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Novel recurrence relations for volumes and surfaces of n-balls,

regular n-simplices, and n-orthoplices in real dimensions
Szymon Lukaszyk
Lukaszyk Patent Attorneys, ul. Glowackiego 8, 40-052 Katowice, Poland

The aim of this study is to examine n-balls, n-simplices and n-orthoplices in real dimen-
sions using novel recurrence relations that removed indefiniteness present in known formu-
las. They show that in negative, integer dimensions volumes of n-balls are zero if n is even,
positive if n=-4k - 1, and negative if n = -4k - 3, for natural k. Volumes and surfaces of
n-cubes inscribed in n-balls in negative dimensions are complex, wherein for negative, in-
teger dimensions they are associated with integral powers of the imaginary unit. The rela-
tions are continuous for n € R and show that the constant of x is absent for 0 <n < 2. For
n < -1 self-dual n-simplices are undefined in negative, integer dimensions and their vol-
umes and surfaces are imaginary in negative, fractional ones, and divergent with decreasing
n. In negative, integer dimensions n-orthoplices reduce to the empty set, and their real vol-
umes and imaginary surfaces are divergent in negative, fractional ones with decreasing n.
Out of three regular, convex polytopes present in all natural dimensions, only n-orthoplices,
n-cubes (and n-balls) are defined in negative, integer dimensions.
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1. Introduction

The notion of dimension n of a set has various defini-
tions [1,2]. Natural dimensions define a minimum number
of independent parameters (coordinates) needed to specify
a point within Euclidean space R", where n=-1 is the
dimension of the empty set, the void, having zero volume
and undefined surface. Negatively dimensional spaces
can be defined by analytic continuations from positive
dimensions [3]. A spectrum, topological generalization of
the notion of space allows for negative dimensions [2,
4,5,6] that refer to densities, rather than to sizes, as the
natural ones.

Fractional (or fractal) dimensions extend the notion of
dimension to real, including negative [7], numbers. Nega-
tive dimensions are considered in probabilistic fractal
measures [8]. Fractal dimension and lacunarity [9,10]
allow to investigate the fractal nature of prime sequences
[11]. Fractal dimensions are verified to be consistent with
the experimental observations, and allow for the analysis
of the transport properties, such as permeability, thermal
dispersion and conductivities (both thermal and electrical)
in multiphase fractal media [12], whereas the probability
models for pore distribution and for permeability of po-
rous media can also be expressed as a function of fractal
dimension [13]. Interestingly the dimension of the bound-
ary of the Mandelbrot set equals 2 [14] and the general-
ized Mandelbrot set in higher-dimensional hypercomplex
number spaces, when the power « of the iterated complex
variable z tends to infinity, is convergent to the unit (a-1)-
sphere [15].

This by no means sets the limit on the meaning of di-
mension. Complex dimensions [2] are also considered, for
example. Furthermore, geometric concepts (such as
lengths, volumes, surfaces, etc.) can be related to nega-
tive, fractional, and complex numbers. Complex geodesic
paths emerge in the presence of black hole singularities
[16] and when studying entropic dynamics on curved
statistical manifolds [17]. Fractional derivatives of com-
plex functions could be able to describe different physical
phenomena [18].
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In R? there are countably infinite number of regular,
convex polygons, in R® there are five regular, convex
Platonic solids, in R* there are six regular, convex poly-
topes. For n > 4, there are only three: self-dual n-simplex,
and n-cube dual to n-orthoplex [19]. Furthermore R" is
also equipped with perfectly regular, and obviously also
convex, n-ball. Properties of these three regular, convex
polytopes in natural dimensions are well known
[20,21,22], while fractal dimensions of hyperfractals
based on these polytopes in natural dimensions were
disclosed in [23].

The aim of this study is to examine n-balls,
n-simplices and n-orthoplices in real dimensions using
novel recurrence relations that remove indefiniteness
present in known formulas.

The paper is structured as follows. Section 2 presents
known formulas for volumes and surfaces of n-balls,
regular n-simplices and n-orthoplices in natural dimen-
sions. Section 3 defines novel recurrence relations for
these geometric objects in real dimensions. Section 4
refers to n-balls circumscribed about and inscribed in n-
cubes in real dimensions. Section 5 summarizes the find-
ing of this paper, whereas their possible applications are
discussed in Section 6.

2. Known formulas
Volume of an n-ball (B) is known to be

2
" .

V(R =1 2)

where T is the Euler’s gamma function and R is the n-ball
radius. This becomes

@

V,, (R)B = , @)

if n is even and
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2(k1)(4r)
V2k+1(R)B = () 7[_) R*, ©)
(2k +1)!

if nis odd. Expressed in terms of n-ball diameter (1) is the
rescaling factor between n-dimensional Lebesgue meas-
ure and Hausdorff measure for n € R* [24,2].

Another known [21] recurrence relation expresses the
volume of an n-ball in terms of the volume of an (n-2)-
ball of the same radius

2R
V. (R), = ”n V., (R),. (4

where Vo(R)g =1 and V3(R)s = 2R. It is also known [21]
that the (n-1)-dimensional surface of an n-ball can be
expressed as

n
Sn(R)B :EVn(R)B' ®)
Furthermore, it is known [25] that the sequence
fn = 2_7[ fnfz (6)
n

satisfies the same recursion formula as (4) for unit radius.
Volume of a regular n-simplex (S) is known [20,26] to

be
Jn+1
nly2"

where A is the edge length. A regular n-simplex has n+1
(n-1)-facets [21] so its surface is

Sy (A)g =(n+1)V,, (A ®

Volume of n-orthoplex (O) is known [22] to be

\/Z_n

n!

A", ™

Va(A); =

S

A" (9)

Vn (A)O =
As n-orthoplex has 2" facets [21] being (n-1)-simplices,
its surface is

S,(A), =2"V,,(A),. (10)

Formulas (1)-(3) and (7)-(10) are undefined in nega-
tive dimensions, since factorial is defined only for non-
negative integers, while gamma function is undefined for
non-positive integers. Relations (4), (5) are undefined if
n=0.

3. Novel recurrence relations
A radius recurrence relation

.2

f=—f . 11
nnn—2 ()

for n e Ny, where fy := 1 and f; ;= 2, allows to express the
volumes (4) and surfaces (5) of n-balls as
V,(R), = f,7"2R", (12)

n

S, (R), =nf, 7" 2R, (13)

where “|X|“ denotes the floor function giving the greatest
integer less than or equal to its argument x.
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Fig. 1: Radius n-ball recurrence relation (blue)
with the z"\|n/2] factor (green) for n =-7, -6,...,7.

The sequence (11) allows to present n-balls volume
and surface recurrence relations (12), (13) as a product of
a rational factor f, or nf,, an irrational factor z"\|n/2| (for
n#0 and n#1), and a metric (radius) factor R" or R™.
The relation (11) can be then extended into negative di-
mensions as

_n+2
! 2
solving for f,, and assigning new n € Z as old n-2. It is
sufficient to define f,=fy,:=1 (for the empty set and
point dimension) to initiate (11) and (14).

The same assignment of new n € Z as old n - 2 can be
made in (4) solved for V,»(R)z yielding

f f (14)

n+2°

_n+2
B 27R?
This enables to avoid the indefiniteness of factorial
and gamma function in negative dimensions present in

formulas (1)-(3) and removes singularity present in rela-
tion (4).
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Fig. 2: Graphs of volumes (V) and surface areas (S) of n-balls
of unit radius for n =-25, -6,...,15.
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3
g, = L g (22)
n 2n n-2
having inverse
gn :2(n+2) gn+2’ (23)

forn e Z, where g, :=2and go := 1.
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'-llp -8 6 -4 2 0 2 4 6 n
Fig. 3: Graphs of volumes (V) and surface areas (S) of n-balls
of unit diameter for n =-10, -9,...,8.
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Furthermore, if n <-1 and odd

LIn/2 |2 )
2k +1
f z_(_l)tn/ZJ g ( )=
n ol (16)
o (-n=1)!

2" (_” _1)!
2

where numerator in the first term corresponds to OEIS!
A001147 sequence [27], and the fraction of the second
term can be simplified by dividing by 2" ™V"2(-(n+1)/2)!
(OEIS A000165 sequence [28]). If n>-1 and odd

2n+l (n_'_l)l
2

where numerator corresponds to OEIS A047053 sequence
[29] and this fraction can again be simplified by dividing
by 2MY2((n+1)/2)! (OEIS A000165 [28]). If n>0 and
even

f = L (18)
" (n/2)!
Furthermore, if n is odd
sn—1 _
—i f_(n+2) f. =1 (19)

Radius recurrence relations (11), (14) are shown in
Fig. 1 along with the z"|n/2] factor and listed in Table 1.
Volumes and surfaces of n-balls calculated with relations
(12) and (13) are shown in Fig. 2.

One can also express the volumes and, using (5), sur-
faces of n-balls in terms of their diameters D as
V, (D), = g,7"*D",

n

(20)

S,(D), =2ng,7"?ID"*, @1)

n

defining diameter recurrence relation

! The On-Line Encyclopedia of Integer Sequences.

2

-3 2 -1 0 1 . 2 3
Fig. 4: Diameter n-ball recurrence relation (blue)
with the z*|n/2] factor (green) for n = -4, -3,....,4.

Furthermore, if n <-1 and odd

|-n/2 !
a2t (24)

—n—1I

> !
which (excluding the sign factor) corresponds to OEIS
A151817 sequence [30] and (for n < -2 and excluding the
sign factor) to OEIS A052718 sequence [31]. Also, nu-

merator of (26) corresponds to twice of OEIS twice
A010050 sequence [32] forn<-3. If n>1 and odd

/2]t (zlj

n! n!

g, =—(-1)" 2(-n-1)!

n

: (25)

the reciprocal of which corresponds to OEIS A000407
[33] sequence If n >0 and even

1
O =7 (26)
" 2"(n/2)!
the reciprocal of which corresponds to OEIS A047053
[29] sequence. If n>0 the reciprocal of g, (22) corre-

sponds to OEIS A087299 sequence [34].
Furthermore, if n is odd

sn-1

=170 (1120, =4 @7)

Diameter recurrence relation (22), (23) is shown in
Fig. 4 along with the z*|n/2] factor and listed in Table 1.
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4
Volumes and surfaces of n-balls calculated with relations \/E
(20) and (21) are shown in Fig. 3. _ _ A (A)O = AVM(A)O = (31)
Furthermore, for positive and negative odd dimen- n
slons with Vo(A)o := 1 and reversed solving for n-1 as
f
_h_on (28) n+1
4 V,(A), =V...(A), —= (32)
n n+1 ’
9, ° ° A2
: - - <n< . . . . .
Tanble l.fVqumegs and \s/u(gfllc)es Osf (r;{_bla)llls t?{D-lll) = rjc,fo%l) which removes singularity from (31) and is zero for inte-
n n n - B n — B n — B n - B H H H H H
11 945732 | 60280 1 0.031 1 0.338 529009 | 1383997 | 9er n<-1 showing th_at for negative, integer d_|men5|ons
-9 [ 105/16 | 3360 0.021 -0.193 10980 | -197.634 volumes of n_—orthopllces arg ze_ro, while their surfaces
-7 | -15/8 | -240 -0.019 [0.135 -2.464 [ 34.494 (10) are undefined, as shown in Fig. 6.
5 [ 3/4 24 0.024 |-0121 0.774 | -7.7404 15 5
3 [-12 -4 0051 [0.152 -0.405 | 2.432 Vv S
-1 [1 2 0318 |-0.318 0.637 [ -1.273 ! 4
0 |1 1 1 0 1 0
1 |21 1 2 2 1 2 35
2 |11 1/4 3142 | 6.283 0.785 | 3.142
3 43 1/6 4189 | 12566 0524 [3.142 1 3
4 |1 1/32 4935 [19.739 0.308 | 2.467 / \
5 [815 [ 1/60 5.264 [ 26.319 0.164 [ 1.645 25
6 |16 1/384 | 5.168 | 31.006 0.081 | 0.969 / \
7 [16/105 [ 1/840 [ 4725 [33.073 0.037 [ 0.517 2
8 | 124 [ 1/6144 | 4.059 | 32.470 0.016 | 0.254
9 | 32/945 | 1/15120 | 3.299 | 29.687 0.006 | 0.116

In the case of regular n-simplices, equation (7) can be
written as a recurrence relation

. n+1
Vn(A)S = AV,H(A)S ‘/W’

with Vg(A)s := 1. This removes indefiniteness of factorial
for n = -1 present in (7). Solving (29) for V,_;, and assign-
ingnewn :=n-1 e Z yields

(29)

V.. (A) [2(n+1)
on, 40

which shows that n-simplices are indefinite only for inte-
ger n <-1, as shown in Fig. 5. The volume of an empty or
void (-1)-simplex is V_1(A)s = 0, while its surface S;(A)s
(8) is undefined, as the void itself.

12
\%

; (30)

»nw

i 25
0.8 \ 2
0.6
S
0.2 / / 0.5

-1 0 1 2 3 4 5 6 n
Fig. 5: Graphs of volumes (V) and surface areas (S) of regular
n-simplices of unit edge length forn=-1,...,7.

In the case of n-orthoplices, equation (9) can be writ-
ten as a recurrence relation

VA .
.

0 —,

-1 0 1 2 3 4 5 6 n
Fig. 6: Graphs of volumes (V) and surface areas (S) of
n-orthoplices of unit edge length forn=-1,...,7.

4. n-balls circumscribed about and inscribed in
n-cubes

The edge length Acc of n-cube circumscribed (CC)
about n-ball corresponds to the diameter D of this n-ball.
Thus, the volume of this cube is V,(D)cc = D" and the
surface is S,(D)cc = 2nD™™. The edge length A, of n-cube
inscribed (CI) inside the n-ball of diameter D is
Aci = D/, which is singular for n =0 and complex for
n < 0. Thus, the volume of n-cube inscribed in n-ball is

V,(D), =A'=D"n"", (39)
and the surface is
S,(D), =2nA"* =2D""E (e

The volume (33) is real if n is negative and even, and
imaginary if n is negative and odd. The surface (34) is
real if n is negative and odd and imaginary if n is negative
and even. In negative, integer dimensions volumes (33)
are associated with a coefficient i, while surfaces (34)
with a coefficient i™. By convention 0°:= 1. Volumes
and surfaces of n-cubes given by formulas (33) and (34)
are shown in Fig. 7 and listed in Table 2. This peculiar
mixture of integer, rational, and irrational coefficients
requires further research.

The ratio of volume or surface of n-ball to volume or
surface of n-cube circumscribing this n-ball can be ex-
pressed using diameter recurrence relations (20), (21) as

Ve _ Se =g, 7", (35)
VnCC SnCC
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and similarly, the ratio of volume and surface of n-ball to
volume (33) and surface (34) of n-cube inscribed in this

n-ball can be expressed as

nB __
_gn

VnCI

Sie _ g An2ln2.

SnCI

As expected, the ratios (35)-(37) are metric independent

LIS

(36)

(37)

and thus vanish in negative, even dimensions.

-1
Fig. 7: Graphs of volumes (a,

0

—

pink) and surface areas (b, blue) of

n-balls of radius 1, along with volumes and surface areas of
n-cubes circumscribed about (yellow) and inscribed in (green)
these n-balls. In negative dimensions the latter are complex.

Table 2: Volumes and surfaces of n-cubes inscribed in n-
balls of unit radius and diameter for -8 <n <3 (rational

fraction approximation using Matlab rats function).

n Vn(R:].)c| Sn(R:j.)a Vn(Dzl)a Sn(D:].)(n
-8 16 -362.0387i | 4096 -185363.8i
-7 -7.0898i -16807/128 | -907.4927i | -33614
-6 2718 49.6022i -216 6349.077i
-5 1.7469i 625/32 55.9017i 1250
-4 1 -8i 16 -256i
-3 -0.6495i -27/8 -5.1961i -54
-2 12 iV2 -2 8iV2
-1 i2 1/2 i 2
0 1 0 1 0
1 2 2 1 2
2 2 4\2 1/2 2\2
3 8‘3-3,2 8 3»3/2 2

5. Summary

Novel radius (11) and diameter (22) recurrence rela-
tions enable to express known recurrence relation (4) for
n-ball volume and known relation (5) for n-ball surface as
a function of #*[n/2] showing that the value of z as n-ball
volume and surface irrational factor appears only for
n<0 and n>2 (x"n/2] =1 for 0<n<2). Inverse se-
quences (14) and (23) enable to examine n-ball volumes
and surfaces in negative dimensions. Since f, =0 (14)
and g,=0 (23), in negative, even dimensions n-balls
have zero (void-like) volumes and zero (point-like) sur-
faces and become divergent with decreasing n. For posi-
tive dimensions n =5 (the largest unit radius n-ball vol-
ume) is the last odd n where f,>f,;, while n=7 (the
largest unit radius n-ball surface) is the first odd n where
f, < f.... Novel forms (16)-(18) and (24)-(26) of sequences
(12), (14), (22), and (23) were presented for even and odd
dimensions. Constants (19), (27) of products of pairs
these sequence values in odd dimensions for n and -n-2
bear a resemblance to the statement that an ordinary (n-
2)- dimensional space is equivalent to the n-dimensional
superspace [3]. For positive and negative odd dimensions
the ratio (28) of f, to g, equals 2". Sequences (11), (14),
(23), and (22) are rational numbers, while all z*[n/2] (for
n<0 and n>2) are most likely transcendental numbers.
Doubled maxima for unit diameter n-balls (volume for
n =0, 1 and surface for n = 2, 3) are also interesting.

It was shown that known formula (7) for the volume
of a regular n-simplex can be expressed as a recurrence
relation (29) to remove indefiniteness of factorial and
further expressed as (30) to remove singularity for n = 0.
Thus, n-simplices are undefined in negative, integer di-
mensions if n<-1. This is congruent with the fact that
every simplicial n-manifold inherits a natural topology
from Euclidean space R" [35] and by researching Euclide-
an space R" as a simplicial n-manifold topological (met-
ric-independent) and geometrical (metric-dependent)
content of the modeled quantities are disentangled [35].
Therefore, lack of n-simplices in negative, integer dimen-
sions excludes the notion of negatively dimensional Eu-
clidean space R" for n<-1. Volumes and surfaces and
surfaces of regular n-simplices are imaginary in negative,
fractional dimensions for n <-1 (surfaces also for n < 0)
and are divergent with decreasing n.

It was shown that known formula (9) for the volume
of n-orthoplex can be expressed as a recurrence relation
(31) to remove indefiniteness of factorial and further
expressed as (32) to remove singularity for n=0. Thus,
volumes of n-orthoplices are zero in negative, integer
dimensions, and divergent in negative, fractional ones
with decreasing n. Surfaces of n-orthoplices are undefined
for integer n < -1 (n-orthoplex has facets being simplexes
of the previous dimension (10), and these are undefined
for integer n <-1), imaginary for fractional n <0, and also
divergent with decreasing n. Peculiarly, in 1 dimension
the volume Vi(A)o:= AV2 not A, as in the case of 1-
simplex and 1-cube.

Relations (4), (11)-(15), (20)-(23), (29)-(32) are con-
tinuous for n € R. The starting points for fractional di-
mensions can be provided e.g. using spline interpolation
between two (or three in the case of n-balls) subsequent
integer dimensions.
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In negative dimensions n-simplices, n-orthoplices, and
n-balls have different properties than their positively
dimensional counterparts. n-cube is an exception. A vol-
ume Vy(A)e = A" and surface S,(A)c = 2nA™ of n-cube are
defined for any n € R and are real if A € R. Interestingly
in R®, fractal dimension of the Sierpinski 3-simplex is 2,
of the Sierpinski 3-ortoplex is 2.585, and only the Sier-
pinski 3-cube retains its regular dimension [36].

Out of three regular, convex polytopes (and n-balls)
present in all non-negative dimensions [19] only n-cubes,
n-orthoplices, and n-balls are defined in negative, integer
dimensions with n-cubes being dual to the void. This
should not be surprising. There are no O-dimensional
points in negative dimensions.

6. Discussion

Once upon a time there was a (-1)-dimensional void of
volume zero and undefined surface. A 0-dimensional
point of unit volume and zero surface somehow appeared
in this void. This first point is now called primordial Big
Bang singularity. An existence of the first point implied
countably infinite number of other labelled points forming
various relations among each other. And thus the void
expanded into real and imaginary dimensionalities.

Presented recurrence relations remove indefiniteness
and singularities present in known formulas revealing the
properties of the relevant geometric objects in negative
and real dimensions.

The results of this study could perhaps be applied in in
linguistic statistics, where the dimension in the distribu-
tion for frequency dictionaries is chosen to be negative [4]
and fog computing, where n-simplex is related to a full
mesh pattern, n-orthoplex is linked to a quasi-full mesh
structure and n-cube is referred to as a certain type of
partial mesh layout [37].

Another possible application of the results of this
study could be molecular physics and crystallography.
There are countably infinitely many spherical harmonics
but nature uses only the first four as subshells of s, p, d,
and f electron shells that can hold 2, 6, 10, and 14 elec-
trons respectively. Further subshells are not populated in
ground states of all the observed elements. The first ele-
ment that would require a g subshell (18 electrons) would
have an atomic number of 121, while the heaviest element
synthesized is Oganesson, with an atomic humber of 118
and a half-life of about 1/1000 of a second. Perhaps this is
linked with properties of the unit radius n-balls in nega-
tive dimensions as illustrated in Fig. 1(b). The “flatten-
ing” occurring between dimensions -14 and -2 is intri-
guing. Dimensions -2, -6, -10, and -14 are bounded from
both sides, with -14, that would represent the f subshell,
already at the onset of divergence. In nature, the f subshell
occurs essentially only in lanthanides and actinides. A
simple and approximate formula for a spherical nuclear
radius that generates very precise results in quantum and
nuclear techniques is R = r,A®, where A is the atomic
number and ro=1.25 + 0.2 fm.
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