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New recurrence relations for n-balls, regular n-simplices, and n-orthoplices in integer 

dimensions are submitted. They remove indefiniteness present in known formulas. In nega-

tive, integer dimensions volumes of n-balls are zero if n is even, positive if n = -4k - 1, and 

negative if n = -4k - 3, for natural k. Volumes and surfaces of n-cubes inscribed in n-balls in 

negative dimensions are complex, wherein for negative, integer dimensions they are associ-

ated with integral powers of the imaginary unit. The relations show that the constant of π is 

absent in 0 and 1 integer dimensions. It is shown that self-dual n-simplices are undefined 

for n < -1, while n-orthoplices reduce to the empty set for n ≤ -1. Out of three regular, con-

vex polytopes (and n-balls) present in all non-negative dimensions, only n-orthoplices, n-

cubes and n-balls are defined in negative dimensions. 

 

1. Introduction 

Natural dimensions are of particular importance, as 

they define a minimum number of independent parame-

ters (coordinates) needed to specify a point within an 

Euclidean space ℝ
n
, where n = -1 is the dimension of the 

empty set, the void, having zero volume and undefined 

surface. 

However, a spectrum, topological generalization of 

the notion of space allows for negative dimensions [1, 2]. 

Natural dimensions refer to sizes, negative ones refer to 

densities [2]. Negatively dimensional spaces are defined 

by analytic continuations from positive dimensions [3]. 

In ℝ
2
 there are countably infinite number of regular, 

convex polygons, in ℝ
3
 there are five regular, convex 

Platonic solids, in ℝ
4
 there are six regular, convex poly-

topes. For n > 4, there are only three: self-dual n-simplex, 

and n-cube dual to n-orthoplex [4]. Furthermore, any 

natural dimension is also equipped with perfectly regular, 

and obviously also convex, n-ball. 

Volume of an n-ball is known to be 
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where Γ is the Euler’s gamma function and R is the n-ball 

radius. This becomes 
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if n is even and 
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if n is odd. Another known recurrence relation expresses 

the volume of an n-ball in terms of the volume of an  

(n-2)-ball of the same radius 
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where V0(R)B = 1 and V1(R) B = 2R. It is also known that 

n-1 dimensional surface of an n-ball can be expressed as 
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Volume of a regular n-simplex is known to be 
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where A is the edge length. A regular n-simplex has n+1 

(n-1)-facets so its surface is 
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Volume of n-orthoplex is known to be 
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As n-orthoplex has 2
n
 facets [5] being (n-1)-simplices, its 

surface is 
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Relations (1)-(3) and (6)-(9) are undefined in negative, 

integer dimensions, since factorial is undefined for nega-

tive integers, while gamma function is undefined for non-

positive integers. Relation (4) is undefined for n = 0. 

The aim of this study was to examine n-balls, n-

simplices and n-orthoplices in negative dimensions, using 

novel recurrence relations. 

2. Novel recurrence relations 

A recurrence relation 
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for n  ℕ0, where f0 := 1 and f1 := 2, allows to express the 

volumes and, using (5), surfaces of n-balls as 
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The sequence (10) allows to present n-balls volume and 

surface recurrence relations (11), (12) as a product of a 
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rational factor fn or nfn, an irrational factor π⌊n/2⌋ (for n ≠ 0 

and n ≠ 1), and a metric (radius) factor R
n
 or R

n-1
. The 

relation (10) can be then extended into negative dimen-

sions as 
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solving for fn-2 and assigning new n  ℤ as old n - 2.  
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Fig. 1: Radius n-ball recurrence relation (blue)  

with the π^⌊n/2⌋ factor (green) for n = -7, -6,…,7. 
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Fig. 2: Graphs of volumes (V) and surface areas (S) of n-balls 

of unit radius for n = -25, -6,…,15. 
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Fig. 3: Graphs of volumes (V) and surface areas (S) of n-balls 

of unit diameter for n = -10, -9,…,8. 

The same assignment of new n  ℤ as old n - 2 can be 

made in (4) solved for Vn-2(R)B yielding 
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This enables to avoid the indefiniteness of factorial 

and gamma function in negative dimensions present in 

relations (1)-(3) and removes singularity present in (4). 

Radius recurrence relations (10), (13) are shown in 

Fig. 1 along with the π^⌊n/2⌋ factor and listed in Table 1. 

Volumes and surfaces of n-balls calculated with relations 

(11) and (12) are shown in Fig. 2 and Fig. 3. 

For positive dimensions n = 5 (the largest unit radius 

n-ball volume) is the last odd n where fn > fn-1, while n = 7 

(the largest unit radius n-ball surface) is the first odd n 

where fn < fn-1. It is sufficient to define f-1 = f0 := 1 (for the 

empty set and point dimension) to initiate (10) and (13). 

If n < -1 and odd 
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If n > 0 and odd 
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If n > 0 and even 
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Also if n is odd 
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Table 1: Volumes and surfaces of n-balls for -11 ≤ n ≤ 9. 
n fn gn Vn(R=1)B Sn(R=1)B Vn(D=1)B Sn(D=1)B 

-11 -945/32 -60480 -0.031 0.338 -62.909 1383.997 

-9 105/16 3360 0.021 -0.193 10.980 -197.634 

-7 -15/8 -240 -0.019 0.135 -2.464 34.494 

-5 3/4 24 0.024 -0.121 0.774 -7.7404 

-3 -1/2 -4 -0.051 0.152 -0.405 2.432 

-1 1 2 0.318 -0.318 0.637 -1.273 

0 1 1 1 0 1 0 

1 2/1 1 2 2 1 2 

2 1/1 1/4 3.142 6.283 0.785 3.142 

3 4/3 1/6 4.189 12.566 0.524 3.142 

4 1/2 1/32 4.935 19.739 0.308 2.467 

5 8/15 1/60 5.264 26.319 0.164 1.645 

6 1/6 1/384 5.168 31.006 0.081 0.969 

7 16/105 1/840 4.725 33.073 0.037 0.517 

8 1/24 1/6144 4.059 32.470 0.016 0.254 

9 32/945 1/15120 3.299 29.687 0.006 0.116 

 

One can also express the volumes and, using (5), sur-

faces of n-balls in terms of their diameters D as 
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defining another recurrence relation 
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having inverse 

   22 2n ng n g  , (22) 

for n  ℤ, where g-1 := 2 and g0 := 1. 
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Fig. 4: Diameter n-ball recurrence relation (blue) 

with the π^⌊n/2⌋ factor (green) for n = -4, -3,…,4. 

Diameter recurrence relation (21), (22) is shown in 

Fig. 4 along with the π^⌊n/2⌋ factor and listed in Table 1. 

If n ≥ 0 
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which is the reciprocal of OEIS A087299 sequence. If 

n < 0 and odd 
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which corresponds to OEIS A151817 (for k = ⌊-n/2⌋ and 

excluding the sign factor) and OEIS A052718 sequence 

(for n < -2 and excluding the sign factor). 

Also, if n is odd 
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Since f-2 = 0 (13) and g-2 = 0 (22), in negative, even 

dimensions n-balls have zero (void-like) volumes and 

zero (point-like) surfaces. 

In the case of n-simplices, equation (6) can be written 

as a recurrence relation 
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with V0(A)S := 1. This removes indefiniteness of factorial 

for n = -1 present in (6). Solving (26) for Vn-1, and assign-

ing new n := n - 1  ℤ yields 

  
   

3

1 2 1

2

n

n S

V A n
V A

A n

 



, (27) 

which shows that n-simplices become indefinite only for 

n < -1, as shown in Fig. 5. The volume of an empty or 

void (-1)-simplex is V-1(A)S = 0, while its surface S-1(A)S 

(7) is undefined, as the void itself. 
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Fig. 5: Graphs of volumes (V) and surface areas (S) of 

n-simplices of unit edge length for n = -1,…,7. 

In the case of n-orthoplices, equation (8) can be writ-

ten as a recurrence relation 
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with V0(A)O := 1 and reversed solving for n-1 as 
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which removes singularity from (28) and becomes zero 

for n ≤ -1 showing that for n ≤ -1 volumes of n-

orthoplices are zero, while their surfaces (9) are unde-

fined, as shown in Fig. 6. It is not surprising: n-orthoplex 

has facets being simplexes of the previous dimension, and 

these are undefined for n ≤ -1. Peculiarly V1(A)O := A√2 

not A, as in the case of 1-simplex and 1-cube. 
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Fig. 6: Graphs of volumes (V) and surface areas (S) of 

n-orthoplices of unit edge length for n = -1,…,7. 
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3. n-balls circumscribed about and inscribed in 

n-cubes 

The edge length AC of n-cube circumscribed about n-

ball corresponds to the diameter D of this n-ball. The ratio 

of volume or surface of n-ball to volume or surface of n-

cube circumscribing this n-ball can be expressed using 

diameter recurrence relation (21)-(24) as 
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The edge length AI of n-cube inscribed inside the n-

ball of diameter D is 

 I

D
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n
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which is singular for n = 0 and complex for n < 0. The 

volume of n-cube inscribed in n-ball is 
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and the surface is 
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Fig. 7: Graphs of volumes (a, pink) and surface areas (b, blue) of  

n-balls of radius 1, along with volumes and surface areas of  

n-cubes circumscribed about (yellow) and inscribed in (green) 

these n-balls. In negative dimensions the latter are complex. 

The volume (32) is real if n is negative and even, and 

imaginary if n is negative and odd. The opposite holds 

true for the surface (33). In negative, integer dimensions 

volumes (32) are associated with a coefficient i
n
, while 

surfaces (33) with a coefficient i
n+1

. By convention 

0
0
 := 1. 

Volumes and surfaces of n-cubes given by formulas 

(32) and (33) are shown in Fig. 7 and listed in Table 2. 

They are drawn as continuous lines as formulas (32) and 

(33) admit fractional dimensions. 

 

Table 2: Volumes Vn and surfaces Sn of n-cubes inscribed 

in n-balls of unit radius and diameter for -8 ≤ n ≤ 2. 
n Vn(R=1)C Sn(R=1)C Vn(D=1)C Sn(D=1)C 

-8 16 362.039i 4096 185363.8i 

-7 7.090i -16807/128 907.493i -33614 

-6 -216/64 -49.602i -216 -6349.077i 

-5 -1.747i 19.531 -55.902i 1250 

-4 1 8i 16 256i 

-3 0.650i -216/64 5.196i -54 

-2 -1/2 -i√2 -2 -8i√2 

-1 -i/2 1/2 -i 2/1 

0 1 0 1 0 

1 2 2 1 2 

2 2 4√2 1/2 2√2 

4. Summary 

The value of π as n-ball volume and surface irrational 

factor appears only for n > 1 and for n < 0 

(π^⌊0/2⌋ = π^⌊1/2⌋ = 1). For negative dimensions radius 

and diameter recurrence relations and also volumes and 

surfaces of n-balls become divergent. Radius and diame-

ter recurrence relations are rational numbers, while all 

π^⌊n/2⌋ (for n ≠ 0 and n ≠ 1) are most likely transcenden-

tal numbers. Doubled maxima for unit diameter n-balls 

(n = 0, 1 for volume and n = 2, 3 for surface) are also 

interesting. 

Relations (4) and (14) are continuous for n  ℝ. The 

fractional forms of the relations (11), (12), (19), (20), 

(26)-(29) remain to be researched. 

n-simplices are undefined in negative dimensions if 

n < -1. This is congruent with the fact that every simpli-

cial n-manifold inherits a natural topology from Euclidean 

space ℝ
n
 [6] and by researching Euclidean space ℝ

n
 as a 

simplicial n-manifold topological (metric-independent) 

and geometrical (metric-dependent) content of the mod-

eled quantities are disentangled [6]. Thus, lack of n-

simplices in negative dimensions excludes the notion of 

negatively dimensional Euclidean space ℝ
n
 if n < -1. 

In negative dimensions n-simplices, n-orthoplices, and 

n-balls have different properties than their positively 

dimensional counterparts. n-cube is an exception. A vol-

ume Vn(A)C = A
n
 and surface Sn(A)C = 2nA

n-1
 of n-cube are 

defined for any n  ℝ and are real if A  ℝ. 

Out of three regular, convex polytopes (and n-balls) 

present in all non-negative dimensions [4] only n-cubes, 

n-orthoplices, and n-balls are defined in negative dimen-

sions with negatively dimensional n-cubes being dual to 

the void. 

5. Discussion 

Once upon a time there was a (-1)-dimensional void of 

volume zero and undefined surface. A 0-dimensional 

point of unit volume and zero surface somehow appeared 

in this void. This first point is now called primordial Big 

Bang singularity. An existence of the first point implied 

countably infinite number of other labelled points forming 
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various relations among each other. And thus the void 

expanded into real and imaginary dimensionalities. 

The results of this study could perhaps be applied in 

molecular physics. There are countably infinitely many 

spherical harmonics but nature uses only the first four as 

subshells of s, p, d, and f electron shells that can hold 2, 6, 

10, and 14 electrons respectively. Further subshells are 

not populated in ground states of all the observed ele-

ments. The first element that would require a g subshell 

(18 electrons) would have an atomic number of 121, 

while the heaviest element synthesized is Oganesson, with 

an atomic number of 118 and a half-life of about 1/1000 

of a second. Perhaps this is linked with properties of the 

unit radius n-balls in negative dimensions as illustrated in 

Fig. 2. The “flattening” occurring between dimensions -

14 and -2 is intriguing. Dimensions -2, -6, -10, and -14 

are bounded from both sides, with -14, that would repre-

sent the f subshell, already at the onset of divergence. In 

nature, the f subshell occurs essentially only in lantha-

nides and actinides. 
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