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The aim of this study is to examine n-balls, n-simplices and n-orthoplices in real dimen-

sions using novel recurrence relations that removed indefiniteness present in known formu-

las. They show that in negative, integer dimensions volumes of n-balls are zero if n is even, 

positive if n = -4k - 1, and negative if n = -4k - 3, for natural k. Volumes and surfaces of  

n-cubes inscribed in n-balls in negative dimensions are complex, wherein for negative, in-

teger dimensions they are associated with integral powers of the imaginary unit. The rela-

tions are continuous for n  ℝ and show that the constant of π is absent for 0 ≤ n < 2. For 

n < -1 self-dual n-simplices are undefined in negative, integer dimensions and their vol-

umes and surfaces are imaginary in negative, fractional ones, and divergent with decreasing 

n. In negative, integer dimensions n-orthoplices reduce to the empty set, and their real vol-

umes and imaginary surfaces are divergent in negative, fractional ones with decreasing n. 

Out of three regular, convex polytopes present in all natural dimensions, only n-orthoplices, 

n-cubes (and n-balls) are defined in negative, integer dimensions. 
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1. Introduction 

The notion of dimension n of a set has various defini-

tions [1,2]. Natural dimensions define a minimum number 

of independent parameters (coordinates) needed to specify 

a point within Euclidean space ℝ
n
, where n = -1 is the 

dimension of the empty set, the void, having zero volume 

and undefined surface. Negatively dimensional spaces 

can be defined by analytic continuations from positive 

dimensions [3]. A spectrum, topological generalization of 

the notion of space allows for negative dimensions [2, 

4,5,6] that refer to densities, rather than to sizes, as the 

natural ones. 

Fractional (or fractal) dimensions extend the notion of 

dimension to real, including negative [7], numbers. Nega-

tive dimensions are considered in probabilistic fractal 

measures [8]. Fractal dimension and lacunarity [9,10] 

allow to investigate the fractal nature of prime sequences 

[11]. Fractal dimensions are verified to be consistent with 

the experimental observations, and allow for the analysis 

of the transport properties, such as permeability, thermal 

dispersion and conductivities (both thermal and electrical) 

in multiphase fractal media [12], whereas the probability 

models for pore distribution and for permeability of po-

rous media can also be expressed as a function of fractal 

dimension [13]. Interestingly the dimension of the bound-

ary of the Mandelbrot set equals 2 [14] and the general-

ized Mandelbrot set in higher-dimensional hypercomplex 

number spaces, when the power α of the iterated complex 

variable z tends to infinity, is convergent to the unit (α-1)-

sphere [15].  

This by no means sets the limit on the meaning of di-

mension. Complex dimensions [2] are also considered, for 

example. Furthermore, geometric concepts (such as 

lengths, volumes, surfaces, etc.) can be related to nega-

tive, fractional, and complex numbers. Complex geodesic 

paths emerge in the presence of black hole singularities 

[16] and when studying entropic dynamics on curved 

statistical manifolds [17]. Fractional derivatives of com-

plex functions could be able to describe different physical 

phenomena [18]. 

In ℝ
2
 there are countably infinite number of regular, 

convex polygons, in ℝ
3
 there are five regular, convex 

Platonic solids, in ℝ
4
 there are six regular, convex poly-

topes. For n > 4, there are only three: self-dual n-simplex, 

and n-cube dual to n-orthoplex [19]. Furthermore ℝ
n
 is 

also equipped with perfectly regular, and obviously also 

convex, n-ball. Properties of these three regular, convex 

polytopes in natural dimensions are well known 

[20,21,22], while fractal dimensions of hyperfractals 

based on these polytopes in natural dimensions were 

disclosed in [23]. 

The aim of this study is to examine n-balls,  

n-simplices and n-orthoplices in real dimensions using 

novel recurrence relations that remove indefiniteness 

present in known formulas. 

The paper is structured as follows. Section 2 presents 

known formulas for volumes and surfaces of n-balls, 

regular n-simplices and n-orthoplices in natural dimen-

sions. Section 3 defines novel recurrence relations for 

these geometric objects in real dimensions. Section 4 

refers to n-balls circumscribed about and inscribed in n-

cubes in real dimensions. Section 5 summarizes the find-

ing of this paper, whereas their possible applications are 

discussed in Section 6. 

2. Known formulas 

Volume of an n-ball (B) is known to be 
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where Γ is the Euler’s gamma function and R is the n-ball 

radius. This becomes 
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if n is even and 
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if n is odd. Expressed in terms of n-ball diameter (1) is the 

rescaling factor between n-dimensional Lebesgue meas-

ure and Hausdorff measure for n  ℝ
+
 [24,2]. 

Another known [21] recurrence relation expresses the 

volume of an n-ball in terms of the volume of an (n-2)-

ball of the same radius 

    
2

2

2
n nB B

R
V R V R

n


 , (4) 

where V0(R)B = 1 and V1(R)B = 2R. It is also known [21] 

that the (n-1)-dimensional surface of an n-ball can be 

expressed as 

    n nB B

n
S R V R

R
 . (5) 

Furthermore, it is known [25] that the sequence 

 2

2
n nf f

n


  (6) 

satisfies the same recursion formula as (4) for unit radius.  

Volume of a regular n-simplex (S) is known [20,26] to 

be 

  
1

! 2

n

n S n

n
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
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where A is the edge length. A regular n-simplex has n+1 

(n-1)-facets [21] so its surface is 

      11n nS S
S A n V A  . (8) 

Volume of n-orthoplex (O) is known [22] to be 

  
2

!

n
n

n O
V A A

n
 . (9) 

As n-orthoplex has 2
n
 facets [21] being (n-1)-simplices, 

its surface is 

    12n

n nO S
S A V A . (10) 

Formulas (1)-(3) and (7)-(10) are undefined in nega-

tive dimensions, since factorial is defined only for non-

negative integers, while gamma function is undefined for 

non-positive integers. Relations (4), (5) are undefined if 

n = 0. 

3. Novel recurrence relations 

A radius recurrence relation 

 2

2
n nf f

n
 , (11) 

for n  ℕ0, where f0 := 1 and f1 := 2, allows to express the 

volumes (4) and surfaces (5) of n-balls as 

   2n n

n nB
V R f R   

, (12) 

   2 1n n

n nB
S R nf R     , (13) 

where “⌊x⌋“ denotes the floor function giving the greatest 

integer less than or equal to its argument x. 
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Fig. 1: Radius n-ball recurrence relation (blue)  

with the π^⌊n/2⌋ factor (green) for n = -7, -6,…,7. 

The sequence (11) allows to present n-balls volume 

and surface recurrence relations (12), (13) as a product of 

a rational factor fn or nfn, an irrational factor π^⌊n/2⌋ (for 

n ≠ 0 and n ≠ 1), and a metric (radius) factor R
n
 or R

n-1
. 

The relation (11) can be then extended into negative di-

mensions as 

 2

2

2
n n

n
f f 


 , (14) 

solving for fn-2 and assigning new n  ℤ as old n-2. It is 

sufficient to define f-1 = f0 := 1 (for the empty set and 

point dimension) to initiate (11) and (14). 

The same assignment of new n  ℤ as old n - 2 can be 

made in (4) solved for Vn-2(R)B yielding 

    22
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This enables to avoid the indefiniteness of factorial 

and gamma function in negative dimensions present in 

formulas (1)-(3) and removes singularity present in rela-

tion (4). 
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Fig. 2: Graphs of volumes (V) and surface areas (S) of n-balls 

of unit radius for n = -25, -6,…,15. 
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Fig. 3: Graphs of volumes (V) and surface areas (S) of n-balls 

of unit diameter for n = -10, -9,…,8. 

Furthermore, if n ≤ -1 and odd 
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where numerator in the first term corresponds to OEIS
1
 

A001147 sequence [27], and the fraction of the second 

term can be simplified by dividing by 2
-(n+1)/2

(-(n+1)/2)! 

(OEIS A000165 sequence [28]). If n ≥ -1 and odd 
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where numerator corresponds to OEIS A047053 sequence 

[29] and this fraction can again be simplified by dividing 

by 2
(n+1)/2

((n+1)/2)! (OEIS A000165 [28]). If n ≥ 0 and 

even 
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Furthermore, if n is odd 
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Radius recurrence relations (11), (14) are shown in 

Fig. 1 along with the π^⌊n/2⌋ factor and listed in Table 1. 

Volumes and surfaces of n-balls calculated with relations 

(12) and (13) are shown in Fig. 2. 

One can also express the volumes and, using (5), sur-

faces of n-balls in terms of their diameters D as 

   2n n

n nB
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, (20) 

   2 12
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, (21) 

defining diameter recurrence relation 

                                                           
1 The On-Line Encyclopedia of Integer Sequences. 
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2
n ng g

n
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having inverse 

   22 2n ng n g   , (23) 

for n  ℤ, where g-1 := 2 and g0 := 1. 
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Fig. 4: Diameter n-ball recurrence relation (blue) 

with the π^⌊n/2⌋ factor (green) for n = -4, -3,…,4. 

Furthermore, if n ≤ -1 and odd 
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which (excluding the sign factor) corresponds to OEIS 

A151817 sequence [30] and (for n < -2 and excluding the 

sign factor) to OEIS A052718 sequence [31]. Also, nu-

merator of (26) corresponds to twice of OEIS twice 

A010050 sequence [32] for n ≤ -3. If n ≥ 1 and odd 
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the reciprocal of which corresponds to OEIS A000407 

[33] sequence If n ≥ 0 and even 
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the reciprocal of which corresponds to OEIS A047053 

[29] sequence. If n ≥ 0 the reciprocal of gn (22) corre-

sponds to OEIS A087299 sequence [34]. 

Furthermore, if n is odd 
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Diameter recurrence relation (22), (23) is shown in 

Fig. 4 along with the π^⌊n/2⌋ factor and listed in Table 1. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 May 2022                   doi:10.20944/preprints202204.0263.v6

https://doi.org/10.20944/preprints202204.0263.v6


4 

 

Volumes and surfaces of n-balls calculated with relations 

(20) and (21) are shown in Fig. 3. 

Furthermore, for positive and negative odd dimen-

sions 

 2nn

n

f

g
 . (28) 

Table 1: Volumes and surfaces of n-balls for -11 ≤ n ≤ 9. 
n fn gn Vn(R=1)B Sn(R=1)B Vn(D=1)B Sn(D=1)B 

-11 -945/32 -60480 -0.031 0.338 -62.909 1383.997 

-9 105/16 3360 0.021 -0.193 10.980 -197.634 

-7 -15/8 -240 -0.019 0.135 -2.464 34.494 

-5 3/4 24 0.024 -0.121 0.774 -7.7404 

-3 -1/2 -4 -0.051 0.152 -0.405 2.432 

-1 1 2 0.318 -0.318 0.637 -1.273 

0 1 1 1 0 1 0 

1 2/1 1 2 2 1 2 

2 1/1 1/4 3.142 6.283 0.785 3.142 

3 4/3 1/6 4.189 12.566 0.524 3.142 

4 1/2 1/32 4.935 19.739 0.308 2.467 

5 8/15 1/60 5.264 26.319 0.164 1.645 

6 1/6 1/384 5.168 31.006 0.081 0.969 

7 16/105 1/840 4.725 33.073 0.037 0.517 

8 1/24 1/6144 4.059 32.470 0.016 0.254 

9 32/945 1/15120 3.299 29.687 0.006 0.116 

 

In the case of regular n-simplices, equation (7) can be 

written as a recurrence relation 

    1 3

1

2
n nS S

n
V A AV A

n



, (29) 

with V0(A)S := 1. This removes indefiniteness of factorial 

for n = -1 present in (7). Solving (29) for Vn-1, and assign-

ing new n := n - 1  ℤ yields 

  
   

3

1 2 1

2

n

n S

V A n
V A

A n

 



, (30) 

which shows that n-simplices are indefinite only for inte-

ger n < -1, as shown in Fig. 5. The volume of an empty or 

void (-1)-simplex is V-1(A)S = 0, while its surface S-1(A)S 

(8) is undefined, as the void itself. 
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Fig. 5: Graphs of volumes (V) and surface areas (S) of regular 

n-simplices of unit edge length for n = -1,…,7. 

In the case of n-orthoplices, equation (9) can be writ-

ten as a recurrence relation 

    1

2
n nO O

V A AV A
n


, (31) 

with V0(A)O := 1 and reversed solving for n-1 as 

    1

1

2
n nO O

n
V A V A

A



 , (32) 

which removes singularity from (31) and is zero for inte-

ger n ≤ -1 showing that for negative, integer dimensions 

volumes of n-orthoplices are zero, while their surfaces 

(10) are undefined, as shown in Fig. 6.  
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Fig. 6: Graphs of volumes (V) and surface areas (S) of 

n-orthoplices of unit edge length for n = -1,…,7. 

4. n-balls circumscribed about and inscribed in 

n-cubes 

The edge length ACC of n-cube circumscribed (CC) 

about n-ball corresponds to the diameter D of this n-ball. 

Thus, the volume of this cube is Vn(D)CC = D
n
 and the 

surface is Sn(D)CC = 2nD
n-1

. The edge length ACI of n-cube 

inscribed (CI) inside the n-ball of diameter D is 

ACI = D/√n, which is singular for n = 0 and complex for 

n < 0. Thus, the volume of n-cube inscribed in n-ball is 

   2n n n

n ICI
V D A D n  , (33) 

and the surface is 

    3 21 12 2
nn n

n ICI
S D nA D n

   . (34) 

The volume (33) is real if n is negative and even, and 

imaginary if n is negative and odd. The surface (34) is 

real if n is negative and odd and imaginary if n is negative 

and even. In negative, integer dimensions volumes (33) 

are associated with a coefficient i
-n

, while surfaces (34) 

with a coefficient i
-n-1

. By convention 0
0
 := 1. Volumes 

and surfaces of n-cubes given by formulas (33) and (34) 

are shown in Fig. 7 and listed in Table 2. This peculiar 

mixture of integer, rational, and irrational coefficients 

requires further research. 

The ratio of volume or surface of n-ball to volume or 

surface of n-cube circumscribing this n-ball can be ex-

pressed using diameter recurrence relations (20), (21) as 

 
2nnB nB

n

nCC nCC

V S
g

V S
     , (35) 
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and similarly, the ratio of volume and surface of n-ball to 

volume (33) and surface (34) of n-cube inscribed in this 

n-ball can be expressed as 

 
2 2n nnB

n

nCI

V
g n

V
    , (36) 

 
 2 1 2n nnB

n

nCI

S
g n

S


   . (37) 

As expected, the ratios (35)-(37) are metric independent 

and thus vanish in negative, even dimensions. 
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Fig. 7: Graphs of volumes (a, pink) and surface areas (b, blue) of  

n-balls of radius 1, along with volumes and surface areas of  

n-cubes circumscribed about (yellow) and inscribed in (green) 

these n-balls. In negative dimensions the latter are complex. 

Table 2: Volumes and surfaces of n-cubes inscribed in n-

balls of unit radius and diameter for -8 ≤ n ≤ 3 (rational 

fraction approximation using Matlab rats function). 
n Vn(R=1)CI Sn(R=1)CI Vn(D=1)CI Sn(D=1)CI 

-8 16 -362.0387i 4096 -185363.8i 

-7 -7.0898i -16807/128 -907.4927i -33614 

-6 -27/8 49.6022i -216 6349.077i 

-5 1.7469i 625/32 55.9017i 1250 

-4 1 -8i 16 -256i 

-3 -0.6495i -27/8 -5.1961i -54 

-2 -1/2 i√2 -2 8i√2 

-1 i/2 1/2 i 2 

0 1 0 1 0 

1 2 2 1 2 

2 2 4√2 1/2 2√2 

3 8∙3-3/2 8 3-3/2 2 

5. Summary 

Novel radius (11) and diameter (22) recurrence rela-

tions enable to express known recurrence relation (4) for 

n-ball volume and known relation (5) for n-ball surface as 

a function of π^⌊n/2⌋ showing that the value of π as n-ball 

volume and surface irrational factor appears only for 

n < 0 and n ≥ 2 (π^⌊n/2⌋ = 1 for 0 ≤ n < 2). Inverse se-

quences (14) and (23) enable to examine n-ball volumes 

and surfaces in negative dimensions. Since f-2 = 0 (14) 

and g-2 = 0 (23), in negative, even dimensions n-balls 

have zero (void-like) volumes and zero (point-like) sur-

faces and become divergent with decreasing n. For posi-

tive dimensions n = 5 (the largest unit radius n-ball vol-

ume) is the last odd n where fn > fn-1, while n = 7 (the 

largest unit radius n-ball surface) is the first odd n where 

fn < fn-1. Novel forms (16)-(18) and (24)-(26) of sequences 

(11), (14), (22), and (23) were presented for even and odd 

dimensions. Constants (19), (27) of products of pairs 

these sequence values in odd dimensions for n and -n-2 

bear a resemblance to the statement that an ordinary (n-

2)- dimensional space is equivalent to the n-dimensional 

superspace [3]. For positive and negative odd dimensions 

the ratio (28) of fn to gn equals 2
n
. Sequences (11), (14), 

(23), and (22) are rational numbers, while all π^⌊n/2⌋ (for 

n < 0 and n ≥ 2) are most likely transcendental numbers. 

Doubled maxima for unit diameter n-balls (volume for 

n = 0, 1 and surface for n = 2, 3) are also interesting. 

It was shown that known formula (7) for the volume 

of a regular n-simplex can be expressed as a recurrence 

relation (29) to remove indefiniteness of factorial and 

further expressed as (30) to remove singularity for n = 0. 

Thus, n-simplices are undefined in negative, integer di-

mensions if n < -1. This is congruent with the fact that 

every simplicial n-manifold inherits a natural topology 

from Euclidean space ℝ
n
 [35] and by researching Euclide-

an space ℝ
n
 as a simplicial n-manifold topological (met-

ric-independent) and geometrical (metric-dependent) 

content of the modeled quantities are disentangled [35]. 

Therefore, lack of n-simplices in negative, integer dimen-

sions excludes the notion of negatively dimensional Eu-

clidean space ℝ
n
 for n < -1. Volumes and surfaces and 

surfaces of regular n-simplices are imaginary in negative, 

fractional dimensions for n < -1 (surfaces also for n < 0) 

and are divergent with decreasing n. 

It was shown that known formula (9) for the volume 

of n-orthoplex can be expressed as a recurrence relation 

(31) to remove indefiniteness of factorial and further 

expressed as (32) to remove singularity for n = 0. Thus, 

volumes of n-orthoplices are zero in negative, integer 

dimensions, and divergent in negative, fractional ones 

with decreasing n. Surfaces of n-orthoplices are undefined 

for integer n < -1 (n-orthoplex has facets being simplexes 

of the previous dimension (10), and these are undefined 

for integer n ≤ -1), imaginary for fractional n < 0, and also 

divergent with decreasing n. Peculiarly, in 1 dimension 

the volume V1(A)O := A√2 not A, as in the case of 1-

simplex and 1-cube. 

Relations (4), (11)-(15), (20)-(23), (29)-(32) are con-

tinuous for n  ℝ. The starting points for fractional di-

mensions can be provided e.g. using spline interpolation 

between two (or three in the case of n-balls) subsequent 

integer dimensions. 
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In negative dimensions n-simplices, n-orthoplices, and 

n-balls have different properties than their positively 

dimensional counterparts. n-cube is an exception. A vol-

ume Vn(A)C = A
n
 and surface Sn(A)C = 2nA

n-1
 of n-cube are 

defined for any n  ℝ and are real if A  ℝ. Interestingly 

in ℝ
3
, fractal dimension of the Sierpiński 3-simplex is 2, 

of the Sierpiński 3-ortoplex is 2.585, and only the Sier-

piński 3-cube retains its regular dimension [36]. 

Out of three regular, convex polytopes (and n-balls) 

present in all non-negative dimensions [19] only n-cubes, 

n-orthoplices, and n-balls are defined in negative, integer 

dimensions with n-cubes being dual to the void. This 

should not be surprising. There are no 0-dimensional 

points in negative dimensions. 

6. Discussion 

Once upon a time there was a (-1)-dimensional void of 

volume zero and undefined surface. A 0-dimensional 

point of unit volume and zero surface somehow appeared 

in this void. This first point is now called primordial Big 

Bang singularity. An existence of the first point implied 

countably infinite number of other labelled points forming 

various relations among each other. And thus the void 

expanded into real and imaginary dimensionalities. 

Presented recurrence relations remove indefiniteness 

and singularities present in known formulas revealing the 

properties of the relevant geometric objects in negative 

and real dimensions. 

The results of this study could perhaps be applied in in 

linguistic statistics, where the dimension in the distribu-

tion for frequency dictionaries is chosen to be negative [4] 

and fog computing, where n-simplex is related to a full 

mesh pattern, n-orthoplex is linked to a quasi-full mesh 

structure and n-cube is referred to as a certain type of 

partial mesh layout [37]. 

Another possible application of the results of this 

study could be molecular physics and crystallography. 

There are countably infinitely many spherical harmonics 

but nature uses only the first four as subshells of s, p, d, 

and f electron shells that can hold 2, 6, 10, and 14 elec-

trons respectively. Further subshells are not populated in 

ground states of all the observed elements. The first ele-

ment that would require a g subshell (18 electrons) would 

have an atomic number of 121, while the heaviest element 

synthesized is Oganesson, with an atomic number of 118 

and a half-life of about 1/1000 of a second. Perhaps this is 

linked with properties of the unit radius n-balls in nega-

tive dimensions as illustrated in Fig. 1(b). The “flatten-

ing” occurring between dimensions -14 and -2 is intri-

guing. Dimensions -2, -6, -10, and -14 are bounded from 

both sides, with -14, that would represent the f subshell, 

already at the onset of divergence. In nature, the f subshell 

occurs essentially only in lanthanides and actinides. A 

simple and approximate formula for a spherical nuclear 

radius that generates very precise results in quantum and 

nuclear techniques is R = r0A
1/3

, where A is the atomic 

number and r0 = 1.25 ± 0.2 fm. 
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