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Abstract: A case study is presented which demonstrates the value and validity of a novel approach
to the use of consolidated amateur (‘ham’) radio reception reports as indicators of the presence of
intense ionospheric sporadic E (Es). It is shown that the use of amateur data can provide an im-
portant supplement to other techniques, allowing the detection and tracking of Es where no suitable
ionosonde or other measurements are available. The effectiveness of the approach is demonstrated
by reference to ionosonde data, and the advantages and limitations of the technique are discussed.
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1. Introduction

Mid-latitude sporadic E (Es) is a phenomenon of the ionospheric E layer, in the Mes-
osphere — Lower Thermosphere (MLT) region. The MLT is at the boundary between the
turbulent, well mixed, lower atmosphere and the stratified, partially ionized upper atmos-
phere [1, 2]. The MLT is the interface region, where the ionosphere and the neutral atmos-
phere interact.

Mid-latitude sporadic E [3 - 6] consists of regions of enhanced ionization that occur
intermittently, in thin layers up to a few km thick [7, 8], at altitudes of 90-130 km [5, 9, 10]
and with horizontal extent typically between 10 km and a few hundred km [11]. The ion-
ization density within Es clouds is much higher than in the normal E region, due to a high
density of metallic ions, ablated from meteors, and their associated free electrons [8, 10,
12]. The wind shear theory [13, 14] is widely accepted as describing the principal mecha-
nism for mid-latitude Es-layer formation. Rapid changes in zonal winds with altitude con-
centrate the metal ions into narrow height ranges [5, 15]. Observations that clearly support
this theory have recently been reported from the COSMIC2 satellites and the ICON mis-
sion [16].

Sporadic E can have an important influence on radio communications at HF and
above, causing anomalous long-distance ground to ground propagation, at radio frequen-
cies higher than those normally reflected from the ionosphere [17]. This can be problem-
atic for radars operating at UHF and below, as well as for communication systems, par-
ticularly those where the angle between the sporadic E layer and the incident radio signal
is shallow [18]. Es can also cause radio scintillation at L-band, again for low elevation
signals, on both satellite to ground and satellite to satellite paths [19].

Techniques commonly used to detect and characterize Es include incoherent scatter
radar (ISR), GNSS satellite radio occultation (RO), rocket studies, and ionosondes. Unfor-
tunately, they all have geographical and temporal coverage limitations, making it difficult
to find data relating to the exact time and location of any given Es event.

ISR studies can provide a very detailed picture of the structure and evolution of spo-
radic E layers [5, 7], but there are not many ISR stations worldwide and most do not run
continuously. RO observations have genuinely global coverage and are now the best way
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of studying the overall seasonal and geographical distribution of Es [16, 20 - 22], but they
are currently too sparse in both time and space to be relied on for studying individual
events. Rocket studies produce accurate, in-situ, measurements of ion and electron con-
centration [8, 10, 12] but are very restricted in terms of both launch date/time and location.
Finally, ionosondes permit clear and unequivocal identification and investigation of Es
[23 - 26], and many do operate continuously, but there are large gaps in geographical cov-
erage, particularly over the oceans but also on land. Sporadic E clouds can be very limited
in horizontal extent, and it is only by chance that they will happen to form close to an
operating ionosonde.

Although there is a marked seasonal pattern to the occurrence of sporadic E, with a
maximum in the hemispheric summer months [20, 26, 27], it remains very difficult to pre-
dict, both in terms of time of occurrence and of location. For this reason, an opportunistic
approach, using oblique propagation of signals of opportunity, has frequently been
adopted to study signals propagated via Es reflection [27 - 32].

The recent advent of automatic reporting and data capture networks for amateur ra-
dio signal reports offers a new resource. Such networks are beginning to be used to ex-
plore ionospheric phenomena [33 - 36] but they have not previously been applied to spo-
radic E. Amateur radio stations are widely distributed, and many are actively searching
for Es events in order to extend their communications range at VHF. The focus of amateur
signal reporting is, therefore, highly likely to be in the right place and at the right time to
support studies of intense Es - defined here as events strong enough to support oblique
reflection of VHF signals.

This article outlines a novel approach to using data from amateur radio reporting
networks to map sporadic E events. A description of the collection and presentation of the
data is given, and the use of ionosonde records to validate the amateur data is described.
A case study from 18 August 2018 is then presented to illustrate the use of the technique
to reveal the temporal and spatial evolution of an Es event. Finally, the advantages and
limitations of the technique are discussed, and conclusions presented.

2. Materials and Methods
2.1. Es detection using amateur data

Figure 1 gives an overview of the approach adopted to the collection, filtering, and
mapping of amateur radio reception data. Primary sources of data include the Reverse
Beacon Network [37], PSK reporter [38], WSPRNet [39], and the DX cluster [40], all of
which automatically and continuously collect reports from amateur radio stations of sig-
nal reception from other amateur stations. Recorded data includes reception date/time,
transmitter and receiver locations, and radio frequency, and sometimes also signal
strength, doppler shift and transmitter power. Another system, DXMaps.com [41], con-
tinuously aggregates and archives the data from the primary reporting networks. All
these systems are operated on a voluntary basis, but they have proved to be a very reliable
information source in recent years.

For this study, selected reception reports are downloaded from DXMaps.com, sup-
plemented with a subsidiary direct feed from WSPRNet. Reception reports in the 28 MHz,
50 MHz and 70 MHz amateur frequency bands only are selected, on the basis that at lower
frequencies ionospheric propagation modes other than Es are very likely also to be oper-
ating, while at higher frequencies Es reflections are relatively rare.

For frequencies in the selected bands, consistent long-distance propagation of signals
is much more likely to be via sporadic E than by any other mode. However, to re-
duce/eliminate possible ground wave, tropospheric, and scatter effects, a minimum sta-
tion separation of 750 km is applied in the processing. Similarly, an upper limit of 2500
km is set to reject obvious multi-hop Es paths, so that a single hop can be assumed, allow-
ing a mid-point to be easily assigned to the path to indicate the likely point of reflection.
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Figure 1. Overview of the approach to the collection, filtering, and mapping of amateur radio re-
ception reports.

It is possible that some signals propagated by mechanisms other than Es (particularly
meteor scatter) will still be present in the data after distance filtering, but sporadic E has
other distinguishing features. Sporadic E reflection is characterized by moderately persis-
tent signals (minutes to hours), and transient, mobile, reflecting clouds of limited horizon-
tal extent (10 km — a few hundred km). Where these characteristics are present, confident
identification of Es is possible.

Figure 2. shows an example map of Western Europe, on which are plotted reception
reports from a single 15-minute period on 18 August 2018. Solid lines indicate the great
circle paths between transmitting and receiving stations, and solid circles indicate the
midpoints of those great circle paths as estimates of the likely reflection points. It can be
seen that there is clear triangulation, from multiple directions, of a number of concentrated
areas of reflection.
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Figure 2. Example map showing reception reports from a 15-minute period centered on 14:45 UTC
18 August 2018. Solid lines indicate the great circle paths between the transmitting and receiving
stations. Solid circles indicate the midpoints of the great circle paths. Green = 28 MHz, blue = 50
MHz, red =70 MHz.
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One of the limitations of using signals of opportunity, such as amateur radio signals,
for research is a lack of firm knowledge about which stations were transmitting and/or
receiving during the selected time period. Similarly, geographical coverage will inevitably
be incomplete where there are no amateur radio stations in suitable locations. Because of
these factors, it is clear that, although the presence of a signal path on the map indicates
the probable presence of Es, the absence of a reception report in a given location does not
reliably indicate the absence of Es.

For these reasons, an estimated coverage plot is derived which shows the midpoints
of all possible paths between all stations known (from the reception report data) to have
been either transmitting or receiving, on each frequency band, during the selected time
period. This is shown by the additional background in Figure 3, which represents the same
data as Figure 2 but with the estimated geographical coverage indicated by a dot for the
midpoint of every possible path between active stations. On this map the observed great
circle midpoints are also shown, but the great circle paths themselves are omitted for clar-
ity.

As an example of the usefulness of the geographical coverage estimate, in Figure 3 it
can be seen that the reception reports show no Es reflection points in north-west France,
but nonetheless there is a considerable density of coverage markers in that area. This in-
dicates that the apparent local absence of Es is probably genuine.
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Figure 3. Example map showing reception reports from a 15-minute period centered on 14:45 UTC
18 August 2018, plus the estimated geographical coverage of the data. Solid circles: midpoints of
reported great circle paths. Background dots: estimated geographical coverage (see text). Green = 28
MHz, blue =50 MHz, red =70 MHz.

2.2. Validation against ionosonde data

Ionosonde data can give unequivocal evidence of the presence or absence of sporadic
E. Figure 4 shows a map of the continuously operating ionosondes in the area of this
study; the gaps in coverage can clearly be seen, but where Es occurs close to an ionosonde
site, valuable information can be gained.
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Figure 4. Continuously active ionosondes in Central and Western Europe.

The evidence for sporadic E in ionograms is best found by examination of individual
records, although some less rigorous analysis can be performed using auto-scaled obser-
vations. Figure 5 shows an example of an ionogram with both F-layer and sporadic E re-
flections present. They can easily be distinguished by their virtual height, but also because
the F-layer traces are strongly curved upwards, due to retardation as the waves are grad-
ually bent back to earth. The sporadic E trace, by contrast, does not curve, because Es
layers are very dense and very thin, giving no detectable retardation. In this example, the
Es layer is ‘non-blanketing’ (partially transparent), and the reflection from F-layer ioniza-
tion is clearly visible through it.
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Figure 5. Pruhonice ionosonde plot 18 August 2018, 15:45 UTC. F-layer reflection (curved traces)
can be seen above 200 km virtual height. Es-layer reflection (horizontal trace) can be seen at just
over 100 km virtual height.

By contrast, the example in Figure 6 shows much more intense sporadic E, where the
Es region peak ionization is well above that in the F region. It also shows evidence of a
second Es reflection (shown at 200km) which is the result of a double bounce from 100
km. F-layer reflections are only just visible through the Es.
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Figure 6. Pruhonice ionosonde plot 18 August 2018, 14:45 UTC. Intense Es reflections (horizontal
trace) can be seen at around 100 km virtual height, with a second bounce (via ground) at 200 km.

For this study, records from seven European ionosondes were individually examined
to establish the highest reflection frequency at each observation time. Since we cannot
distinguish between the ordinary (O) and extraordinary (X) modes from the amateur ra-
dio observations, the highest frequency vertically reflected (normally the X but sometimes
off-axis) is adopted as the key measure (fiEs). This approach would not necessarily be
valid for lower HF communications, as the X mode often experiences greater absorption,
but at 28 MHz and above the difference in absorption between the O and X modes is small.

Each f:Es value represents a snapshot of the state of the ionosphere in the vicinity of
the ionosonde station, at the relevant time stamp.

3. Case Study Results

On 18 August 2018, a large-scale sporadic E event developed rapidly over Central
and Western Europe in the early afternoon UTC, as shown by Pruhonice ionosonde Es
critical frequency data (foEs) in Figure 7. F2 critical frequency data (foF2) is also shown for
comparison. August 2018 was close to solar minimum and the afternoon was unremark-
able from an ionospheric index point of view, with a solar flux of 67 and a Kp of 3.

Pruhonice foF2 and foEs, 18 August 2018
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Figure 7. Auto-scaled foF2 (red) and foEs (blue) from the Pruhonice ionosonde for 18 August 2018.
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Figure 8. (a)-(h). First part of sporadic E event 18 August 2018, sequential 15-minute samples cen-
tered from 13:15 UTC to 15:00 UTC. Large circles: ionosonde-derived f:Es [MHz] (dark = low, pale =
high, -- = no Es). Medium circles: approximate signal reflection points (green = 28 MHz, blue = 50
MHz, red =70 MHz). Dots: estimated coverage (colors ditto).
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Figure 9. (a)-(h). Second part of sporadic E event 18 August 2018, sequential 15-minute samples
centered from 15:15 UTC to 17:00 UTC. Large circles: ionosonde-derived fiEs [MHz] (dark = low,
pale = high, -- = no Es). Medium circles: approximate signal reflection points (green = 28 MHz, blue

=50 MHz, red = 70 MHz). Dots: estimated coverage (colors ditto).
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In Figures 8 and 9, the progress of the 18 August 2018 Es event is illustrated with
maps showing sequential 15-minute periods centered from 13:15 UTC to 15:00 UTC (Fig-
ure 8) and 15:15 UTC to 17:00 UTC (Figure 9).

The format of each map is as shown in Figure 3, but with the addition of a large, filled
circle at the location of each of the seven ionosondes shown in Figure 4. Each circle in-
cludes the corresponding value of fiEs. Ionosonde color coding, which is provided for
guidance only, goes from dark blue (low values) to yellow (high values). Dark blue with
two dashes indicates that no Es was detected by the corresponding ionosonde.

Video 51 (see Supplementary Materials) is a video representation of the Case Study
results, also showing mapping of the 18 August 2018 event but with sequential 1-minute
samples from 13:00 UTC to 17:00 UTC. To aid visual interpretation, all data, including the
ionosonde data, is represented with 5-minute persistence centered on the relevant time
stamp.

4. Case Study Discussion

At 13:15 UTC (Figure 8 (a)), soon after the start of the Es event, a large, intense re-
flecting area can be seen, centered at about latitude 48 N, longitude 13 E. Local ionosonde
data is also indicating high values of fiEs in that region at that time. Over the next hour
(Figure 8 (b) - (e)), another reflecting area gradually develops to the SW, centered at about
46 N 7 E, where there is no local ionosonde for comparison. By 14:00 UTC (Figure 8 (d)),
there are two distinct reflecting areas, with a clear gap between them. Good geographical
coverage is indicated in that area, so it seems likely that the gap is genuine.

This overall pattern persists until, from 15:15 UTC (Figure 9 (a)) onwards, the areas
of maximum ionization begin to merge and to move in a broadly north westerly direction.
Eventually they begin to fade, until by 17:00 UTC (Figure 9 (h)) only a relatively weak
reflecting area remains, along a NE/SW line, with mainly 28 MHz paths indicated. By this
time, three of the eastern-most ionosondes are no longer reporting any Es.

It can be seen that through the whole period, the 28 MHz reflection points (green
circles) are generally spread over a wider area than the 50 MHz reflection points (blue
circles), and very few 70 MHz reflection points (red circles) are shown at all. This is as
expected, given the lower level of level of ionization necessary to support reflection at the
lower frequencies.

Across the whole series, good correspondence can be seen between the locations of
the concentrations of great circle path midpoints and the nearby ionosonde fiEs values.
Precise and detailed correspondence should not be expected, because the f:Es figures rep-
resent snapshots at the middle of each period, the intense Es clouds are likely to be small,
and the derived reflection points can only be approximations because of the possibility of
off-axis paths [42]. Nonetheless, the structure and evolution of the event can clearly be
seen.

The observed strong clustering of path midpoints, even as the reflecting areas grow,
move, and decline, supports the contention that the vast majority of the signals observed
during the case study period were propagated via sporadic E. Meteor scatter would not
exhibit these characteristics. In addition, F2 propagation at 28 MHz and above was ex-
tremely unlikely at the date of this case study, which was close to sunspot minimum.

5. Conclusions

This article presents a novel observational approach to the study of ionospheric spo-
radic E, using crowd-sourced radio amateur observations across multiple ground to
ground links and at multiple radio frequencies.

The temporal and spatial variability of sporadic E is difficult to study because most
ionospheric instruments are limited to specific locations and have limited temporal sam-
pling. Examples include ISRs that typically take data in campaign modes at a fixed loca-
tion, ionosondes that sample every 5-15 minutes at a few fixed locations, and satellite ob-
servations which are sparse both geographically and temporally.
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The new technique is demonstrated using a case study of sporadic E over Europe on
18 August 2018. Reception reports from amateur radio stations operating at 28 MHz, 50
MHz, and 70 MHz are used to demonstrate the mapping of sporadic E. For mapping pur-
poses, the mid-point of the transmitter to receiver path is taken as an approximation of
the reflection location. The case study clearly illustrates the ability of the technique to re-
veal the presence and evolution of a sporadic E event: two distinct sporadic E regions are
present over Europe for over an hour, subsequently merging and then slowly dispersing.
The case study also demonstrates good correspondence with results from seven European
ionosondes, as well as clearly demonstrating the presence of Es in the gaps between ion-
osonde locations.

Compared with traditional techniques, the new approach can provide both better
spatial and temporal resolution and wider geographical coverage, particularly in regions
of high amateur radio activity such as Europe, North America, and Japan. It can also fill
in gaps in the coverage provided by other more sparsely distributed instruments. Ama-
teur radio stations are widely distributed, and many are actively searching for Es events
in order to extend their VHF communications.

A limitation of the new technique is that coverage can be missing where there are no
amateur radio stations active in suitable locations. Although the presence of a signal path
on the map indicates the probable presence of Es, the absence of a reception report in a
given location does not reliably indicate the absence of Es. To mitigate this issue, an esti-
mate of geographical coverage is provided per time period.

Improvements to data coverage could be made by strategically placing some addi-
tional equipment to cover data gaps. It would also be advantageous to augment the radio
amateur equipment with timed signals that could allow inference of additional infor-
mation such as number of hops.

Supplementary Materials: Video S1: Mapping of the sporadic E event on 18 August 2018, sequential
1-minute samples, from 13:00 UTC to 17:00 UTC. Large circles: ionosonde-derived fiEs [MHz] (dark
=low, pale = high, -- =no Es). Medium circles: approximate signal reflection points (green =28 MHz,
blue =50 MHz, red = 70 MHz). Dots: estimated coverage (colors ditto). All data represented with 5-
minute persistence centered on the related data time stamp, to aid visual interpretation. Video du-
ration 48 seconds.
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