
Optimal COVID-19 Therapeutic Candidate
Discovery Using the CANDO Platform
William Mangionea, Zackary Fallsa, and Ram Samudralaa,1

aDepartment of Biomedical Informatics, University at Buffalo

The worldwide outbreak of SARS-CoV-2 in early 2020 caused numer-
ous deaths and unprecedented measures to control its spread. We
employed our Computational Analysis of Novel Drug Opportunities
(CANDO) multiscale therapeutic discovery, repurposing, and design
platform to identify small molecule inhibitors of the virus to treat its
resulting indication, COVID-19. Initially, few experimental studies ex-
isted on SARS-CoV-2, so we optimized our drug candidate predic-
tion pipelines using results from two independent high-throughput
screens against prevalent human coronaviruses. Ranked lists of can-
didate drugs were generated using our open source cando.py soft-
ware based on viral protein inhibition and proteomic interaction sim-
ilarity. For the former viral protein inhibition pipeline, we computed
interaction scores between all compounds in the corresponding can-
didate library and eighteen SARS-CoV proteins using an interaction
scoring protocol with extensive parameter optimization which was
then applied to the SARS-CoV-2 proteome for prediction. For the
latter similarity based pipeline, we computed interaction scores be-
tween all compounds and human protein structures in our libraries
then used a consensus scoring approach to identify candidates with
highly similar proteomic interaction signatures to multiple known
anti-coronavirus actives. We published our ranked candidate lists
at the very beginning of the COVID-19 pandemic. Since then, 51 of
our 276 predictions have demonstrated anti-SARS-CoV-2 activity in
published clinical and experimental studies. These results illustrate
the ability our platform to rapidly respond to emergent pathogens
and provide greater evidence that treating compounds in a multitar-
get context more accurately describes their behavior in biological
systems.
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The severe acute respiratory syndrome 2 (SARS-CoV-2)1

virus and the disease caused by its infection, COVID-19,2
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by the FDA, specifically both molnupiravir and the nirma- 21

trelvir/ritonavir combination drugs in December of 2021 (6, 7), 22

which speaks to the complexity of this disease and the urgent 23

need for innovative technologies that rapidly and effectively 24

identify promising therapies. Such technologies will not only 25

be useful in the present but also to combat any new emerging 26

pathogens. 27

Significant advances made in the field of computational drug 28

discovery were deployed in the context of COVID-19 with the 29

goal of uncovering viable solutions (8). For example, multiple 30

studies utilized virtual docking methods to identify compounds 31

with strong affinity to SARS-CoV-2 proteins (9–11). Others 32

used network-based bioinformatics methods to suggest drug 33

repurposing candidates or better understand SARS-CoV-2 34

pathology, taking advantage of large scale human and virus 35

protein-protein interaction knowledge (12–14). On the clinical 36

side, applications of traditional and deep machine learning 37

methods have been utilized to identify high-risk patients, such 38

as convolutional neural networks that analyze CT and X- 39

ray images (15, 16). Deep learning approaches have also 40

been directly applied to identify drug candidates for treating 41

COVID-19 (17, 18). 42

In this study we describe and evaluate the performance 43

of our Computational Analysis of Novel Drug Opportunities 44

Significance Statement

In this study we used our computational drug discovery, re-
purposing, and design platform known as CANDO to suggest
drug candidates for treating COVID-19. Using data about com-
pounds known to inhibit the original SARS-CoV virus, we opti-
mized our compound-protein interaction scoring protocol and
applied it to SARS-CoV-2 to generate a list of viral inhibitors
on a proteomic scale. We also generated lists of candidates
that were significantly similar to known coronavirus inhibitors
based on their interactions with all human proteins. The ranked
candidate lists were validated prospectively through extensive
literature searching. Our cumulative hit rate of 18.5% indicates
our platform is a valuable tool for rapidly combating epidemics
and pandemics.
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A patent has been filed with with the United States Patent and Trademark Office (USPTO Appli-
cation number: 63/120,633) claiming some of the small molecule compounds identified using the
approach discussed in this manuscript for the treatment of COVID-19, and were validated by En-
naid Therapeutics, LLC in a propreitary study. The compounds exclusive to the patent are not
included in the list of the 51 validated actives and are not discussed further in the manuscript.
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was first documented in Wuhan, China in December 2 019. It 
spread rapidly and was declared as a pandemic by the World 
Health Organization in March 2020, causing over 5.9 million 
deaths across the world as of February 2022 (1). The scientific 
community immediately began employing various tools and 
methods to identify medical interventions that would reduce 
the threat posed by this novel coronavirus. Numerous in-
stitutions conducted clinical trials evaluating the ability of 
therapeutics to decrease COVID-19 lethality, often report-
ing conflicting r esults f or t he s ame d rug ( e.g. chloroquine 
and remdesivir) (2–4). Few clearly conclusive success sto-
ries were reported in the months immediately following the 
outbreak with the most notable being dexamethasone, an 
anti-inflammatory corticosteroid that reduced death rates in 
patients suffering from a hyperactive immune system response 
known as a cytokine storm (5). Further, it took nearly two 
years for a direct antiviral therapeutic indisputably capable of 
significantly preventing death from COVID-19 to be approved



(CANDO) multiscale therapeutic drug discovery, repurposing,45

and design platform for identifying small molecules that show46

potential in inhibiting the SARS-CoV-2 virus and treating47

COVID-19. CANDO was originally designed as a shotgun re-48

purposing platform for exactly this type of epidemic/pandemic49

scenario utilizing multiscale modeling techniques and adher-50

ing to multitarget drug theory, but has since been enhanced51

to carry out novel drug discovery against all indications (19–52

34) as well as novel drug design (35). The relatively recent53

introduction of higher order biological data such as protein54

pathways, protein-protein interactions, drug side effects, and55

protein-disease associations has further augmented our ability56

to describe compound behavior holistically, with subsequent57

improved performance (27, 36–38). Our platform is freely avail-58

able to the scientific community and a detailed description of59

the software implementation has been published (39).60

We employed two separate predictive pipelines within61

CANDO to suggest putative drug candidates for COVID-19:62

one first optimized our compound-protein interaction proto-63

col against SARS-CoV and then applied it to SARS-CoV-2,64

and the other searched for compounds that were similar to65

those known to possess anti-coronavirus activity based on66

interactions computed with all human proteins. We originally67

published three different ranked lists of putative drug candi-68

dates in March and May of 2020 using the CANDO platform69

(20, 40). In May 2020, we published an assortment of drug70

candidates that were highly ranked by CANDO and were at71

the time being investigated in clinical trials to treat COVID-19.72

Since then several of our top scoring compounds have been73

validated by us and by others which we analyze in detail here.74

The significant number of top-ranked therapeutics successfully75

validated in this study, our previous work with the Ebola76

Virus Disease outbreak in West Africa in 2014 (32), as well77

as our earlier validation studies and analyses (28–30, 41–45),78

all suggest that CANDO is an effective tool to combat newly79

emerging epidemics and pandemics.80

Results and discussion81

Figure 1 illustrates the pipelines and protocols used within the82

CANDO platform to produce the three lists of drug candidates;83

a detailed description follows below.84

Compound-protein interaction protocol parameter optimiza-85

tion. We initially assessed the robustness of predictions made86
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top four competitive parameter sets, two did not have any 104

screens ranked within the top 10 and were discarded. The 105

parameter set we chose to apply to SARS-CoV-2 ranked 25th 106

for SARS-CoV, 3rd for HCoV-NL63, and 10th for HCoV- 107

OC43. We selected this over the other competitive parameter 108

set because omacetaxine mepesuccinate, one of the strongest 109

actives identified in the Dyall screen, was ranked 2nd versus 110

being ranked 14th in the discarded set. The final interac- 111

tion scoring protocol and corresponding de novo candidate 112

generation pipeline parameters included the integer based 113

Extended-connectivity fingerprint (ECFP) with a diameter of 114

10, dCxP scoring protocol, and a compound-protein interaction 115

score cutoff of 0.9 (see “Methods” sections “Compound-protein 116

interaction calculation” and “Parameter optimization using 117

coronavirus active compound recovery”). 118

Generation and validation of drug candidates. We generated 119

three lists of drug candidates from corresponding pipelines 120

that mixed and matched the protocols and data sources as 121

described in the methods: (1) Using the parameters identified 122

in the previous step, we generated a list of 155 approved 123

drug candidates with strong interaction scores to SARS-CoV-2 124

proteins where the top scoring compounds all had interaction 125

scores >=0.9 to one or both of the main (Mpro) or papain- 126

like (PLpro) proteases (identified as 3.5.20 de novo). (2) The 127

nonredundant synthesis of the 18 actives from the Shen study 128

and 21 actives from the Dyall study as well as 2 promising 129

manually added candidates oseltamivir and remdesivir served 130

as input to the interaction signature similarity pipeline since 131

it does not require EC50 values. These 38 compounds were 132

then used to generate 45 approved drug candidates using the 133

signature similarity pipeline (3.5.20 similarity). (3) We later 134

repeated the similarity pipeline with a sublibrary of 85 anti- 135

SARS-CoV-2 actives and an enhanced CANDO compound 136

library (v2.3) to generate a list of 97 approved drug candidates 137

(5.18.20 similarity). 138

We scoured the literature to see if other studies validated 139

our candidates from our three lists against SARS-CoV-2, pri- 140

marily utilizing two different resources that collate detailed 141

information on therapeutic interventions against COVID-19: 142

CoronaCentral and the Targeting COVID-19 Portal from the 143

Global Health Drug Discovery Institute (GHDDI) (see “Meth- 144

ods: External validation studies curation”). Table 1 gives 145

a summary of the number of predicted candidates and val- 146

idations, along with correlation coefficients and discounted 147

cumulative gain scores. Table 2 gives a full breakdown of 148

the validations from each list as well as two drugs with weak 149

EC50s not counted as validated: moxifloxacin and levofloxacin. 150

This includes full virus, main protease, other miscellaneous 151

in vitro (for example, inhibition of SARS-CoV-2 spike protein 152

binding to the human ACE2 receptor), and electronic health 153

record (EHR) studies. Figure 3 uses a Sankey diagram to 154

illustrate the validation of all candidates with EC50s ≤10µM, 155

which includes 31 drugs that were found to be effective against 156

SARS-CoV-2 in full virus inhibition studies. Overall, a total 157

of 51 drugs showed efficacy against SARS-CoV-2 out of 275 158

nonredundant candidates for a hit rate of 18.5%. 159

In addition to these validations gathered from the literature, 160

30 candidates were evaluated by our collaborator, Ennaid 161

Therapeutics, of which 11 displayed in vitro efficacy; a patent 162

has been filed for their use (50). 163

Aside from moxifloxacin and diphenhydramine, all valida- 164

by the CANDO platform by inspecting the recapture rate of 
small molecules identified t o b e a ctive a gainst SARS-CoV, 
MERS-CoV, and other coronavirus species from two high-
throughput screens by Shen et al. (48) and Dyall et al (49). 
The nonredundant sublibrary of 36 actives consisted of 21 
actives from the Shen study (48) against HCoV-OC43 and 
HCoV-NL63 and 18 from the Dyall screen (49) against SARS-
CoV and were mapped to our compound library along with 
their EC50 values. (HCoV-OC43 and HCoV-NL63 were the 
coronavirus species used in the Shen screen, while the Dyall 
study used SARS-CoV.)

We parameterized our compound-protein interaction scor-
ing protocol via the discounted cumulative gain metric after 
generating many matrices using various criteria (see “Methods: 
Parameter optimization using coronavirus active compound re-
covery”). Figure 2 depicts how well each parameter set ranked 
the actives present in the three separate screens. Among the

Mangione et al.



SARS-CoV proteome library Human proteome libraryCANDO compound library

Interaction 
scoring

(BANDOCK)

Similarity candidate generation 
(canpredict similarity)

De novo candidate generation
(canpredict de novo)

V2.1 
candidates

3.5.2020 
similarity

V2.3 
candidates

5.18.2020 
similarity

Parameter 
optimization

SARS-CoV-2 proteome
library

V2.1 
candidates

3.5.2020 
de novo

Fig. 1. Overview of COVID-19 drug candidate prediction pipelines within the CANDO platform. Drug/compound structure libraries were curated from DrugBank (46) and
protein structure libraries comprising both the human and SARS-CoV proteomes were extracted from the Protein Data Bank (47). Interaction scores between every protein and
compound in the corresponding libraries were calculated using our bioanalytic docking (BANDOCK) protocol (27, 39). The interaction scores with the SARS-CoV proteins were
used for the de novo candidate generation pipeline (red) that identified compounds with the highest binding scores to multiple viral proteins, while the interaction scores with the
human proteins were used for a similarity based candidate generation pipeline (blue) that identified candidates based on the similarity of their proteomic interaction signatures
to drugs/compounds known to be effective against SARS-CoV in vitro. The interaction scoring protocol parameters were optimized against SARS-CoV and then applied to
modeled protein structures from the SARS-CoV-2 proteome in the de novo candidate generation pipeline to produce the 3.5.20 de novo candidate list. Two distinct signature
similarity drug candidate lists were generated using the version 2.1 CANDO compound library initially followed by an enhanced v2.3 compound library denoted as 3.5.20
similarity and 5.18.20 similarity, respectively. The predictions in these three lists were validated using evidence from published clinical and experimental studies to not only verify
our platform but to determine optimal candidates that are safe and effective at treating COVID-19 downstream.

Fig. 2. Visualization of parameter optimization set ranks across three coronavirus screens. This scatter plot depicts the ranks of each set of parameters for the
interaction scoring protocol and de novo candidate generation pipeline within CANDO after using the discounted cumulative gain metric to score how well each corresponding
pipeline ranked sets of active compounds against three separate coronavirus species: HCoV-NL63, HCoV-OC43, and SARS-CoV. The ranks for the HCoV-NL63 and
HCoV-OC43 screens are depicted along the horizontal and vertical axes, respectively, while the size of the points depicts if the screen against SARS-CoV ranked within the top
10, 100, or 1,680 for each parameter set. The shade reflects the interaction score threshold that was used by the de novo pipeline to filter the candidates, scaled continuously
from 0.0 (lightest) to 0.95 (darkest). The chosen parameter set (orange box) was the second ranked among all three screens with ranks of 3, 10, and 25 for HCoV-NL63,
HCoV-OC43, and SARS-CoV, respectively, and used an ECFP10 integer based fingerprint, dCxP scoring protocol, and 0.9 compound-protein interaction score cutoff. The
strong and consistent performance of this parameter set across three different coronavirus species justified our selection and warranted its use in generating drug candidates to
inhibit SARS-CoV-2.

Mangione et al.



Table 1. Summary details of drug candidates generated by the CANDO platform. For each candidate list, the total number of candidates that
were initially generated by our prediction modules, the number of viable candidates after manual filtering (removing ions and dyes) prior to
validation, the number of approved compounds, the number of candidates that were matched via literature search using the CoronaCentral
and GHDDI resources (“Checked”), the number of candidates with EHR evidence or in vitro activity <100µM (“Validated”), the hit rate per-
centage, the Pearson correlation coefficient (“CC”) between the the full virus validation ranks and their EC50 scores (including the combined
and nonredundant lists), and the discounted cumulative gain (“DCG”) score . Overall, we obtained hit rates ranging from 13.5% to 29.9%
using the CANDO platform, with the signature similarity pipelines yielding the highest success rates and the direct viral inhibition de novo
pipeline accurately ranked the best, most potent, candidates.

Total Viable Approved Checked Validated Hit rate CC DCG
3.5.20 de novo 225 224 155 48 21 13.5% 0.41 0.96
3.5.20 similarity 115 114 45 17 11 24.4% 0.63 0.24
5.18.20 similarity 100 97 97 48 29 29.9% 0.35 0.22

Combined 440 435 297 113 61 20.5% 0.30 -
Nonredundant 419 414 275 102 51 18.5% 0.37 -

Fig. 3. Validation of SARS-CoV-2 full virus inhibition candidates generated by the CANDO platform. The flow of validations among the three candidate lists generated
using the CANDO platform are depicted from left to right using a Sankey diagram. The 155 candidates from 3.5.20 de novo (yellow) yielded 21 validations, while the similarity
counterpart from the same date (red) produced 11 validations from 45 candidates. The 5.18.20 similarity list (blue) of 97 approved drugs resulted in 29 validations, resembling
the hit rate of 3.5.20 similarity list and more than twice that of the lone de novo list. The 51 total validations comprised of 31 full virus studies, 10 main protease (Mpro) inhibition
studies, and 14 EHR or other inhibition based studies. The compounds that were validated via a full virus inhibition of <10µM are shown prioritized by their rank in the list (or
best rank if in multiple lists) corresponding to the thickness of their bars (ranging from rank 1 to 122). All but six drugs were in a single list, five drugs were in both similarity
based lists (purple) and one was in both the 3.5.20 similarity and de novo lists (orange). The length of the horizontal bar next to the names of the compounds indicates the
lowest reported EC50 or IC50 from published experimental studies progressing on a linear scale. The second strongest reported EC50 (0.03µM) belongs to omacetaxine
mepesuccinate, which is the top candidate from 3.5.20 de novo. The correlation between rank and strength of inhibition is sub-moderate (0.3718), and this is possibly due to the
variation in assay design among different studies (viral replication reduction, viral entry inhibition, viral induced cytopathic effect reduction, etc). Overall, the CANDO platform
was able to identify several candidates with potent anti-SARS-CoV-2 activity using two different predictive pipelines, verifying its potential to rapidly and efficiently respond to
emerging threats to global health.

Mangione et al.



Table 2. Complete list of validated candidates generated by the CANDO platform. The names of the 51 compounds, their ranks in the 3.5.20
de novo, 3.5.20 similarity, and 5.18.20 similarity lists, the full virus EC50s, main protease IC50s, EHR-based evidence, and the corresponding
reference(s) are given. Only the lowest full virus EC50 for each candidate is shown. The de novo pipeline identified better, more potent, full
virus inhibition candidates, while the signature similarity pipeline identified a greater fraction of validated candidates accurately.

Compound 3.5.20 3.5.20. 5.18.20. SARS-CoV-2 Mpro IC50 Other Ref.
de novo similarity similarity EC50 (µM) (µM)

omacetaxine
mepesuccinate

1 0.03 (51)

chlorpromazine 3 11 3.14 (52–54)
clomipramine 4 5.63 (52)
entrectinib 4 58.4µM IC50 Spike protein binding ACE2 (55)
mycophenolate
mofetil

7 0.87 (56)

imipramine 127 8 10.0 (57, 58)
toremifene 8 2.5 (52, 59)
tamsulosin 100 14 38 18% relative risk reduction (death) (60)
bepridil 15 0.86 72 (61)
azelastine 15 2.24 (59, 62–64)
zuclopenthixol 28 18 1.35 (65)
masitinib 20 50 3.2 (62)
erythromycin 20 70% reduction SARS-2 infection at

100ug/ml
(66)

chloroquine 21 96 7.28 (67)
ritonavir 21 13.7 (68)
hydroxychloroquine 22 4.14 (52, 69)
cobicistat 22 6.7 (70, 71)
amodiaquine 23 40 0.13 (51, 52, 65, 67, 72, 73)
nilotinib 26 1.88 4.21µM IC50 Spike protein binding ACE2 (55, 74, 75)
pimozide 26 42 (61)
diphenhydramine 28 17.4 (63)
clomifene 29 84 9.73 (76)
remdesivir 30 0.76 (67, 77, 78)
butenafine 35 5.4 (79)
moxifloxacin 44 239.7 (80)
clarithromycin 47 78% reduction in severe respiratory failure

versus chloroquine
(81)

saquinavir 54 9.92 (61, 68, 79)
simeprevir 55 2.3 48.2 (82–86)
ouabain 56 0.024 (87)
azithromycin 57 2.12 (69)
tranylcypromine 57 8.64 (79)
almitrine 68 1.42 (77)
tamoxifen 74 8.98 (52)
colistimethate 75 Mpro 17% bound (50µM) (88)
lopinavir 76 9.12 (61, 67, 77, 89)
terconazole 144 78 11.92 (52)
silodosin 81 18% relative risk reduction (death) (60)
atazanavir 82 0.22 60.7 (68, 90)
triamterene 86 23.5µM IC50 Spike protein binding ACE2 (55)
hydroxyzine 90 15.3 0.42 hazard ratio (death) (63, 91, 92)
itraconazole 90 0.39 (61, 93, 94)
ebastine 92 0.5 57 (61, 73)
avatrombopag 95 5.71 (77)
trimipramine 99 1.5 (62, 95)
flunarizine 105 19.05 (77)
tadalafil 108 100µM IC50 preventing Spike protein bind-

ing to ACE2
(55)

thalidomide 109 11 versus 23 median days SARS-CoV-2
negative conversion from admission, 18.5
vs 30 days length hospital stay

(96)

paroxetine 111 0.52 hazard ratio (death or intubation) (97)
ifenprodil 117 46.86 Mpro 39% bound (50µM) (88)
nebivolol 123 2.72 (65)
doxazosin 133 74% relative risk reduction (death) (60)
levofloxacin 145 418.6 (80)
teniposide 149 46.3µM IC50 Spike protein binding ACE2 (55)

Mangione et al.
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relative to the direct compound-protein inhibition de novo 226

pipeline; yet some of the candidates generated by the latter 227

demonstrated stronger in vitro efficacy. The increase in hit 228

rate is due to the similarity pipeline utilizing the structural 229

knowledge embedded in the results of countless coronavirus 230

studies, whereas the de novo pipeline relies exclusively on the 231

fidelity of the compound-protein interactions computed using 232

our interaction scoring protocols, which are prone to inaccu- 233

racies. The de novo pipeline was better tuned to correctly 234

rank the strong inhibitors as interaction scoring parameters 235

were first optimized for SARS-CoV using the discounted cu- 236

mulative gain metric, which prioritizes ranking the strongest 237

active compounds near the top of the list. This suggests that 238

weighting the active compounds based on their available EC50 239

values for the full proteome interaction similarity pipeline may 240

produce more potent candidates. 241

Our observed hit rate of 18.5% is likely conservative as not 242

all of the compounds from the three candidate lists have been 243

validated for efficacy against SARS-CoV-2 in published clinical 244

and experimental studies. Conversely, the fraction the 51 vali- 245

dations analyzed in this study that will result in clinical utility 246

is limited due to a variety of factors such as pharmacokinet- 247

ics, pharmacodynamics, safety, and cost. Multiple candidates 248

that we listed as validations, specifically chloroquine, hydrox- 249

ychloroquine, and azithromycin, have had conflicting reports 250

of clinical benefit (2–4, 98); regardless, we consider them a 251

successful prediction of the CANDO platform due to the ex- 252

tensive number of in vitro studies reporting their SARS-CoV-2 253

inhibition, which is what the compound-proteome interac- 254

tion analytics pipelines present in CANDO optimize for at 255

present. Furthermore, even if CANDO fails to accurately 256

score a known interaction with our bioanalytic docking proto- 257

col (BANDOCK) for a compound with reported activity, as in 258

the case of ebastine and the SARS-CoV-2 main protease, its 259

therapeutic mechanism may still be elucidated by inspecting 260

the behavior of highly similar compounds based on their pro- 261

teomic interaction signatures. Consequently, we are actively 262

implementing methods to further refine the feasibility of our 263

candidates based on the aforementioned factors. 264

Methods 265

Compound structure library and known actives curation. The 266

CANDO v2.1 compound library consisted of 8,696 drug and 267

drug- like small molecule three-dimensional structures, includ- 268

ing 1,979 approved for human use, and was extracted from 269

DrugBank (46); this library was used for the initial predictions. 270

We later updated the CANDO compound library to v2.3 that 271

included 13,194 compounds from DrugBank consisting of 2,449 272

approved drugs and 2,519 small molecule metabolites, with the 273

remaining classified as experimental/investigational. Biologic 274

therapeutics were not included in our analyses. 275

Initially, compounds were considered as a coronavirus active 276

if they were identified in one of two high-throughput screens 277

by Shen et al. (48) and Dyall et al (49). The former screened 278

a library of 290 compounds against SARS-CoV and Middle 279

East respiratory syndrome coronavirus (MERS-CoV). The 280

latter screened a 2,000 compound library against four different 281

coronavirus strains: human coronavirus OC43 (HCoV-OC43), 282

human coronavirus NL63 (HCoV-NL63), MERS-CoV, and 283

murine coronavirus (MHV-A59; also known as mouse hepatitis 284

virus). Out of 60 successful hits from both studies, 18 com- 285

tions of candidates ranked in the top 50 of their respective 
lists have full virus EC50 values ≤10µM. The same is true for 
those in the top 100 with the exception of hydroxyzine and ter-
conazole. The second strongest reported EC50 (0.03µM) was 
obtained using omacetaxine mepesuccinate, the top ranked 
candidate from the 3.5.20 de novo list, which is only slightly 
weaker than the best EC50 belonging to ouabain (0.024µM), 
ranked 56 in the 5.18.20 similarity list. Figure 5 illustrates the 
proposed mechanism of omacetaxine mepesuccinate inhibiting 
SARS-CoV-2 via strong predicted interactions to the main 
and papain-like proteases. Two other drugs known to inhibit 
both SARS-CoV-2 proper as well as its main protease, bepridil 
and ebastine, were present in the 3.5.20 de novo and 5.18.20 
similarity lists respectively, with the latter having a relatively 
weak interaction score to the main protease of 0.82 while the 
former received a score of 0.98. However, the protease inhi-
bition activity of ebastine is supported by it being the third 
most similar compound to nelfinavir, a  known human immun-
odeficiency virus protease inhibitor, based on their proteomic 
interaction signature similarity, suggesting the CANDO plat-
form is capable of recognizing/predicting mechanistic behavior 
in multiple ways.

We also investigated why moxifloxacin was deemed a  candi-
date despite its low reported efficacy (Figure 4). Moxifloxacin 
was predicted by the 3.5.20 similarity pipeline and received 
a score of two meaning it was in the top 25 most similar 
compounds to two coronavirus actives (average rank 19.5). 
Moxifloxacin was the 18th most s imilar compound to meflo-
quine and the 21st most similar to emetine; the former is a 
treatment for malaria, similar to many other anti-malarials 
with moderate activity (∼4-15µM) against coronaviruses in 
vitro (49, 77), and the latter is an experimental treatment 
for amoebiasis with demonstrated activity against not only 
SARS-CoV-2 (EC50 0.46µM) (89), but many other coronavirus 
species (48, 49). Moxifloxacin having s imilarity to one strong 
and one moderate anti-coronavirus compound would suggest 
a stronger EC50 than 239.7µM; we attribute this result to a 
progressive decrease in behavioral/functional similarity signal 
strength/relevance as the distance between their proteomic 
interaction signatures relative to those of known coronavirus 
actives increases. In other words, the signal disappears as we 
move further down the ranks as depicted in Figure 4.

The second to last validation in the 3.5.20 similarity list is 
clomifene, an infertility treatment in women, at rank 29 with a 
score of 2 and EC50 of 9.73µM; it is similar to the coronavirus 
active compounds tamoxifen (rank 2) and toremifene (rank 
11), constituting an average rank of 6.5. Additionally, all 
other validations from the same list have an average rank 
of ≤6.5 regardless of the score, which ranges from two to 
six. This implies setting the cutoff rank for the canpredict 
module to a lower value will produce stronger candidates and is 
further supported by the higher hit rate observed in the 5.18.20 
similarity list (29.9% vs 24.4% for 3.5.20 similarity) which 
was produced with a cutoff of ten. However the candidates 
predicted in the 5.18.20 similarity list benefited f rom using 
anti-SARS-CoV-2 drugs specifically, a s o pposed t o actives 
against other coronavirus species, and had over double the 
number of active compounds when compared to the actives 
used to generate the 3.5.20 similarity list.

The candidates generated using the human proteome inter-
action signature similarity pipeline had higher validation rates
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Fig. 4. Analysis of the efficacy of two SARS-CoV-2 inhibitors with respect to proteomic interaction signature similarities predicted using the CANDO platform.
The structures of two validated compounds from the 3.5.20 similarity list, moxifloxacin (blue) and clomifene (green), are shown with EC50 values of 239.7µM and 9.73µM,
respectively. The EC50 values are based on the full virus in vitro inhibition of SARS-CoV-2. Their ranks in the list of the top 25 most similar compounds to two different
coronavirus actives are outlined in black; moxifloxacin is at rank 18 and 21 in comparison to mefloquine and emetine, and clomifene is at rank 2 and 11 in comparison to
tamoxifen and toremifene, respectively. These ranks are determined by the similarity coefficient (Sorenson-Dice) of the proteomic interaction signatures between the query
compound and all others in the CANDO library. The proteomic signatures are vectors of interaction scores between a compound and a library of 5,317 human proteins
computed using our in-house docking protocol BANDOCK (see “Methods: Compound-protein interaction calculation”). The fundamental hypothesis underlying the CANDO
platform is that similar drugs will have similar behavior in biological systems as measured by their proteomic interaction signatures. Despite the relatively high rank (44) of
moxifloxacin in the 3.5.20 similarity list, its measured EC50 was poor; this is explained by its lower interaction signature similarity to the two coronavirus actives depicted
suggesting behavioral signal strength inversely correlates with rank. On the other hand, clomifene, the next highest prediction from the 3.5.20 similarity list at rank 29, has
a stronger EC50 and ranks higher in the similarity lists to two coronavirus active compounds. However the reported EC50 values of mefloquine and emetine are strong at
4-15µM and 0.46µM, respectively, which implies that behavioral similarity signal is preserved for highly ranked compounds and that using lower rank cutoff thresholds produces
stronger candidates.
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Chemical 
similarity score 
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Omacetaxine mepesuccinate
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Interaction score

Ligand-binding site 
score
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Fig. 5. Analysis of selected interactions between SARS-CoV-2 proteases and top ranked CANDO-generated drug candidates. The main (Mpro, top) and the papain-
like (PLpro, bottom) proteases are depicted in grey with the binding site residues colored blue. Bepridil (green) and omacetaxine mepesuccinate (orange) ranked at 15 and 1 in
the 3.5.20 de novo list, and ebastine (blue) ranked at 92 in the 5.18.20 similarity list, are shown bound to one or both proteases. These constitute example interactions of when
CANDO made a successful prediction as well as illustrate why candidate generation is not perfect from a mechanistic multiscale perspective. The interaction score (orange
triangles) between the compounds and the proteases were generated using the bioanalytic docking protocol BANDOCK, with higher scores (maximum 1.0) predicting a higher
likelihood of interaction. The ligand associated with the binding site predictions by the COACH algorithm and chosen as the template for BANDOCK are depicted in grey ellipses
(full names available in the Supplementary Information), all of which are strong coronavirus protease inhibitors. These ligands are compared to the query drug using the
ECFP10 chemical fingerprint via RDKit and a similarity score is assessed based on the Sorenson-Dice coefficient. The percentile of the similarity (black outlined boxes) from
the corresponding distribution of all similarities between the query compounds and all ligands in the binding site library is multiplied by the confidence score associated with the
binding site prediction from COACH (purple triangles) to serve as the final score. Bepridil inhibits the full SARS-CoV-2 virus and Mpro in vitro with EC50s of 0.86µM and 72µM,
which was successfully assigned a strong interaction score of 0.98. On the other hand, ebastine also inhibits the full virus and Mpro with EC50s of 0.5µM and 57µM, yet was
assigned a lower interaction score of 0.82. Despite the strong percentile similarity score between ebastine and its template ligand (99.7), the confidence score for this binding
site prediction was 0.82, significantly lowering the final interaction score. However, ebastine is the 3rd most similar compound to nelfinavir, a known human immunodeficiency
virus protease inhibitor with activity against SARS-CoV-2, based on interaction similarity to a library of 5,317 human proteins, suggesting its putative mechanism as a protease
inhibitor. Omacetaxine mepesuccinate, the second strongest full virus inhibitor predicted by CANDO with an EC50 of 0.03µM, was the top candidate from the de novo list and
has interaction scores of 0.960 and 0.964 with Mpro and PLpro, respectively, and has not yet been validated in terms of target specificity. Based on the high interaction scores,
we propose this as its mechanism not only for SARS-CoV-2, but for all other coronavirus species against which it has activity. In this manner, the mechanistic understanding of
drug candidate behavior is readily deciphered in a multiscale manner, from the atomic-level fingerprints between the novel drug candidates and the interacting ligands to the
evolutionary information embedded at the protein and proteome scales, and exemplifies the ability of the CANDO platform to accurately identify novel drug candidates and their
mechanisms via a multi-pronged approach.
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pounds from the Shen study along with their EC50s against286

HCoV-OC43 and HCoV-NL63, as well as 12 compounds from287

the Dyall study and their EC50s against SARS-CoV were288

mapped to our compound library. These three actives subli-289

braries were used for the compound-protein interaction scoring290

protocol parameter optimization (see “Methods: Parameter291

optimization using coronavirus active compound recovery”).292

The nonredundant combination of actives in the Shen and293

Dyall studies were used for the signature similarity candidate294

generation pipeline (see “Methods: COVID-19 drug candidate295

generation”). We also added oseltamivir and remdesivir as296

at that time (February 2020) evidence suggested that they297

may inhibit SARS-CoV-2 or related coronaviruses (99, 100),298

resulting in an actives library of 38 compounds.299

As more data became available regarding in vitro efficacy300

values for compounds against SARS-CoV-2, a second subli-301

brary of 85 actives with reported EC50 values ≤10µM was302

extracted on May 7, 2020 from the Targeting COVID-19 Portal303

from GHDDI (101), which contained 17/38 compounds from304

the previous list. The updated CANDO compound library305

along with the new GHDDI actives sublibrary were used for the306

enhanced signature similarity candidate generation pipeline307

(see “Methods: COVID-19 drug candidate generation”).308

Protein structure library curation. The available SARS-CoV309

x-ray diffraction protein structures were obtained from the310

Protein Data Bank (PDB) (47) and initially served as our311

representative coronavirus proteome, comprising eighteen total312

structures. These eighteen SARS-CoV proteins were used for313

the compound-protein interaction protocol optimization (see314

“Methods: Compound-protein interaction calculation”).315

A SARS-CoV-2 protein library of 24 structures was mod-316

eled from sequence using the I-TASSER v5.1 suite (102) and317

comprised the proteome used for the remaining analyses. We318

prioritized 18/24 proteins that were modeled by I-TASSER319

using homology to known coronavirus structures. These 18320

SARS-CoV-2 proteins were used for the de novo pipeline,321

while both iterations of the signature similarity based pipeline322

(see “Methods: COVID-19 drug candidate generation”) used323

a library of 5,317 human protein x-ray diffraction structures324

extracted from the PDB. The former piepline is implemented325

using the canpredict de novo module, and the latter is imple-326

mented using the canpredict similarity module, in the cando.py327

Python package (39, 103)).328

Compound-protein interaction calculation. We utilized our in-329

house bioinformatic analytics-based docking protocol BAN-330

DOCK to generate interaction scores between every compound331

and every protein structure; these scores serve as a proxy for332

binding strength/probability (21–23, 26). The COACH al-333

gorithm from the I-TASSER suite (104) was used to predict334

binding sites for each protein. COACH outputs an associated335

score and binding ligand for every binding site in a protein336

and is the primary data used by BANDOCK to generate inter-337

action scores: For a given compound and protein pair, every338

interacting ligand predicted by COACH is compared to the339

query compound by computing the similarity coefficient of340

their chemical fingerprints generated via RDKit (105). The341

maximum resulting coefficient (i.e. the strongest match) and342

its associated binding site score are then used to compute343

the final interaction score for the compound-protein pair, de-344

pending on the scoring protocol parameters. This is repeated345

iteratively for each protein in a given library (e.g. SARS- 346

CoV, SARS-CoV-2, human, nonredundant PDB), resulting in 347

a proteomic interaction signature for every drug/compound, 348

represented an N × M matrix, where N is the number of 349

drugs/compounds and M is the number of proteins. 350

Interaction scoring (BANDOCK) parameters were system- 351

atically varied to identify those optimal for assessing anti- 352

coronavirus activity. These were (1) the chemical fingerprint- 353

ing method: ECFP or functional-class fingerprint (FCFP) 354

with diameters of 0, 2, 4, 6, 8, and 10 and length of 2048; 355

(2) the fingerprint style: binary vs. integer based for the 356

compounds/ligands; (3) the scoring protocol: the binding site 357

score from COACH (Pscore), the Tanimoto or Sorenson-Dice 358

coefficient of the binding site ligand from COACH to the query 359

drug (Cscore) for binary or integer fingerprints, respectively, 360

the percentile of the Cscore in the distribution of all I-TASSER 361

ligand Cscores to the query drug (dCscore), or products of 362

these (Pscore × Cscore, Pscore × dCscore); and (4) thresholds: 363

Pscore and Cscore (or dCscore) thresholds so that any binding 364

site or compound-ligand similarity coefficient (or its percentile) 365

that does not exceed each cutoff, respectively, are ignored. A 366

compound-protein interaction matrix was generated for each 367

of these parameter combinations. 368

Computed interaction scores with the 18 SARS-CoV pro- 369

teins were used for compound-protein scoring protocol pa- 370

rameter optimization, while the scores computed (using the 371

parameters identified in the previous step) with the 18 SARS- 372

CoV-2 proteins were used for the de novo candidate generation 373

pipeline. The scores computed with a library of 5,317 human 374

PDB structures were used for the similarity-based pipelines 375

(see “Methods: COVID-19 drug candidate generation”). The 376

initial parameters were an ECFP4 binary fingerprint with 377

Tanimoto coefficients for Cscores, Pscore scoring protocol, and 378

a dCscore threshold of 0.5 (50th percentile), which were used 379

to generate the March 5 2020 aka 3.5.20 list of candidates. 380

The enhanced parameters were an ECFP4 integer fingerprint 381

with Sorenson-Dice coefficient for Cscores, Pscore × dCscore 382

scoring protocol, and a dCscore threshold of 0.75 (75th per- 383

centile), which were used to generate the May 18, 2020 aka 384

3.18.20 candidate list. 385

Parameter optimization using coronavirus active compound 386

recovery. We identified the best parameters for BANDOCK 387

that optimally ranked the compounds identified via high 388

throughput screens against three different coronavirus species 389

(SARS-CoV, HCoV-NL63, and HCoV-OC43), each of which 390

were assessed separately via de novo drug candidate genera- 391

tion. We also varied the cutoff threshold of interaction scores 392

to consider so that the interaction scores with proteins below 393

that threshold were not considered in the total for a given 394

compound. The cutoffs in this study were incremented by 395

0.05, starting with 0.0 (no threshold) and ending with 1.0 396

(maximum score). The discounted cumulative gain metric 397

(106, 107), often employed for search engine optimization and 398

other early recognition problems, was used to assess how well 399

each matrix properly ranked the active compounds in the 400

proper order given their associated EC50/IC50 values from 401

each of the three species separately. Our previous work has 402

identified this metric as the optimal one for drug repurposing 403

studies (27). Briefly, discounted cumulative gain (DCG) re- 404

wards lists of predictions that rank the optimal known actives 405

at the top and progressively penalizes lower ranked ones via 406
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the equation:407

DCGp =
p∑

i=1

2reli − 1
log2(i+ 1) [1]408

where p is the length of the list, i is the rank, and reli is409

the relevance score of the item at position/rank i which is the410

inverse of the EC50 values (1/EC50) for the 36 nonredundant411

actives.412

Parameter sets utilizing any of the following criteria were413

discarded due to trivial candidate rankings: Pscore scoring pro-414

tocol, interaction score threshold of 1.0, and Cscore threshold415

of 1.0. Interaction scores generated using the Pscore protocol416

did not utilize the chemical fingerprint similarity value between417

the binding site ligand and the query compound and subse-418

quently failed to discriminate between two compounds that419

used the same ligand. Using an interaction score or Cscore420

threshold of 1.0 required the chemical fingerprint similarity421

score to equal 1.0, meaning identical compounds, therefore en-422

suring the only predicted candidates were known coronavirus423

inhibitors.424

COVID-19 drug candidate generation. To generate drug can-425

didates against COVID-19, we used both a de novo pipeline426

that ranked compounds based on their predicted interaction427

scores against proteins from SARS-CoV-2, and a similarity428

pipeline that searched the CANDO drug/compound library429

for compounds similar to those deemed as actives in terms430

of their interaction signatures. The former protocol summed431

the computed interaction scores of each compound against all432

viral proteins and ranked them from best to worst. Interaction433

scores below particular thresholds were ignored in the sums434

(see “Methods: Parameter optimization using coronavirus ac-435

tive compound recovery”). For the initial iteration of the latter436

similarity protocol, drug candidates were ranked by their fre-437

quency of occurrence in the top 25 most similar compounds to438

each of the 38 coronavirus actives, while the enhanced iteration439

ranked compounds by frequency of occurrence in the top 10440

most similar compounds to the 85 GHDDI actives. We kept441

track of the number of coronavirus actives each compound442

was similar to within the cutoff threshold along with their443

average ranks (which served as a tie-breaker) to produce the444

final ranked list of candidates.445

The outputs of our pipelines were three ranked lists of446

drug candidates: one using the direct viral inhibition pipeline447

from the initial iteration (3.5.20 de novo), a second using448

the similarity based candidate generation pipeline from the449

initial iteration (3.5.20 similarity), and the third using the sim-450

ilarity based pipeline using the enhanced actives list (5.18.20451

similarity).452

External validation studies curation. We analyzed GHDDI453

454

455

456

457

458

459

460

461

462

463

purely computational or did not investigate the candidate 464

compound as the primary intervention. 465

Conclusion 466

This study highlights how CANDO may be used to rapidly 467

generate promising leads for drug development when time 468

is critical, provided the therapeutic intervention is possible 469

within established dosing guidelines. Our study is an assess- 470

ment of potential therapeutics for treating COVID-19 which 471

were all generated within three months of the pandemic decla- 472

ration by the WHO. Considering that it took almost one year 473

for a vaccine (109) and two years for a potent antiviral such 474

as molnupiravir or nirmatrelvir (6, 7) to become available, we 475

have exemplified that computational drug discovery and repur- 476

posing platforms like ours can be strategically used to alleviate 477

the burden of emergent pathogens ahead of time. Additional 478

studies, ideally via in vivo and/or clinical studies, verifying 479

the efficacy of these identified candidates is necessary in most 480

cases, however for already approved drug candidates such as 481

those explored in this study the need for trials demonstrat- 482

ing safety is greatly diminished. Additionally, retrospective 483

EHR analysis may also be used to indirectly examine clinical 484

benefits in human patients as in the case of fluoxetine (110). 485

ACKNOWLEDGMENTS. The authors would like to acknowledge 486

the support provided by the Center for Computational Research 487

at the University at Buffalo. We would also like to thank all 488

members of the Samudrala Computational Biology Group. This 489

work was supported in part by a NIH Director’s Pioneer Award 490

(DP1OD006779), a NIH Clinical and Translational Sciences Award 491

(UL1TR001412), NIH T15 Award (T15LM012495), an NCATS 492

ASPIRE Design Challenge Award, an NCATS ASPIRE Reduction- 493

to-Practice Award, and startup funds from the Department of 494

Biomedical Informatics at the University at Buffalo. 495

1. Who coronavirus (covid-19) dashboard (year?). 496

2. CD Spinner, et al., Effect of remdesivir vs standard care on clinical status at 11 days in 497

patients with moderate covid-19: a randomized clinical trial. Jama 324, 1048–1057 (2020). 498

3. Y Wang, et al., Remdesivir in adults with severe covid-19: a randomised, double-blind, 499

placebo-controlled, multicentre trial. The Lancet 395, 1569–1578 (2020). 500

4. MS Chowdhury, J Rathod, J Gernsheimer, A rapid systematic review of clinical trials utilizing 501

chloroquine and hydroxychloroquine as a treatment for covid-19. Acad. Emerg. Medicine 27, 502

493–504 (2020). 503

5. RC Group, Dexamethasone in hospitalized patients with covid-19. New Engl. J. Medicine 504

384, 693–704 (2021). 505

6. E Mahase, Covid-19: Molnupiravir reduces risk of hospital admission or death by 50% in 506

patients at risk, msd reports (2021). 507

7. J Hammond, et al., Oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19. New 508

Engl. J. Medicine (2022). 509

8. K Mohamed, N Yazdanpanah, A Saghazadeh, N Rezaei, Computational drug discovery and 510

repurposing for the treatment of covid-19: a systematic review. Bioorganic chemistry 106, 511

104490 (2021). 512

9. J Wang, Fast identification of possible drug treatment of coronavirus disease-19 (covid-19) 513

through computational drug repurposing study. J. chemical information modeling 60, 3277– 514

3286 (2020). 515

10. V Vijayan, et al., Identification of promising drug candidates against nsp16 of sars-cov-2 516

through computational drug repurposing study. J. Biomol. Struct. Dyn. pp. 1–15 (2020). 517

11. K Baby, et al., Targeting sars-cov-2 main protease: A computational drug repurposing study. 518

Arch. medical research 52, 38–47 (2021). 519

12. DM Gysi, et al., Network medicine framework for identifying drug-repurposing opportunities 520

for covid-19. Proc. Natl. Acad. Sci. 118 (2021). 521

13. Y Zhou, et al., Network-based drug repurposing for novel coronavirus 2019-ncov/sars-cov-2. 522

Cell discovery 6, 1–18 (2020). 523

14. S Ghandikota, M Sharma, AG Jegga, Secondary analysis of transcriptomes of sars-cov-2 524

infection models to characterize covid-19. Patterns 2, 100247 (2021). 525

15. AA Ardakani, AR Kanafi, UR Acharya, N Khadem, A Mohammadi, Application of deep learn- 526

ing technique to manage covid-19 in routine clinical practice using ct images: Results of 10 527

convolutional neural networks. Comput. Biol. Medicine 121, 103795 (2020). 528

16. T Ozturk, et al., Automated detection of covid-19 cases using deep neural networks with 529

x-ray images. Comput. biology medicine 121, 103792 (2020). 530

17. Y Liu, Y Wu, X Shen, L Xie, Covid-19 multi-targeted drug repurposing using few-shot learn- 531

ing. Front. Bioinforma. 1, 18 (2021). 532

(101) and CoronaCentral (108) for up-to-date information 
on COVID-19 therapeutic interventions which could indepen-
dently and prospectively validate our top ranked candidates. 
Both sources utilize deep learning or natural language process-
ing methods to automatically extract and annotate information 
from SARS-CoV-2 studies to produce lists of possible actives. 
We manually parsed the manuscripts that were annotated with 
and matched the name of any candidate compounds from our 
three prediction lists for corresponding efficacy values (EC50, 
IC50, hazard ratios, etc) while eliminating studies that were

Mangione et al.



18. TH Pham, Y Qiu, J Zeng, L Xie, P Zhang, A deep learning framework for high-throughput533

mechanism-driven phenotype compound screening and its application to covid-19 drug re-534

purposing. Nat. machine intelligence 3, 247–257 (2021).535

19. W Mangione, R Samudrala, Identifying protein features responsible for improved drug re-536

purposing accuracies using the cando platform: Implications for drug design. Molecules 24,537

167 (2019).538

20. W Mangione, Z Falls, T Melendy, G Chopra, R Samudrala, Shotgun drug repurposing539

biotechnology to tackle epidemics and pandemics. Drug Discov. Today 25, 1126–1128540

(2020).541

21. G Sethi, G Chopra, R Samudrala, Multiscale modelling of relationships between protein542

classes and drug behavior across all diseases using the cando platform. Mini reviews medic-543

inal chemistry 15, 705–717 (2015).544

22. M Minie, et al., Cando and the infinite drug discovery frontier. Drug discovery today 19,545

1353–1363 (2014).546

23. ML Hudson, R Samudrala, Multiscale virtual screening optimization for shotgun drug repur-547

posing using the cando platform. Molecules 26, 2581 (2021).548

24. J Schuler, R Samudrala, Fingerprinting cando: Increased accuracy with structure-and549

ligand-based shotgun drug repurposing. ACS omega 4, 17393–17403 (2019).550

25. J Schuler, W Mangione, R Samudrala, W Ceusters, Foundations for a realism-based drug551

repurposing ontology in 10th Annual International Conference on Biomedical Ontology.552

(2019).553

26. Z Falls, W Mangione, J Schuler, R Samudrala, Exploration of interaction scoring criteria in554

the cando platform. BMC research notes 12, 1–6 (2019).555

27. J Schuler, et al., Evaluating the performance of drug-repurposing technologies. Drug Discov.556

Today (2021).557

28. E Jenwitheesuk, R Samudrala, Improved prediction of hiv-1 protease-inhibitor binding ener-558

gies by molecular dynamics simulations. BMC structural biology 3, 1–9 (2003).559

29. E Jenwitheesuk, R Samudrala, Identification of potential multitarget antimalarial drugs.560

JAMA 294, 1487–1491 (2005).561

30. E Jenwitheesuk, JA Horst, KL Rivas, WC Van Voorhis, R Samudrala, Novel paradigms for562

drug discovery: computational multitarget screening. Trends pharmacological sciences 29,563

62–71 (2008).564

31. JA Horst, A Laurenzi, B Bernard, R Samudrala, Computational multitarget drug discovery.565

Polypharmacology Drug Discov. pp. 263–301 (2012).566

32. G Chopra, S Kaushik, PL Elkin, R Samudrala, Combating ebola with repurposed therapeu-567

tics using the cando platform. Molecules 21, 1537 (2016).568

33. G Chopra, R Samudrala, Exploring polypharmacology in drug discovery and repurposing569

using the cando platform. Curr. pharmaceutical design 22, 3109–3123 (2016).570

34. J Fine, R Lackner, R Samudrala, G Chopra, Computational chemoproteomics to understand571

the role of selected psychoactives in treating mental health indications. Sci. reports 9, 1–15572

(2019).573

35. B Overhoff, Z Falls, W Mangione, R Samudrala, A deep-learning proteomic-scale approach574

for drug design. Pharmaceuticals 14, 1277 (2021).575

36. W Mangione, Z Falls, R Samudrala, Effective holistic characterization of small molecule576

effects using heterogeneous biological networks. bioRxiv (2022).577

37. L Moukheiber, et al., Identifying protein features and pathways responsible for toxicity using578

machine learning, cando, and tox21 datasets: Implications for predictive toxicology. bioRxiv579

(2021).580

38. W Mangione, Ph.D. thesis (2022) Copyright - Database copyright ProQuest LLC; ProQuest581

does not claim copyright in the individual underlying works; Last updated - 2022-03-21.582

39. W Mangione, Z Falls, G Chopra, R Samudrala, cando. py: Open source software for predic-583

tive bioanalytics of large scale drug–protein–disease data. J. Chem. Inf. Model. 60, 4131–584

4136 (2020).585

40. Cando platform putative drug candidates against covid-19 (2020).586

41. E Jenwitheesuk, R Samudrala, Identifying inhibitors of the sars coronavirus proteinase.587

Bioorganic & medicinal chemistry letters 13, 3989–3992 (2003).588

42. JM Costin, et al., Structural optimization and de novo design of dengue virus entry inhibitory589

peptides. PLoS neglected tropical diseases 4, e721 (2010).590

43. CO Nicholson, et al., Viral entry inhibitors block dengue antibody-dependent enhancement591

in vitro. Antivir. research 89, 71–74 (2011).592

44. S Michael, et al., Optimized dengue virus entry inhibitory peptide (dn81) (2011).593

45. S Michael, et al., Optimized dengue virus entry inhibitory peptide(1oan1) (2011).594

46. DS Wishart, et al., Drugbank 5.0: a major update to the drugbank database for 2018. Nu-595

cleic acids research 46, D1074–D1082 (2018).596

47. SK Burley, et al., Rcsb protein data bank: biological macromolecular structures enabling re-597

search and education in fundamental biology, biomedicine, biotechnology and energy. Nu-598

cleic acids research 47, D464–D474 (2019).599

48. L Shen, et al., High-throughput screening and identification of potent broad-spectrum in-600

hibitors of coronaviruses. J. virology 93, e00023–19 (2019).601

49. J Dyall, et al., Repurposing of clinically developed drugs for treatment of middle east res-602

piratory syndrome coronavirus infection. Antimicrob. agents chemotherapy 58, 4885–4893603

(2014).604

50. R Samudrala, Z Falls, W Mangione, Coronavirus treatment compositions and methods605

(2020).606

51. A Ianevski, et al., Potential antiviral options against sars-cov-2 infection. Viruses 12, 642607

(2020).608

52. S Weston, et al., Broad anti-coronavirus activity of food and drug administration-approved609

drugs against sars-cov-2 in vitro and sars-cov in vivo. J. virology 94, e01218–20 (2020).610

53. M Plaze, et al., Inhibition of the replication of sars-cov-2 in human cells by the fda-approved611

drug chlorpromazine. Int. journal antimicrobial agents 57, 106274 (2021).612

54. N Hoertel, et al., Observational study of chlorpromazine in hospitalized patients with covid-613

19. Clin. drug investigation 41, 221–233 (2021).614

55. KB Tsegay, et al., A repurposed drug screen identifies compounds that inhibit the binding of615

the covid-19 spike protein to ace2. Front. Pharmacol. 12, 1385 (2021).616

56. F Kato, et al., Antiviral activities of mycophenolic acid and imd-0354 against sars-cov-2. 617

Microbiol. Immunol. 64, 635–639 (2020). 618

57. S Schloer, et al., Targeting the endolysosomal host-sars-cov-2 interface by clinically licensed 619

functional inhibitors of acid sphingomyelinase (fiasma) including the antidepressant fluoxe- 620

tine. Emerg. Microbes & Infect. 9, 2245–2255 (2020). 621

58. A Carpinteiro, et al., Pharmacological inhibition of acid sphingomyelinase prevents uptake 622

of sars-cov-2 by epithelial cells. Cell Reports Medicine 1, 100142 (2020). 623

59. L Yang, et al., Identification of sars-cov-2 entry inhibitors among already approved drugs. 624

Acta Pharmacol. Sinica pp. 1–7 (2020). 625

60. L Rose, et al., The association between alpha-1 adrenergic receptor antagonists and in- 626

hospital mortality from covid-19. Front. Medicine 8 (2021). 627

61. EC Vatansever, et al., Bepridil is potent against sars-cov-2 in vitro. Proc. Natl. Acad. Sci. 628

118 (2021). 629

62. N Drayman, et al., Drug repurposing screen identifies masitinib as a 3clpro inhibitor that 630

blocks replication of sars-cov-2 in vitro. bioRxiv (2020). 631

63. LR Reznikov, et al., Identification of antiviral antihistamines for covid-19 repurposing. 632

Biochem. biophysical research communications 538, 173–179 (2021). 633

64. R Konrat, et al., The anti-histamine azelastine, identified by computational drug repurposing, 634

inhibits sars-cov-2 infection in reconstituted human nasal tissue in vitro. bioRxiv (2020). 635

65. G Bocci, et al., Virtual and in vitro antiviral screening revive therapeutic drugs for covid-19. 636

ACS Pharmacol. & Transl. Sci. 3, 1278–1292 (2020). 637

66. Z Yuan, MA Pavel, H Wang, SB Hansen, Hydroxychloroquine: mechanism of action inhibit- 638

ing sars-cov2 entry. bioRxiv (2020). 639

67. M Ko, S Jeon, WS Ryu, S Kim, Comparative analysis of antiviral efficacy of fda-approved 640

drugs against sars-cov-2 in human lung cells. J. medical virology (2020). 641

68. M Mahdi, et al., Analysis of the efficacy of hiv protease inhibitors against sars-cov-2’s main 642

protease. Virol. journal 17, 1–8 (2020). 643

69. F Touret, et al., In vitro screening of a fda approved chemical library reveals potential in- 644

hibitors of sars-cov-2 replication. Sci. reports 10, 1–8 (2020). 645

70. S De Meyer, et al., Lack of antiviral activity of darunavir against sars-cov-2. Int. J. Infect. Dis. 646

97, 7–10 (2020). 647

71. A Gupta, et al., Structure-based virtual screening and biochemical validation to discover a 648

potential inhibitor of the sars-cov-2 main protease. ACS omega (2020). 649

72. L Si, et al., Human organ chip-enabled pipeline to rapidly repurpose therapeutics during 650

viral pandemics. bioRxiv (2020). 651

73. A Pickard, et al., Discovery of re-purposed drugs that slow sars-cov-2 replication in human 652

cells. bioRxiv (2021). 653

74. V Cagno, G Magliocco, C Tapparel, Y Daali, The tyrosine kinase inhibitor nilotinib inhibits 654

sars-cov-2 in vitro. Basic & Clin. Pharmacol. & Toxicol. (2020). 655

75. G Garcia Jr, et al., Antiviral drug screen of kinase inhibitors identifies cellular signaling 656

pathways critical for sars-cov-2 replication. Available at SSRN 3682004 (2020). 657

76. HL Xiong, et al., Several fda-approved drugs effectively inhibit sars-cov-2 infection in vitro. 658

bioRxiv (2020). 659

77. B Ellinger, et al., A sars-cov-2 cytopathicity dataset generated by high-content screening of 660

a large drug repurposing collection. Sci. data 8, 1–10 (2021). 661

78. A Pizzorno, et al., In vitro evaluation of antiviral activity of single and combined repurposable 662

drugs against sars-cov-2. Antivir. research 181, 104878 (2020). 663

79. WC Chiou, et al., Repurposing existing drugs: identification of sars-cov-2 3c-like protease 664

inhibitors. J. Enzym. Inhib. Medicinal Chem. 36, 147–153 (2021). 665

80. SL Scroggs, et al., Fluoroquinolone antibiotics exhibit low antiviral activity against sars-cov-2 666

and mers-cov. Viruses 13, 8 (2021). 667

81. K Tsiakos, et al., Early start of oral clarithromycin is associated with better outcome in covid- 668

19 of moderate severity: the achieve open-label trial. medRxiv pp. 2020–12 (2021). 669

82. A Manandhar, et al., Targeting sars-cov-2 m3clpro by hcv ns3/4a inhibitors: In silico model- 670

ing and in vitro screening. J. chemical information modeling 61, 1020–1032 (2021). 671

83. HS Lo, et al., Simeprevir potently suppresses sars-cov-2 replication and synergizes with 672

remdesivir. ACS central science 7, 792–802 (2021). 673

84. MA Bakowski, et al., Oral drug repositioning candidates and synergistic remdesivir combi- 674

nations for the prophylaxis and treatment of covid-19. BioRxiv (2020). 675

85. K Bafna, et al., Hepatitis c virus drugs simeprevir and grazoprevir synergize with remdesivir 676

to suppress sars-cov-2 replication in cell culture. bioRxiv (2020). 677

86. KA Gammeltoft, et al., Hepatitis c virus protease inhibitors show differential efficacy and in- 678

teractions with remdesivir for treatment of sars-cov-2 in vitro. Antimicrob. Agents Chemother. 679

pp. AAC–02680 (2020). 680

87. J Cho, et al., Antiviral activity of digoxin and ouabain against sars-cov-2 infection and its 681

implication for covid-19. Sci. reports 10, 1–8 (2020). 682

88. S Günther, et al., X-ray screening identifies active site and allosteric inhibitors of sars-cov-2 683

main protease. Science 372, 642–646 (2021). 684

89. KT Choy, et al., Remdesivir, lopinavir, emetine, and homoharringtonine inhibit sars-cov-2 685

replication in vitro. Antivir. research 178, 104786 (2020). 686

90. N Fintelman-Rodrigues, et al., Atazanavir, alone or in combination with ritonavir, in- 687

hibits sars-cov-2 replication and proinflammatory cytokine production. Antimicrob. agents 688

chemotherapy 64, e00825–20 (2020). 689

91. N Hoertel, et al., Association between hydroxyzine use and reduced mortality in patients 690

hospitalized for coronavirus disease 2019: results from a multicenter observational study. 691

medRxiv (2020). 692

92. MD Rivas, JMR Saponi-Cortes, J Zamorano, Hydroxyzine inhibits sars-cov-2 spike protein 693

binding to ace2 in a qualitative in vitro assay. bioRxiv (2021). 694

93. E Van Damme, et al., In vitro activity of itraconazole against sars-cov-2. J. Med. Virol. 93, 695

4454–4460 (2021). 696

94. S Schloer, et al., Drug synergy of combinatory treatment with remdesivir and the repur- 697

posed drugs fluoxetine and itraconazole effectively impairs sars-cov-2 infection in vitro. Br. 698

J. Pharmacol. 178, 2339–2350 (2021). 699

95. CZ Chen, et al., Identifying sars-cov-2 entry inhibitors through drug repurposing screens 700

Mangione et al.



of sars-s and mers-s pseudotyped particles. ACS Pharmacol. & Transl. Sci. 3, 1165–1175701

(2020).702

96. Y Li, et al., Thalidomide combined with short-term low-dose glucocorticoid therapy for the703

treatment of severe covid-19: a case-series study. Int. J. Infect. Dis. 103, 507–513 (2021).704

97. N Hoertel, et al., Association between antidepressant use and reduced risk of intubation705

or death in hospitalized patients with covid-19: results from an observational study. Mol.706

psychiatry pp. 1–14 (2021).707

98. D Echeverría-Esnal, et al., Azithromycin in the treatment of covid-19: a review. Expert. Rev.708

Anti-infective Ther. 19, 147–163 (2021).709

99. S Coenen, et al., Oseltamivir for coronavirus illness: post-hoc exploratory analysis of an710

open-label, pragmatic, randomised controlled trial in european primary care from 2016 to711

2018. Br. J. Gen. Pract. 70, e444–e449 (2020).712

100. M Wang, et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel713

coronavirus (2019-ncov) in vitro. Cell research 30, 269–271 (2020).714

101. LD Leng, Targeting covid-19: Ghddi info sharing portal (2020).715

102. J Yang, et al., The i-tasser suite: protein structure and function prediction. Nat. methods 12,716

7–8 (2015).717

103. W Mangione, Z Falls, cando.py (2022).718

104. J Yang, A Roy, Y Zhang, Protein–ligand binding site recognition using complementary719

binding-specific substructure comparison and sequence profile alignment. Bioinformatics720

29, 2588–2595 (2013).721

105. G Landrum, Rdkit: A software suite for cheminformatics, computational chemistry, and pre-722

dictive modeling (2013).723

106. G Dupret, Discounted cumulative gain and user decision models in International Symposium724

on String Processing and Information Retrieval. (Springer), pp. 2–13 (2011).725

107. K Järvelin, J Kekäläinen, Cumulated gain-based evaluation of ir techniques. ACM Transac-726

tions on Inf. Syst. (TOIS) 20, 422–446 (2002).727

108. J Lever, RB Altman, Analyzing the vast coronavirus literature with CoronaCentral. Proc. Natl.728

Acad. Sci. 118 (2021).729

109. Comirnaty and pfizer-biontech covid-19 vaccine (2022).730

110. T Oskotsky, et al., Mortality risk among patients with covid-19 prescribed selective serotonin731

reuptake inhibitor antidepressants. JAMA network open 4, e2133090–e2133090 (2021).732

Mangione et al.


