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Abstract: Conventional phenotyping breeding approaches for vegetable crops like Solanaceae, Bulb, 
Root crops, have made a significant contribution by developing many varieties. Despite this, 
conventional phenotyping approaches are not sufficient due to the longer time taken to develop a 
variety, low genetic gain, environmental factors and some other externalities that affect the 
phenotype-based selection. To address the challenges of conventional phenotype, a new recent 
method of high throughput phenotyping (HTP) is considered a promising tool. The development 
of high-throughput phenotyping technology began in the preceding decade as advancements in 
sensor, computer vision, automation, and advanced machine learning technologies. HTP platforms 
are being utilized to undertake non-destructive assessments of the complete plant system in a range 
of crops. HTP provides the precise measurements and suggested the collection of high-quality and 
accurate data which is necessary for standardizing phenotyping for the collection of genetic 
dissection and genomic assisted breeding such as genome-wide association studies (GWAS), 
linkage mapping, marker-assisted selection (MAS), genomic selection (GS). The remainder of this 
chapter discusses how high-throughput phenotyping technologies can be used in genomic-assisted 
breeding for vegetable crops. 
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1. Introduction   
The availability of resources for farmers is minimal, making crop management 

strategies that maximize crop output difficult to implement [1]. Agriculture systems that 
are over managed may be detrimental to a sustainable agricultural system [2]. While 
improved genetics, management, and environmental adaptations contributed to the 
increased production of major commodity crops, quantifying their relative contributions 
is difficult due to the environment's complex interactions and dynamic nature and 
management practices [3]. Crop managers face significant challenges in maintaining a 
consistent and high-yielding crop production level in an unexpected climate, as crop 
management tactics rely heavily on prior practices [4]. The discrepancy between potential 
and actual agricultural yields may be significant for certain crops [5]. It is suggested in 
studies that yield may be enhanced when both best-adapted variety and agronomic 
practices are applied in the field [5]. However, the improvement of the genetic structure 
of plants increased the complex trait like yield [6]. To maximize agricultural productivity, 
crop management practices must address a variety of practical constraints [7]. Moreover, 
the advancements in breeding technology continue to promote yield gains in staple crops 
globally [8, 9].  

Conventional phenotyping techniques are prohibitively expensive, time-consuming, 
slow, and frequently harmful, and they only allow for the analysis of a few variables at a 
time [10]. However, traditional breeding operations are being transformed into more 
efficient contemporary breeding programs by incorporating emerging technologies, most 
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notably high-throughput phenotyping [11]. A new technology, non-destructive 
phenotyping, adds a new dimension to the data collection process by increasing the 
precision, speed, and analysis of captured data [12]. According to scientists, agricultural 
productivity is expected to increase significantly shortly due to genetic enhancement 
enabled by high-throughput phenotyping technologies [13]. Sensing technology, data 
processing, and analysis advancements have significantly improved field and crop 
management tactics [14]. Apart from focusing on a variety of traits that indicate the water 
content, chlorophyll content, biomass, and growth potential of a plant [15].  

However, the development of novel vegetable varieties and target environments 
poses significant challenges in terms of high-throughput and precision phenotyping, 
modeling, and collaboration with vegetable breeders [16]. Accurate phenotyping was 
required for several aspects like physiological, morphological, structural, biochemical and 
molecular characteristics to develop high-yielding vegetable cultivars that were more 
resistant to biotic and abiotic stresses [17, 18]. As a result, breeders can conduct multiple 
trials under various growth conditions and with a variety of lines to map populations, 
breed populations, mutant populations, and the germplasm pool [19]. The remainder of 
this chapter discusses how high-throughput phenotyping technologies can be used to 
optimize breeding operations in genomic assisted breeding for vegetable yield gains. 

2. High-Throughput Vegetable Phenotyping 
One hundred years ago (Johannsen 1903, 1911), the term "phenotype" was coined as 

a counterpoint to the concept of "genotypes." [20], and refers to a collection of 
methodologies and processes for accurately assessing plant growth, architecture, and 
composition at various sizes [21, 22]. Historically, plant breeders have analyzed hundreds 
to thousands of plant phenotypes using visual observations, manual tools and among 
other techniques [23-25]. Information on the tools for HTP in vegetables is provided in 
Figure 1. A fully functional HTP system is composed of supporting hardware (sensors 
and platforms) and a computing component that communicates with one another (data 
process and analytics) [26]. The research will analyze and integrate a variety of advanced 
imaging techniques commonly used in computed tomography (CT), into HTP systems in 
this rapidly growing market [27]. While the industrial sector is driving sensor technology 
advancements, efforts are being made to incorporate them into agricultural high-
throughput systems (AHTP) [28].  

The data processing and the analytic system is the most critical component of an HTP 
system. The current generation of HTP systems, particularly those with high-resolution 
imaging capabilities, can collect multidimensional data on crops from a large number of 
people [29]. On the other hand, researchers will quickly discover that they are capable of 
being overwhelmed by massive amounts of data [30]. In conjunction with ongoing 
community initiatives, HTP technology has the potential to play a critical role in resolving 
the breeder's dilemma and expediting the development of new crop varieties with 
advanced traits [31]. A uniform set of criteria for assessing agricultural qualities in 
multiple dimensions can be achieved using equipment such as spectrum reflectance, 
photogrammetry, and computer vision [32]. Timely and accurate measurements of 
agricultural characteristics High-throughput phenotyping devices enable breeding 
programs to increase their capacity to manage a larger breeding population while 
maintaining the same level of selection intensity [12]. For example, HTP platforms based 
on unmanned aerial systems (UAS) could be used to rapidly scan breeding grounds [33]. 
Advanced sensors capture information about the crop that the human eye or senses are 
unable to see or perceive [34]. Advanced data analytics and artificial intelligence models 
extract previously undiscovered information from human and sensor data, and they hold 
enormous promise for identifying novel agricultural characteristics [35]. The additional 
elements can be used to characterize plant performance during a particular 
developmental stage (for example, emerging, blooming, or harvesting) or to assess crop 
dynamic responses to environmental changes over the course of a growing season [36]. 
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Along with increasing the amount of data available for assessing minute genetic 
differences between genotypes, unique crop characteristics have the potential to increase 
genetic diversity within the crop population [36].  

Nowadays, genetic studies on QTL mapping and genome-wide association studies 
(GWAS) may be used to identify critical genetic variables underlying or associated with 
yield increase using HTP-based phenotypes [37]. By utilizing marker-assisted selection 
(MAS) during breeding, it is possible to improve the incorporation of genetic 
characteristics associated with desirable agricultural characteristics into the existing 
vegetable germplasm [38]. Integrating breeding populations enables more precise 
selection, shorter breeding cycles, and increased genetic gain [39]. Large-scale 
phenotyping enables the collection of massive amounts of agricultural data with high 
spatiotemporal resolution and the identification of novel crop characteristics [40]. This 
technique enables the integration of crop and environmental data, as well as management 
data [41]. Prescriptive phenotyping allow the breeders to develop crop qualities in 
response to the breeder and consumer requests [42].  

 

Figure 1. Schematic representation of High throughput phenotyping in vegetables. 

3. High-Throughput Phenotyping (HTP) Platforms for Vegetable Crops 
High throughput phenotyping is a non-destructive technology that creates a good 

way for measuring the plant phenotype under laboratory and field circumstances, [43]. 
Using sophisticated automation and robotics, imaging (2D and 3D) methods, innovative 
sensors, hardware and software, these systems monitor a range of plant growth and 
development aspects [44]. HTP is based on real-time monitoring of plant growth and 
development in smart glasshouses and physiological and biochemical reactions [45]. 
Along with plant growth rates and biomass accumulation, the visible imaging system 
quantifies a range of characteristics, such as canopy architecture and phenology [46]. On 
the other hand, a hyperspectral imaging system can identify internal properties such as 
sugar, starch, protein, and moisture content, as well as a range of factors associated with 
stress [47]. Multiple pictures at varying time intervals and wavelengths are acquired by 
HTP devices to create data for software-based analysis[48-52].  

4. High-Throughput Phenotyping in genomic assisted breeding 
The advanced technology of high throughput phenotyping has been successfully 

used for rapid evaluation of plants traits in glass houses and controlled conditions [12]. 
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Both the academic and industrial sectors have attempted to develop high-throughput 
screening (HTS) technologies to adapt various crops including vegetables for a variety of 
breeding purposes [46]. Jansen and colleagues (2009) developed the GROWSCREEN 
FLUORO to assess stress tolerance in rosette plants using leaf growth and chlorophyll 
fluorescence characteristics [53]. Flood et al. (2016) developed the Phenovator, which can 
screen over 1000 Arabidopsis plants for photosynthesis, growth, and multispectral 
reflectance multiple times per day [54, 55]. These studies aimed to decipher agriculture's 
chronological evolution and assess crops' genetic responses [56]. In vegetable studies, 
image features are frequently used to replace manual measurements and increase data 
collection efficiency (phenotyping), or in conjunction with genomic analyses such as 
quantitative trait loci (QTLs) and genome wide association studies (GWAS) mapping to 
evaluate genetic variation in crops [57, 58] or to predict crop performance [58]. Several 
quantitative traits are identified in vegetables crops.  

5. High-Throughput Phenotyping under controlled condition 
A regulated environment is frequently defined in plant science as an enclosed 

enclosure in which certain environmental variables such as light condition, temperature, 
humidity temperature and CO2 level are controlled and monitored [59]. Greenhouses, 
growth chambers, temperature chambers, and nursery rooms are only a few facilities 
often used in plant research to investigate plant responses to controlled environmental 
conditions [60]. In controlled environments, plant phenotyping systems are made of 
sensors, automated control systems, data processing, management systems, and 
computer software that all work in concert to provide results. The controlled environment 
is smaller (diameters) and more equipped than natural habitats, which simplifies the 
deployment of automated phenotyping devices much more than in the wild.[61]. These 
systems collect data on agricultural attributes in a high-throughput manner through the 
use of sensors, automation, and control systems [62]. The current state of high-throughput 
plant phenotyping systems in controlled environments was discussed and the sensors 
used to assess plant characteristics in such systems [63].   

6. Root Phenotyping 
Although the root system dictates the positioning of roots in the soil, little is known 

about the roots of plants when they are not in the soil [64]. It is critical to understand the 
anatomical properties of roots in order to appreciate water transport, nutrient absorption, 
root carbon costs, and root interactions with microorganisms such as mycorrhizal fungi 
[65]. Finally, the most unclear root phenes are those that are reliant on physiological and 
flux-related processes. When it comes to root research, they are seldom quantified and 
have received far less attention in "high-throughput" settings than in traditional ones [66]. 
According to current thought, the physiological phenes of roots represent a vast and 
unexplored frontier in root research. Roots are notoriously difficult to analyze [67]. As a 
result of this difficulty, the genetic and functional foundations of root phenes are less 
established than those of aboveground phenes [68, 69]. 

To close this "phenotyping gap," a shift away from traditional phenotyping toward 
image-based phenotyping has occurred, which enables relatively high throughput while 
maintaining root measurement accuracy [70]. Numerous platforms make use of two-
dimensional imaging via cameras and propagate plants via seedlings on agar plates, 
germination paper, or fabric cloth in bins [71, 72]. Additionally, readers are encouraged 
to peruse this manual (Figure 1). Even though controlling environmental factors is 
advantageous for characterizing root phenotypes, this chapter focuses on strategies 
applicable to field-grown plants [73]. The integration of root phenes and functional 
phenomics will need the phenotyping of several root phenes at the same time. It is 
anticipated that standard approaches will be tested in the field, which will address the 
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root cause of the "phenotyping gap." We must dig deeper and harder to fully realize the 
promise of roots for agricultural revolutionization. [73].  

6. Conclusion 
In summary, agricultural HTP technology has the ability to solve the breeder's 

equation for maximum genetic gain by increasing the intensity and precision of selection, 
improving the detection of genetic variations, and decreasing breeding cycles. Crop HTP 
technology is a multidisciplinary and comprehensive approach that integrates research in 
agronomy, information science, engineering sciences, and biology. Additionally, it 
leverages cutting-edge computer and artificial intelligence technologies to provide a more 
comprehensive solution. Numerous advanced data analysis techniques (e.g., machine 
learning, deep learning) are being used to examine the different phenotypic data available 
for crops and develop predictive and prescriptive models for crop phenotyping in a highly 
automated, multi-dimensional, big-data environment. This section will provide the most 
current information on HTP technology and its applications in plant breeding, genetics, 
genomics assisted breeding, and some case studies to assist future researchers in 
developing and improving HTP technology. 
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