) of composting heap. Monthly reading of these parameters was taken from experimental and
24 control treatments. The highest decomposition rate of organic waste was recorded in treatment A (experimental
25 heap) where molasses and bacterial inoculum were added and less decomposition was observed in treatment D
26 (experimental heap) where no inoculum and molasses were added. It was concluded from the studies that the
27 prepared bacterial inoculum with two strains of *Bacillus* was effective and prepared mature compost in 2.5 months
28 by increasing decomposition efficiency of organic waste. Furthermore, the prepared compost was also sustainable
29 in its physical and chemical characteristic.

30

31 Key Words: bacteria, compost, organic waste, decomposition, inoculum

32 **Introduction**

33 Composting process involves several microbes and there are many reports on the identification of bacteria
34 responsible for waste degradation. Aerobic composting consists of a controlled biological process after
35 mechanical screening of organic waste. The decomposition by microbes is the most critical stage of the aerobic

36 composting process. Hence it must be regularly monitored to derive maximum results from the biological
37 breakdown. During the process of aerobic composting, decomposition is normally completed within 8-10 weeks
38 (Liang *et al.*, 2004). High temperatures are attained leading to speedy destruction of pathogens, insect eggs, and
39 weed seeds. Production of foul smelling gases like methane and hydrogen sulphide is also minimized. Nutrients
40 are fairly preserved. The major issue of aerobic composting is a lengthy and extending period of 4 to 12 months.
41 (Makan *et al.*, 2012).

42 The organic waste gives nutrients necessary for microorganisms to carry out a degradation process efficiently.
43 Compost can be made from a variety of organic waste through suitable processing. If the practice is follow to
44 convert organic waste into bio fertilizer than different problems of pollution can be overcome. When the compost
45 is properly prepared and used, it gives nourished and fertile soil. One of the widely studied topics by a scientist is
46 the addition of bacterial inoculum to rapid the composting process. Mature compost has already commercial value
47 without inoculums addition but research is still in process, to find options that employ microbial inoculation in
48 compost. This type of inoculation improves compost productivity further since composting aims to reducing
49 environmental pollution. Leachate as biofertilizer is also used for the seed germination and for finding of growth
50 index of crops (Ameen *et al.*, 2020) the operation should be streamlined to avoid pollution effect on the
51 surroundings (Wei *et al.*, 2008).

52 Microorganisms work in the world's ecosystem and are the most important contributors to biogeochemical cycles.
53 There is a variety of beneficial microorganisms present in the soil, they take an active part in breakdown and
54 bioremediation of pollutants, in result gives soil fertility and better crop productivity. The most important and
55 major contributors are the lignocellulolytic bacteria; they rapidly degrade agriculture residues. The addition of
56 cellulolytic bacteria or fungi is done artificially to rapid the aerobic composting process (Michel *et al.*, 2003).
57 They have hydrolytic enzymes which are the major contributors to decomposition. The properties of microbes
58 can be used as an indicator for composting process, besides the characteristics to control the composting process
59 through physiochemical activities (Tiquia *et al.*, 2004).

60 Municipal solid waste contain a large amount of humic acid and also plastic, metal and glass residues that need
61 to be removed to enhance the composting effieciency. Consortium of different microorganisms has been used in
62 previous studies to rapid the degradation of organic waste; it includes cellulolytic *trichoderma* and *white rot* fungi,
63 *Lactobacillus Buchneri*, *Bacillus Casei* and *Candida rugopelliculosa* (Guo *et al.*, 2012). The inoculation of these
64 microorganisms excels the maturation and humification process. These microorganisms are grown on their
65 suitable media initially and later identified for preparation of consortium and transfer to solid media support which
66 act as a carrier. Many solid media can also be used to grow these microbes but it gives a low growth rate e.g.
67 perlite, peat, coal and calcium carbonate. These materials may harbour different kinds and number of
68 microorganisms. Some *trichoderma* and *rhizobacteria* inoculants could be added to avoid the growth of pathogens
69 and to increase plant growth. Tree barks are also added to suppress pathogens in media. Thus, microbial
70 inoculation and certain other additives in soil gives considerable benefits to composting process (Goyal and
71 Sindhu, 2011). Some scientist also reported that the species of *Cellulomonas*, *Pseudomonas*, *Bacillus*
72 and *Thermoactionmycetes* produce extracellular enzymes accountable for cellulose and lignin degradation during
73 aerobic composting. No pure bacterial inoculum was prepared in the previous studies by using two strains of
74 *bacillus* that also promote efficient degradation process. Literature only reports the addition of consortiums

75 included fungi and bacteria to composting heap that promotes active degradation (Rastogi *et al.*, 2020).
76 Inoculation of thermophilic microbes is beneficial for speedy degradation, it's not only increase the temperature
77 of the pile but also eliminate bad odour, pathogens and enhanced biological process. The prepared inoculum with
78 *bacillus cereus* and *bacillus subtilis* in this study is effective for speedy degradation starting from thermophilic
79 stage because the selected isolates not only work actively but also help in rising temperature of the pile. This
80 inoculum also provides the preferable quality compost verified by physiochemical tests. It's fulfilling the
81 standards of composting council by increasing soil fertility and cation exchange capacity. Many inoculants e.g
82 *trichoderma* specie of fungi is not active during thermophilic stage and must not be added initially. Literature
83 explains many studies on different fungi and bacteria used as consortium but no studies were done on single source
84 inoculation that must also be effective to promote active decomposition and reduce the time of composting process
85 (Wang and Liang, 2021). A study by Hosni *et al.*, 2019, explained the effects of using prepared compost with
86 bacterial inoculation. The soil remains fertile for 6 years of compost usage. It also improved the quantity and
87 quality of crops (Hosni *et al.*, 2019)

88 When mature compost is incorporated into the soil, compost is mineralised and provides a quick release of
89 available nutrients to plants. Phosphorous availability in soil is also boost and strengthens by compost addition.
90 (Ngo and Cavagnaro, 2018)

91 **Methodology**

92 Samples of organic waste were taken from Lahore compost Pvt Ltd Pakistan at the thermophilic stage. The
93 samples were made free from any inert material. Initial isolation of bacteria was done on Nutrient media.
94 (Saharinen *et al.*, 1998). Broth sample streaked on nutrient agar plates to check the colony morphology (Bruns *et*
95 *al.*, 2001). Colonies with different characteristics were purified. The purified colonies were further inoculated on
96 blood agar for evaluation of their respective haemolytic pattern. Colony morphology and biochemical profiling
97 was observed followed by 16S ribotyping (Hegde *et al.*, 2000). For the amplification of 16S rRNA gene, PCR
98 was performed with final volume of 50ul. Universal primers were designed to amplify 16S rRNA gene (Huang *et*
99 *al.*, 2004).

100 **PREPARATION OF INOCULUM AND APPLICATION ON ORGANIC WASTE**

101 The purified, identified and molecular characterized bacterial isolates were used for the preparation of bulk
102 inoculum to carry out this project for the conclusion.

103 **1: Preparation of Bacterial inoculum**

104 1 L of Nutrient Broth was prepared and sterilized. The media was kept at 37°C for 24 hours for the sterility check.
105 Flasks were inoculated with purified isolates separately and the flasks were incubated in aerobic conditions. After
106 incubation the media was checked for bacterial growth by means of turbidity. The culture was also tested for
107 purification to nullify the presence of any contaminated bacteria. This inoculum was used to enhance decomposing
108 efficiency of waste.

109 **Field trial**

110 Four different groups of organic waste were made and treated separately.

111 Treatment A: The organic waste of this group was treated with a mixed culture of isolated bacteria and molasses.

112 Treatment B: In this group the organic waste was treated with a mixture of isolated bacteria

113 Treatment C: In this group the organic waste was treated with BST commercial inoculum
114 Treatment D: In this group the organic waste was treated with no bacterial inoculum
115 The field trials by using the bacterial inoculum were performed in Mahmood booti Lahore Compost Pvt. Ltd.

116 **Experimental design**

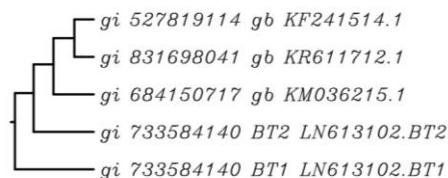
117 To check the decomposing efficiency of the isolates, 50 ton windrow was divided in to 6 equal parts of 12 feet
118 width and 5 feet height. The windrow was adjusted for various parameters including C: N, moisture content,
119 temperature and oxygen. The C: N was adjusted below the value of 30:1. The moisture content in all the six
120 treatments was adjusted to about 50% and the temperature was maintained at 65-70°C. The windrows were turned
121 properly to maintain the oxygen percentage (Figure 1).

122

123 **Results and Discussion**

124 The macroscopic and microscopic characteristics of the *Bacillus* BT1 and *Bacillus* BT2 observed are
125 summarized in the Table 1 and Figure 2, 3 and 4.

126 **Biochemical characterization**


127 The biochemical profiling of the bacterial isolates was performed by using API 20 kit as shown in Table 2.

128 **16S Ribotyping**

129 The results of 16S ribotyping showed that both strains belong to *Bacillus*. Phylogenetic tree were constructed by
130 using clustalw which indicated the close lineage with *Bacillus cereus* strains KR611712.1, KF241514.1 and
131 KM036215.1 as shown (Fig. 5)

132

133

134 **Fig. 5. Phylogenetic tree of *Bacillus Cereus* BT1 and BT2**

135

136

137 **Analysis of mature compost**

138 Changes due to the addition of microbial inoculants on different treatments of the compost were analysed. The
139 important physical, chemical and biological parameters of compost were examined with emphasis on the
140 parameters such as pH, C: N, moisture content, organic Carbon, Cation exchange capacity, electrical conductivity
141 and organic matter.

142 **C: N**

143 An ANOVA test was performed to check the significant difference between the mean values of different
144 treatments and compare the C: N of treatments that had inoculum with the control. The Table 3, shows that there
145 is a significant difference between the means, $F=15.270$ with df 3 and 11 when compared with control. The
146 comparison of each treatment having inoculum with control is shown in (Fig. A). The highest C: N was given by
147 treatment B and all treatments that had inoculum and the lowest was given by treatment D which had no inoculum.

148 **pH**

149 To check the significant difference between the mean values of pH of different treatments and compare with
150 control, an ANOVA test was carried out. The Table 3, shows significant difference in the mean values of
151 treatments having microbial inoculum when compared with control, $F=2.174$ with df 3 and 11. The (Fig. B) shows
152 that the highest pH value was recorded in treatment C and B the lowest was recorded in treatment D which had
153 no inoculum. The results of comparison between treatments having inoculum shows the high pH in treatment B
154 and the lowest is shown by treatment A.

155

156 Moisture content

157 The Table 3, shows that there is a significant difference in the mean values of moisture content of all treatments,
158 $F=51.40$ with df 3 and 11. It is evident from (Table 3.) that the highest moisture content of the mature compost
159 was observed in treatment D which is 27.5 and the lowest was observed in treatment C which is 21. The treatments
160 having different microbial inoculums were also compared and (Fig. C) shows that the highest moisture was
161 observed in treatment B.

162

163 Organic matter

164 It is evident from Fig. D that the highest organic matter was observed in treatment D and the lowest was recorded
165 in treatment A. The table 3 shows the significant difference in the mean values, $F=6.438$ with df 3 and 11. There
166 was no significant difference observed when comparison was made within treatments that had microbial
167 inoculum.

168 Organic carbon

169 The comparison of mature compost of different treatments having inoculum with control is shown in Fig.E, The
170 highest organic carbon was recorded in treatment D and lowest was recorded in treatment A. The table 3 shows
171 that there is a significant difference between the means, $F=21.0$ with df 3 and 11. There is no significance observed
172 when treatments which had microbial inoculum were compared.

173 Nitrogen

174 The Fig. F, shows that the highest nitrogen % was observed in treatment A and lowest was recorded in treatment
175 D. The table 3, results shows that there is a significant difference in the mean values, $F=5.299$ with df 3 and 11.
176 There is no significance difference observed between the treatments which had microbial inoculum

177 Electrical Conductivity

178 The table 3, shows the significant difference between all the treatments, $F=394.32$ with df 3 and 11. The highest
179 EC was observed in treatment C and lowest was observed in treatment B as shown in (Fig. F). The comparison
180 between treatments that had inoculum was also show significant difference. The EC was high in treatment C.

181 Cation Exchange Capacity

182 It is evident from Fig.G, that the highest CEC was determined in treatment B and lowest was determined in
183 treatment D. The mean values of different treatments and the comparison with control, $F= 291.62$ with df 3 and
184 11. The table 3, shows the significant difference in the mean values of all treatments. The comparison between
185 the treatments having inoculums was also show high significance difference. The high CEC showed by the
186 treatment B.

187 The C: N of all the treatments was optimized below 30 and it was decreased slightly in all the treatments with the
188 interval of time (Zaved *et al.*, 2017) reported that the optimum C: N at the start of the composting process should
189 be below 30:1 and at the end it should be decreased to 20:1. The analysis data of C: N of mature compost shows

190 the highest C: N, ranging from 14 to 20 in the treatments which had microbial inoculum as compared to without
191 inoculum treatments. The results are in the line of earlier findings that the initial C: N ranging 25 to 30 produced
192 the more mature compost. The high C: N ranging from 36-40 do not reach the optimum values and not produced
193 a good quality of compost. The results of C: N of mature compost shows the highest C: N in treatment B. The
194 larger stability in compost was observed in the waste having initial C/N ratio of below 30. The final germination
195 index should be high in the compost having C: N 20-28 as compared to the compost that has C: N of 12 (Makan
196 *et al.*, 2012). The compost with the lowest initial C/N ratio was significantly different from the other treatments
197 and had the lowest germination index (53–66%). The C:N of mature compost of different treatments which had
198 prepared inoculum and commercial inoculum was below 20, it is concluded that commercial and prepared
199 microbial inoculum is effective and give good quality and maturity of compost in terms of C:N. The C: N mainly
200 contributes to compost maturity.

201 The moisture content of all treatments was adjusted from 50-60% and it tends to decrease with the increase in
202 time interval. The initial moisture content of the compost pile should be 50 to 60%. The high amount of moisture
203 content above than 75% is not beneficial for compost pile as it decreases the temperature of the pile by cooling it
204 and decrease the production of microbial activity and biomass (Weyens *et al.*, 2011). The optimum moisture of
205 50% of all treatments shows the high activity of microbes. The moisture is inversely proportional to microbial
206 activity and temperature (Tiquia *et al.*, 1996). The decrease in moisture content will increase the temperature of
207 the windrow. Moisture content is a dominant factor in aerobic composting (Kavitha and Subramanian 2007) the
208 initial moisture of 75% is efficient for suitable composting of MSW. It provides better degradation of organic
209 matter and maintains temperature for longer time period. The highest moisture content was observed in treatment
210 D because no inoculum was added in this treatment and therefore low activity of microbes, hence these results are
211 in line of the finding of the lowest moisture was shown by mature compost of treatment A in which microbial
212 inoculum was added thus indicates high activity of microbes. It is concluded that the treatments having inoculums
213 gave low moisture percentage and there is no significant difference observed between treatments that had
214 inoculums.

215 The pH of all treatments was increased with the time interval. All the treatments at the end of the composting
216 process showed alkaline pH. The pH of mature compost of all treatments was also alkaline. The acidic pH of
217 substrate effects the initial phase of increasing temperature. Low pH affects the rate of respiration in a compost
218 pile. It reduces the rate of respiration and slows down the process of composting. The small significant difference
219 was observed in treatments that had prepared inoculum and commercial inoculum. The recommended a range of
220 pH from 6.9-8.3 at the end of composting and the results shows this range of pH in all treatments. The increase in
221 nitrification decreased the pH of compost pile. The pH of mature compost of all treatments was alkaline and these
222 results are in line with the earlier findings of Liang *et al.*, 2004 that pH of the compost should be alkaline
223 throughout and end of the composting process. The highest pH was recorded in treatment B and the lowest was
224 recorded in treatment D but all treatments showed alkaline pH ranging 7-8.9.

225 The amount of organic matter was observed in all treatments and it was found that the lowest Organic matter was
226 shown by Treatment A in which inoculum was added. The treatment which had inoculums showed low percentage
227 of organic matter but there was no significant difference observed when the treatments with prepared and

228 commercial inoculums were compared. Organic matters reduction with decrease in temperature. The organic
229 matter is inversely proportional to the temperature and time of composting. The range of organic matter should be
230 from 30-70% (US Composting Council, 2003). The mature compost must contain organic matter below 30%. The
231 Total organic matter should be decreased during the process of composting by the mineralization of organic matter
232 by microbes (Xu *et al.*, 2019). The organic matter should not be very high in the mature compost as it indicates
233 that the degradation rate and humification index is slow (Tiqui *et al.*, 1996). The addition of polythene glycol and
234 jaggery increased the rate of organic matter degradation. It rapid the process of composting by increasing the
235 microbial activity and it is concluded that the higher microbial activity increase the rate of degradation of organic
236 matter (Gabhane *et al.*, 2000)

237 The highest value of organic carbon was observed in treatment D which had no inoculum added. The lowest was
238 shown by treatment A in which inoculum with molasses was added. Organic Carbon is directly proportional to
239 the total organic matter. The organic matter degradation and low carbon shows the first order kinetic model
240 (Fernández *et al.*, 2020). It is reported by (Hegde *et al.*, 2000) that the increase in the degradation of organic matter
241 decreases the total organic matter of compost and thus decreases the total organic carbon of the compost as
242 observed in results that the total carbon decreased with decrease in the organic matter.

243 The Nitrogen is loss in the process of composting by volatilization of ammonia. The C: N less than 20:1 also
244 indicates the loss in Nitrogen (Sánchez *et al.*, 2001). The concluded parameters such as pH, temperature and
245 moisture significantly affect the rate of nitrogen. The results shows the percentage of nitrogen in all inoculum
246 added treatments was high, largest N% is shown by the treatment A and lowest was shown by Treatment D (Huang
247 *et al.*, 2004) reported that the total nitrogen is increased in the treatments as our results shows, where microbial
248 inoculants added because the microbial activity is high in those treatments. The addition of microbial inoculants
249 increased the nitrogen content by 36%.

250 Electrical conductivity is the measure of solutions ability to measure soluble salts. The value of EC was increased
251 with the increase in time interval in the process of composting (Parsa *et al.*, 2018). The rise in pH also increase
252 the EC of compost as reported by Huang *et al.*, 2004 and the results showed the increase in pH and EC of mature
253 compost of all treatments. The recommended range for EC in compost is between 2,000-6,000 μ S/cm (Sindhu *et*
254 *al.*, 2011). The very high value of EC was observed in treatment C and low was observed in treatment A. The
255 comparison of treatments which had inoculums showed the highest EC in commercial inoculum treatment. It is
256 concluded that the treatment A and B show better results of compost maturity in terms of EC because their EC
257 value ranging from 484-515 μ S/cm.

258 The CEC of all treatments was increased with increase in time interval. It was reported by Ryckeboer *et al.*, 2003
259 that the CEC must be high at the end of composting process, as our results show high CEC in mature compost of
260 all treatments. The low value of CEC indicates low quality and less maturity of compost because the uptake of
261 nutrients is not enough in low CEC compost for the efficient growth of plants. The high CEC was determined in
262 treatment B which had microbial inoculum and the lowest was determined in Treatment D where no inoculum
263 was added. When the treatments having prepared and commercial inoculum were compared, there was a
264 significant difference observed and the high CEC value was recorded in treatment B. Addition of molasses is also

265 very productive to expedite the decomposition efficiency because it contains many natural decomposers. Molasses
266 can be used in diluted form with different composition of waste (Awais *et al.*, 2020)

267 Compost prepared with inoculation of the two strains of *bacillus* bacteria improves soil structure. It Increases
268 microbial counts and diversity for a wide range of beneficial microorganisms. Compost in soil also controls soil
269 pH; improve soil aeration and increases soil water holding capacity. It preserves heat in soil thus helping seed
270 germination and plant growth. It binds soil pollutants through complexation with chelating compounds released
271 from organic fertilizer during the decomposition process (Ezugworie *et al.*, 2021)

272 Conclusion

273 The review of literature has revealed many aspects of making organic fertilizer by degrading organic waste with
274 the addition of microbial inoculums, this study was carried out to achieve a goal of making a suitable and effective
275 bacterial inoculum to decrease the time duration of composting process as well as improving the quality of mature
276 compost. The microbial inoculum was made by using two strains of *Bacillus cereus* which were isolated and
277 identified by 16S ribotyping. The degradation ability of these two strains was evaluated by applying it on organic
278 waste with molasses and without molasses. It was concluded that the prepared inoculum was effective and made
279 mature compost in 2.5 months. In the future there can be a possibility to use these effective strains of *Bacillus*
280 *cereus* with the combination of fungi and other bacteria and check their decomposing efficiency on organic waste
281 to get a good quality and early maturation of compost.

282 Limitation and Future Scope

283 Hence the results of the present work indicate that the prepared bacterial inoculum was effective in composting
284 process as evident from all the tested parameters. In the future there can be a possibility to use these effective
285 strains of *Bacillus cereus* with the combination of fungi, yeast and other bacterial enzymes to check their
286 decomposing efficiency on organic waste. It may provide good quality, pathogen free and early maturation of
287 compost. There is no bacterial or fungal enzymatic studies have done in the present work, this study will be
288 effective for future innovation in composting techniques.

289 Social Impact

290 Acknowledgement

291 Authors are thankful to Mr. Jalil Ahmed from Lahore Compost for his coordination during accomplishment of
292 this work.

293 Conflict of Interest

294 There is no conflict of interest in this research.

295 Author Contribution

296 The research was done with good collaboration and equal contribution of all authors.

297

298

299

300 REFERENCES

301

302 1. Ameen, A., 2020. Comparison of crop production efficiency of compost leachate with chemical fertilizer
303 and evaluating its effect on germination and growth of wheat crop. *African Journal of Biotechnology*, **5**:
304 282-286. (<https://academicjournals.org/journal/AJB/article-abstract/AC488BE63790>)

305 2. Awais, M., Tareen, M. S., and Ameen, A. 2020. COMPARISON OF COMPOSTING EFFICIENCY OF
306 DIFFERENT COMPOSITION OF MUNICIPAL SOLID WASTE WITH MOLASSES BY
307 OPTIMIZING VARIOUS PHYSICAL AND CHEMICAL PARAMETERS. *Journal of critical reviews*.
308 **11**:1332-1340 (<http://www.jcreview.com/fulltext/197-1594728763-adt-1.pdf>)

309 3. Bruns, A., Rohde, M., and Berthe, L. 2001. *Muricauda ruestringensis* gen. nov., sp. nov., a facultatively
310 anaerobic, appendaged bacterium from German North Sea intertidal sediment. *International journal of
311 systematic and evolutionary microbiology*. **51**: 1997-2006.
312 (<https://www.microbiologyresearch.org/docserver/fulltext/ijsem/51/6/0511997a.pdf?expires=1636620449&id=id&accname=guest&checksum=06B3F4E12AF1F288574170D809D667EB>)

313 4. Gabhane, J., William, S. P., Bidyadhar, R., Bhilave, P., Anand, D., Vaidya, A. N., and Wate, S. R.
314 2000. Additives aided composting of green waste: Effects on organic matter degradation, compost
315 maturity, and quality of the finished compost. *Biotechnology*, **114**: 382-388
316 (<https://pubmed.ncbi.nlm.nih.gov/22444633/>)

317 5. Goyal, S., and Sindhu, S. S. 2011. Composting of rice straw using different inocula and analysis of
318 compost quality. *Journal of Microbiology*, **3**: 367-375 .
319 (<https://scialert.net/abstract/?doi=mj.2011.126.138>)

320 6. Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., and Shen, Y. 2012. Effect of aeration rate,
321 C/N ratio and moisture content on the stability and maturity of compost. *Biotechnology*, **112**:171-178
322 (<https://pubmed.ncbi.nlm.nih.gov/22437050/>)

323 7. Hegde, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., and Quackenbush, J. 2000. A
324 concise guide to cDNA microarray analysis. *Bioresource Journal*, **3**:548-563
325 (<https://link.springer.com/article/10.1186/1743-7075-3-40>)

326 8. Huang D.Y., Lu W.J., Wang H.T., Zhou H.Y. and Wang Z.C. 2004. Application of high-efficient
327 cellulose utilization microorganisms in co-composting of vegetable wastes and flower stalk. *HuaJing*, **2**:
328 145-149 (<https://europepmc.org/article/med/15202253>)

329 9. Kavitha, R., and Subramanian, P. 2007. Bioactive compost-a value added compost with microbial
330 inoculants and organic additives. *Journal of Applied sciences*, **17**:2514-2518
331 (<https://scialert.net/abstract/?doi=jas.2007.2514.2518>)

332 10. Liang, C., Bruell, C. J., Marley, M. C., and Sperry, K. L. 2004. Persulfate oxidation for in situ remediation
333 of TCE. II. Activated by chelated ferrous ion. *Chemistry*, **9**:1225-1233
334 (<https://www.koreascience.or.kr/article/JAKO202006763001161.jsp-kj=SSMHB4&py=2012&vnc=v27n6&sp=588>)

335 11. Makan, A., Assobhei, O., and Mountadar, M. 2012. Effect of initial moisture content on the in-vessel
336 composting under air pressure of organic fraction of municipal solid waste in Morocco. *Iranian
337*

338

339 *Journal of Environmental Health*, **3**:114-116
340 (<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561115/>)

341 12. Michel Jr, F. C., Pecchia, J. A., Rigot, J., and Keener, H. M. 2003. Mass and nutrient losses during
342 composting of dairy manure with sawdust versus straw amendment. *Compost science and utilization*, **23**:
343 1-33. (<https://www.tandfonline.com/doi/abs/10.1080/1065657X.2004.10702201>)

344 13. Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., and Swings, J. 2003. Microbiological aspects of
345 biowaste during composting in a monitored compost bin. *Journal of Applied Microbiology*, **1**:127-137.
346 (<https://pubmed.ncbi.nlm.nih.gov/12492933/>)

347 14. Saharinen, M. H. 1998. Evaluation of changes in CEC during composting. *Compost science and*
348 *utilization*, **4**: 29-37. (<https://scialert.net/fulltext/?doi=pjbs.2006.2933.2944>)

349 15. Sánchez-Monedero, M. A., Roig, A., Paredes, C., and Bernal, M. P. 2001. Nitrogen transformation
350 during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the
351 composting mixtures. *Bioresource Technology*, **78**:301-308
352 (<https://pubmed.ncbi.nlm.nih.gov/11341692/>)

353 16. Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., and Pandey, A. 2011. Dilute acid
354 pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. *Biotechnology*,
355 **23**: 10915-10921
356 (<https://pubmed.ncbi.nlm.nih.gov/22000965/>)

357 17. Tiquia, M. S., Keener, D. L. Elwell, I. Burtt, Jr. F. C. Michel, Jr. 2004. Bacterial community profiles on
358 feathers during composting as determined by terminal restriction fragment length polymorphism analysis
359 of 16S rDNA genes. *Journal of applied microbiology and biotechnology*, **3**: 412–419
360 (<https://deepblue.lib.umich.edu/handle/2027.42/46763>)

361 18. Tiquia, S. M., Tam, N. F. Y., and Hodgkiss, I. J. 1996. Microbial activities during composting of spent
362 pig-manure sawdust litter at different moisture contents. *Bioresource Technology*, **55**: 201-206.
363 (<https://www.sciencedirect.com/science/article/abs/pii/S0269749197001164>)

364 19. Wei, Z., Yue, B., Shiping, Z., Hongliang, W., and Youhai, L. J. 2008. Effect of inoculating microbes in
365 municipal solid waste composting on characteristics of humic acid. *Chemistry*, **2**: 368–374.
366 (<https://pubmed.ncbi.nlm.nih.gov/17313970/>)

367 20. Weyens, N., van der Lelie, D., Taghavi, S., and Vangronsveld, J. 2009. Phytoremediation: plant–
368 endophyte partnerships take the challenge. *Current opinion in Biotechnology*, **8**: 48-254.
369 (<https://pubmed.ncbi.nlm.nih.gov/19327979/>)

370 21. Zaved, H. K., Rahman, M. M., Rahman, M. M., Arafat, S. M. Y., and Rahman, M. S., 2017. Isolation
371 and characterization of effective bacteria for solid waste degradation for organic manure. *Current*
372 *applied science and technology*, **8**:44-55.
373 (<https://www.thaiscience.info/journals/Article/KLST/10559616.pdf>)

374 22. Wang, WK., Liang, CM. Enhancing the compost maturation of swine manure and rice straw by
375 applying bioaugmentation 2021. *Scientific Reports*, **11**, 6103. (<https://doi.org/10.1038/s41598-021-85615-6>)

377 23. Al Hosni, A. S., Pittman, J. K., and Robson, G. D. 2019. Microbial degradation of four biodegradable
378 polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. *Waste
379 Management*, **97**, 105-114.
380 (<https://www.sciencedirect.com/science/article/abs/pii/S0956053X19305124>)

381 24. Ngo, H. T. T., and Cavagnaro, T. R. 2018. Interactive effects of compost and pre-planting soil moisture
382 on plant biomass, nutrition and formation of mycorrhizas: a context dependent response. *Scientific
383 reports*, **8(1)**, 1-9.
384 (<https://www.nature.com/articles/s41598-017-18780-2>)

385 25. Ezugworie, F. N., Igbokwe, V. C., and Onwosi, C. O. 2021. Proliferation of antibiotic-resistant
386 microorganisms and associated genes during composting: An overview of potential impacts on public
387 health, management and future. *Science of the total environment*, **147191**.
388 (<https://www.sciencedirect.com/science/article/abs/pii/S0048969721022622>)

389 26. Parsa, N., Khajouei, G., Masigol, M., Hasheminejad, H and Moheb, A. 2018. Application of
390 electrodialysis process for reduction of electrical conductivity and COD of water contaminated by
391 composting leachate. *Civil Engineering Journal*. **4(5)**, 1034-1045.
392 (<https://www.civilejournal.org/index.php/cej/article/view/731>)

393 27. Fernández-Delgado, M., del Amo-Mateos, E., Lucas, S., García-Cubero, M. Ta and Coca, M. (2020).
394 Recovery of organic carbon from municipal mixed waste compost for the production of
395 fertilizers. *Journal of Cleaner Production*. **265**, 121805.
396 (<https://www.sciencedirect.com/science/article/abs/pii/S0959652620318527>)

397 28. Xu, J., Lu, Y., Shan, G., He, X. S., Huang, J and Li, Q. 2019. Inoculation with compost-born thermophilic
398 complex microbial consortium induced organic matters degradation while reduced nitrogen loss during
399 co-composting of dairy manure and sugarcane leaves. *Waste and Biomass Valorization*. **10(9)**, 2467-
400 2477.
401 (<https://link.springer.com/article/10.1007/s12649-018-0293-y>)