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Abstract: Drug repurposing is an attractive strategy for developing new antibacterial
molecules. Herein, we evaluated the in vitro antibacterial, antibiofilm, and antivirulence
activities of eight FDA-approved “non-antibiotic” drugs, comparatively to tobramycin,
against selected Pseudomonas aeruginosa strains from cystic fibrosis patients. MIC and
MBC values were measured by broth microdilution methods. Time-kill kinetics was stud-
ied by the macro dilution method, and synergy studies were performed by checkerboard
microdilution assay. The activity against preformed biofilm was measured by crystal vi-
olet and viable cell count assays. The effects on gene expression were studied by real-time
quantitative PCR, while the cytotoxic potential was evaluated against IB3-1 bronchial CF
cells. Ciclopirox, 5-fluorouracil, and actinomycin D showed the best activity against P.
aeruginosa planktonic cells and, therefore, underwent further evaluation. Time-kill assays
indicated actinomycin D and ciclopirox, contrarily to 5-fluorouracil and tobramycin, have
the potential for bacterial eradication, although with strain-dependent efficacy. Ciclo-
pirox was the most effective against the viability of the preformed biofilm. A similar ac-
tivity was observed for other drugs, although they stimulate EPS production. Ribavirin
showed a specific antibiofilm effect, not dependent on bacterial killing. Exposure to drugs
and tobramycin generally caused hyperexpression of the virulence traits tested, except
for actinomycin D, which downregulated the expression of alkaline protease and alginate
polymerization. Ciclopirox and actinomycin D revealed high cytotoxic potential. Ciclo-
pirox and ribavirin might provide chemical scaffolds for anti-P. aeruginosa drugs. Further
studies are warranted to decrease ciclopirox cytotoxicity and evaluate the in vivo protec-
tive effects.
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1. Introduction

In cystic fibrosis (CF) patients, the mutation of the CF transmembrane con-
ductance regulator gene (CFTR) leads to an accumulation of dry and sticky air-
way secretions, creating the perfect environment for the onset of bacterial pul-
monary infections [1]. The altered microenvironment of the CF lung counteracts
the inflammation in clearing the infection, thus causing the progression of pul-
monary disease towards bronchiectasis and, finally, death [2].
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Pseudomonas aeruginosa is the predominant pathogen, especially in adult-
hood [3]. Although the aerosolization of tobramycin into CF patients' airways
improves outcomes, the lungs of CF patients, even those receiving antibiotic
therapy, are persistently colonized by P. aeruginosa [3,4]. Indeed, this microor-
ganism cannot be eradicated because of its ability to grow as biofilm in the CF
airway, a functional consortium of sessile bacteria enclosed in an extracellular
matrix, making them significantly more tolerant to antimicrobials than with
planktonic counterparts [5,6,7]. In addition, another P. aeruginosa adaptative re-
ply to the airway of CF patients is the conversion to a mucoid phenotype due to
an overproduction of alginate, leading to the generation of a thicker extracellular
polysaccharide matrix [3,8].

As a result, the decreasing number of effective antibiotics raises the urgent
need to develop new molecules that possibly target cells within the biofilm and
avoid selecting resistant strains. However, the traditional drug discovery pro-
cess is costly and lengthy, requiring years of experimentation followed by exten-
sive clinical trials [9].

The “drug repurposing” approach recently proposed to reduce the drug
discovery time frame is an attractive alternative. This strategy is based on using
known and approved drugs for a medical indication other than the one for
which it was developed [10]. It can also include using drugs that have reached
phase II or III of clinical trials that demonstrate no efficacy for a particular indi-
cation but have shown good safety [10]. Since their toxicity and pharmacokinet-
ics have already been studied, the “repurposed” drugs can bypass some clinical
trials, save time, and reduce costs [11]. This strategy is a promising tool in treat-
ing bacterial infections as many molecules have secondary mechanisms of action
that allow them to be effective against many pathogens. Several non-antimicro-
bial drugs have demonstrated antibiotic activity [12], but none are currently
used in antibacterial therapy.

In this frame, the main aim of the present study was to assess the in vitro
activity of eight FDA-approved “non-antibiotic” drugs - namely ribavirin (anti-
viral), toremifene (nonsteroidal antiestrogen), oxyclozanide (anthelmintic),
meloxicam (nonsteroidal anti-inflammatory drug), 5-fluorouracil (antineo-
plastic), actinomycin D (antineoplastic), furosemide (diuretic) and ciclopirox
(antifungal) - against a selected set of P. aeruginosa strains isolated from CF pa-
tients. The antibacterial activity, as well as antibiofilm and antivirulence poten-
tial, were evaluated compared to tobramycin.

2. Results

2.1. Selection of P. aeruginosa strains

First, a collection of 19 P. aeruginosa strains from CF patients was screened
for the ability to form biofilm on polystyrene using a microtiter plate crystal
violet assay, and the results are shown in Figure 1.

Most strains (14 out of 19, 73.7%) were able to form a biofilm, although with
significant differences for biofilm biomass (ODas2 range: 0.029-6.986; p<0.0001,
ordinary one-way ANOVA test) (Figure 1A). The highest biofilm biomass was
produced by P. aeruginosa Pa5 (ODas2, mean + SD: 6.986 + 1.124; p<0.0001 vs. other
strains), Pa6 (4.593 + 0.340; p<0.0001 vs. other strains but Pa7), and Pa7 (4.021 +
0.581; p<0.0001 vs. other strains) strains (Figure 1A). Considering the efficiency
in forming biofilm measured according to the criteria proposed by Stepanovi¢ et
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al. [13], the prevalence of HBF strains was significantly higher than in other
groups (9 out of 19, 47.4%; Pa5, Pa6, Pa7, Pal4, Pa4l, PaPh13, PaPh14, PaPh26,
and DINT1 strains; p<0.01, vs. other groups), followed by MBF (4 out of 19, 21%;
Pal6, Pa21, AC12a, and PaPh32 strains), and WBF (1 out of 9, 11.1%; Pa9 strain)
(p<0.01, vs. other groups) (Figure 1B). Five strains (Pa2, Pa3, Pa4, Pal0, and PaM)
could not form biofilm.

biofilm biomass (0D ,q;)

P.aeruginosa strains

50 - *k k.

N w S
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-
o
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Figure 1. Biofilm formation by 19 P. aeruginosa strains from CF patients. The amount of biofilm formed on polystyrene
following 24 h-incubation at 37°C was measured by the microtiter plate crystal violet method. Each strain was tested,
in quadruplicate, on four different occasions (n = 16). A) Results were subtracted by negative control (ODus2 = 0.092)
and shown as a scatter plot, with the horizontal solid line indicating the mean OD value. The horizontal dotted black
line shows the cut-off value for biofilm formation (ODc = mean + 3 x standard deviation of negative control wells; ODc
= 0.143), whereas the blue one indicates the cut-off value for high biofilm-former class (ODa92> 0.572). B) According to
Stepanovic et al. [13], each strain was assigned to one of the following groups: non-biofilm former (ODa92< 0.143), weak
biofilm-former (0.143 < ODa92 < 0.286), moderate biofilm-former (0.286 < ODus2 < 0.572), and high biofilm-former (ODas2>
0.572). Results are shown as the percentage of distribution of each group. Statistical significance at Fisher’s exact test:

#p<0.01, *** p<0.001, **** p<0.0001.Next, the susceptibility of 19 P. aeruginosa strains to eight anti-pseudomonal
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antibiotics was measured using a disk diffusion agar test, and the results are summarized in Table 1. Amikacin
and tobramycin were the most active antibiotics showing a susceptibility rate of 63.1%, followed by colistin
(52.6%), netilmicin (31.6%), and ceftazidime (5.2%). Contrarily, ticarcillin and piperacillin/tazobactam showed
no activity against the strains tested. According to Magiorakos et al. [14], all P. aeruginosa strains but two
(Pal4 and Pal6) were classified as MDR.

Table 1. Antibiotic susceptibility of 19 P. aeruginosa strains. The activity of amikacin
(AK), ticarcillin (TC), piperacillin/tazobactam (TZP), ceftazidime (CAZ), colistin (CN),
netilmicin (NET), levofloxacin (LEV), and tobramycin (TOB) was measured by the disk
diffusion agar method. The inhibition zone diameter values were shown and interpreted
according to CLSI guidelines [42]: resistance is highlighted in red, susceptibility is
highlighted in green, while intermediate susceptibility is not highlighted. A strain was
defined as multidrug-resistant (MDR) if non-susceptible to at least one agent in three or
more antimicrobial categories among those tested [14].

Strains MDR
Pa2 ‘ ‘ Yes
Pa3 ‘ ‘ Yes
Pa4 ‘ ‘ Yes
Pa5 ‘ ‘ Yes
Pa6 ‘ ‘ Yes
Pa7 ‘ ‘ Yes
Pa9 ‘ ‘ Yes
Pal0 ‘ ‘ Yes
Pal4 ‘ 16 ‘ Not
Pal6 ENRE | Not
Pa21 ‘ ‘ Yes
Pa41 ‘ ‘ Yes
PaPh13 ‘ ‘ Yes
PaPh14 ‘ ‘ Yes
PaPh26 ‘ 20 ‘ Yes
PaPh32 ‘ ‘ Yes
DIN1 ‘ ‘ Yes
AC12a ‘ ‘ Yes
PaM ‘ ‘ Yes

Based on the findings from biofilm formation and antibiotic susceptibility
assays, we selected six P. aeruginosa strains (Pa5, Pa6, Pa7, Pa41, PaPh32, and
DIN1) because representative of both HBF and MDR phenotypes. Furthermore,
Pa41 and PaPh32 strains showed a mucoid phenotype due to the overproduction
of the polyanionic exopolysaccharide alginate that is often associated with a
poor prognosis for the CF patient [15].
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2.2. Antibacterial activity of FDA-approved drugs against P. aeruginosa planktonic cells

MIC and MBC values of the FDA-approved drugs with medical indication
other than “antibiotic” were measured against the selected P. aeruginosa strains,
comparatively to tobramycin, by the broth microdilution technique, and the re-
sults are shown in Table 2.

As expected, tobramycin showed the highest activity (MIC: 0.5 - 64 ug/ml;
MBC: 0.5 - >64 ug/ml), showing a bactericidal effect since the killing quotient
(i.e., MBC/MIC ratio) was always < 4. Among the “non-antibiotic” drugs, ciclo-
pirox (MIC: 128 - 512 pg/ml; MBC > 1024 ug/ml), 5-fluorouracil (MIC: 128 - >1024
pg/ml; MBC: 1024 - >1024 ug/ml), and actinomycin D (MIC, MBC: 133 - >266
ug/ml) were the most active with a strain-dependent efficacy. Conversely, rib-
avirin, oxyclozanide, meloxicam and furosemide (MIC, MBC > 1024 ug/ml), and
toremifene (MIC, MBC > 330 pg/ml) showed no activity at the concentrations
tested. Based on these results, ciclopirox, 5-fluorouracil, and actinomycin under-
went further antibacterial characterization, along with the comparator tobramy-
cin.

2.3. Killing kinetics

The bactericidal or bacteriostatic properties of ciclopirox, 5-fluorouracil,
and actinomycin were investigated, compared to tobramycin, by killing kinetics.
We choose P. aeruginosa PaPh32 (Figure 2) and Pa7 (Figure 3) as representative
of tobramycin-resistant and -susceptible strains, respectively.

An evident dose-dependent activity was observed only in the case of acti-
nomycin D, although with different effects depending on the strain tested. It al-
ways resulted bacteriostatic towards Pa7 strain, whereas yielded a bactericidal
effect —i.e., greater than 3 Log-fold decrease in CFUs, equivalent to 99.9% killing
of the inoculum, was observed — towards PaPh32 strain when tested at 1x (after
11 h-exposure) and 2xMIC (after 8 h-exposure). Actinomycin D caused a viabil-
ity decrease of PaPh32 below LOD when tested at 1x (after 14 h-incubation) and
2xMIC (after 11 h-incubation), while a regrowth was found at 1xMIC. A similar
trend was observed for ciclopirox that exerted bactericidal activity only when
tested towards PaPh32 strain after 7-hour exposure at 4xMIC. The worst activity
was shown by 5-fluorouracil, yielding a bacteriostatic effect over 24 hours, re-
gardless of the strain tested. By comparison, tobramycin resulted bactericidal
against both strains, although to different extents. When tested towards PaPh32,
it was bactericidal only at 4x and 8xMIC, although a rapid regrowth was ob-
served in both cases. Contrarily, the effect was more rapid against Pa7, causing
a 3-Log reduction within 5 h-incubation at 4x and 8xMIC and after 16 h-incuba-
tion at 1xMIC. The cell viability decreased below LOD at concentrations of 2x,
4x, and 8xMIC, although 2xMIC allowed Pa7 regrowth. Overall, the findings
from time-kill assays showed that actinomycin D and ciclopirox have the poten-
tial for bacterial eradication, although their activity is strain-dependent. Contra-
rily, 5-fluorouracil showed a bacteriostatic effect regardless of the strain tested.
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Table 2. Susceptibility of P. aeruginosa CF strains to FDA-approved drugs. MIC and MBC values were measured, comparatively to tobramycin, by the broth microdilution method

w

and expressed as ug/ml. Differences in the range of tested concentrations are due to limitations in drugs’ solubility. * Tobramycin-resistant strains are underlined.

4

5

P. aeruginosa strains? 6

7

Pa5 Pa6 Pa7 Pa41 PaPh32 DIN 1 8

Drugs 9
MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC 10
11
Ribavirin >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 12
Oxyclozanide >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 13
Meloxicam >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 14
5-Fluorouracil 128 >1024 256 >1024 128 >1024 >1024 >1024 512 1024 >1024 >1024 15
Furosemide >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 >1024 16
Ciclopirox 128 >1024 256 >1024 128 >1024 512 >1024 256 >1024 512 >1024 17
Toremifene >330 >330 >330 >330 >330 >330 >330 >330 >330 >330 >330 >330 18
Actinomycin D 266 >266 266 >266 266 >266 >266 >266 133 133 266 266 19
Tobramycin 8 16 2 4 2 4 0.5 1 64 >64 0.5 0.5 20
21
22

23
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Figure 2. Time-kill kinetics against P. aeruginosa PaPh32. The kinetics of repurposed drugs was assessed, comparatively to
tobramycin, over 24 h in a liquid medium. P. aeruginosa PaPh32 was chosen as representative of tobramycin-resistant strains. Each
drug was tested at MIC value (actinomycin D: 133 mg/l; ciclopirox: 256 mg/l; 5-fluorouracil: 512 mg/l; tobramycin: 64 mg/l), its
fractions and multiples, compatibly with the drugs’ solubility. The dotted line indicates bactericidal activity, defined as a > 3 Log

(CFU/ml) reduction of the initial inoculum size. The limit of detection was 10 CFU/ml.
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Figure 3. Time-kill kinetics against P. aeruginosa Pa7. The kinetics of repurposed drugs was assessed, comparatively to tobramycin,

over 24 h in a liquid medium. P. aeruginosa Pa7 was chosen as representative of tobramycin-susceptible strains. Each drug was tested

at MIC value (actinomycin D: 266 mg/l; ciclopirox: 128 mg/l; 5-fluorouracil: 128 mg/l; tobramycin: 2 mg/l), its fractions and multiples,

compatibly with the drugs’ solubility. The dotted line indicates bactericidal activity, defined as a > 3 Log (CFU/ml) reduction of the

initial inoculum size. The limit of detection was 10 CFU/ml.
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2.4. Synergy tests

The activity of tobramycin in combination with actinomycin D, ciclopirox, and 5-
fluorouracil was evaluated using a checkerboard assay. P. aeruginosa Pa7 and PaPh32
strains were selected because they are representative of tobramycin-susceptible and -re-
sistance phenotypes, respectively (Table 3).

FICi values indicated additivity, regardless of strain and combination, with the best
value of 0.56 for tobramycin + ciclopirox combination against Pa7 strain.

Table 3. Activity of tobramycin in combination with other “non-antibiotic” drugs. The Fractional
Inhibitory Concentration index (FICi) was calculated as follows, using the checkerboard assay:
FICA+FICs, where FICa = MIC of drug A in combination/MIC of drug A alone, and FICs = MIC of
drug B in combination/MIC of drug B alone. The best FICi value and the range of FICi values were
reported for each drug combination. All FICi values obtained indicated an additive effect (0.5 < FICi

<4) [43].

Best FICi value (range) for P. aeruginosa strain:
Drug combinations Pa7 PaPh32
Tobramycin + actinomycin D 0.63 (0.63-1.06) 0.75 (0.75-1.25)
Tobramycin + ciclopirox 0.56 (0.56-1.25) 0.63 (0.63-1.25)
Tobramycin + 5-fluorouracil 1 (1-2.25) 1.13 (1.13-4.25)

2.5. In vitro activity against preformed biofilm

Ciclopirox, 5-fluorouracil, and actinomycin D were tested, comparatively tobramy-
cin, for dispersal and killing activities against 24 h-mature biofilms by P. aeruginosa
PaPh32 (Figure 4) and Pa7 (Figure 5).

The activity of each drug against mature biofilm was not dependent on the strain
tested. Ciclopirox was the most active, causing a significant reduction of biofilm biomass,
regardless of concentration and strain tested. Conversely, the exposure to 5-fluorouracil
and actinomycin D never caused biofilm reduction but even stimulated its biomass, alt-
hough at different extents depending on strain and concentration, particularly in the case
of 5-fluorouracil. Tobramycin significantly reduced biofilm biomass formed by both
strains only when tested at the maximum concentration of 8xMIC, whereas at 0.5xMIC it
constantly stimulated biomass formation.

Since the antibiofilm effect could be specific and not related to antibacterial activity,
the dispersal activity was also evaluated for drugs which resulted not active against
planktonic P. aeruginosa cells (Figure 6). Ribavirin was the only drug able to significantly
decrease biofilm biomass, effective against both strains tested, although at different ex-
tents (biomass removal: 53.5% and 35.1%, respectively for Pa7 and PaPh32; p<0.001). Con-
versely, exposure to oxyclozanide significantly improved biofilm formation by about
100%, although only in the case of the PaPh32 strain.

Next, the activity of each drug against the viability of preformed biofilm was tested
after exposure to MIC and its multiples, and the results are summarized in Figures 7 and
8. All drugs caused a significant reduction of biofilm viability, regardless of strain and
concentration tested, although at different levels. Ciclopirox was the most active, showing
a dose-dependent activity regardless of the strain considered (viability reduction; Pa7:
98.7% at 2xMIC, and 99.8% at 4xMIC; PaPh32: 97.5% at 2xMIC, and 99.9% at 4xMIC). To-
bramycin exhibited comparable activity to ciclopirox, causing a significant, concentration-
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dependent, reduction ranging from 99.7% (2xMIC) to >99.9% (8xMIC) for Pa7, and from
88.5% (2xMIC) to >99.99% (8xMIC) for PaPh32.
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Figure 4. Dispersal activity against preformed biofilm by P. aeruginosa PaPh32. The efficacy of actinomycin D, ciclopirox, and 5-
fluorouracil to disperse 24 h-mature biofilms by P. aeruginosa PaPh32 was assessed, comparatively to tobramycin, using crystal violet
assay. P. aeruginosa PaPh32 was chosen as representative of tobramycin-resistant strains. Each drug was tested at 0.5x and multiples
of MIC value. Results were expressed as mean + SD of the residual biofilm biomass (ODas) after 24 h-exposure. Control samples
(CTRL) were not exposed to the drug. Statistical significance at ordinary one-way ANOVA + Holm-Sidak's multiple comparisons

post-test: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 vs. CTRL.
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Figure 5. Dispersal activity against preformed biofilm by P. aeruginosa Pa7. The efficacy of actinomycin D, ciclopirox, and 5-
fluorouracil to disperse 24 h-mature P. aeruginosa Pa7 biofilms was assessed, comparatively to tobramyecin, using crystal violet assay.
P. aeruginosa Pa7 was chosen as representative of tobramycin-susceptible strains. Each drug was tested at 0.5x and multiples of MIC
value. Results were expressed as mean + SD of the residual biofilm biomass (ODas2) after 24 h-exposure. Control samples (CTRL)
were not exposed to the drug. Statistical significance at ordinary one-way ANOVA + Holm-Sidak's multiple comparisons post-test:

* p<0.05, ** p<0.01, **** p<0.0001 vs. CTRL.
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Figure 6. Biofilm dispersal activity of drugs not active against planktonic cells. The efficacy of drugs in disrupting 24 h-mature
biofilms was assessed using a crystal violet assay. Each drug was tested at the maximum concentration tested in MIC assays: 1.024
pg/ml for all drugs except for Toremifene (256 pg/ml). Results are expressed as mean + SD of the residual biofilm biomass (ODas2)
after 24 h-exposure. Control samples (CTRL) were not exposed to the drug. Statistical significance at ordinary one-way ANOVA +

Holm-Sidak's multiple comparisons post-test: * p<0.05, **** p<0.0001 vs. CTRL.
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Figure 7. Killing activity against preformed biofilm by P. aeruginosa PaPh32. The efficacy of actinomycin D, ciclopirox, and 5-
fluorouracil on the viability of 24 h-mature biofilms by P. aeruginosa PaPh32 was assessed, comparatively to tobramycin, using cell
viable count assay. Each drug was tested at multiples of MIC value. Results are expressed as mean + SD of the residual biofilm
viability [Log (CFU/well)] after 24 h-exposure. Control samples (CTRL) were not exposed to the drug. Statistical significance at
ordinary one-way ANOVA + Holm-Sidak's multiple comparisons post-test: * p<0.05, ** p<0.01, **** p<0.0001 vs. CTRL.
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Figure 8. Killing activity against preformed biofilm by P. aeruginosa Pa7. The efficacy of actinomycin D, ciclopirox, and 5-fluorouracil
on the viability of 24 h-mature biofilms by P. aeruginosa Pa7 was assessed, comparatively to tobramycin, using cell viable count assay.
Each drug was tested at multiples of MIC value. Results are expressed as mean + SD of the residual biofilm viability [Log (CFU/well)]
after 24 h-exposure. Control samples (CTRL) were not exposed to the drug. Statistical significance at ordinary one-way ANOVA +

Holm-Sidak's multiple comparisons post-test: ** p<0.01, *** p<0.001, **** p<0.0001 vs. CTRL.
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Our findings indicated ciclopirox as the most effective against mature biofilm, active
on biofilm biomass — consisting of EPS and cells - and viability. Although active on biofilm
viability, the other drugs probably stimulate EPS production, as suggested by increased
biofilm biomass after exposure. Of interest, is the specific activity exhibited by ribavirin,
not dependent on bacterial killing.

2.6. Effect on P. aeruginosa virulence genes expression

The effect of 20 h-exposure to actinomycin D, 5-fluorouracil, ciclopirox, and ribavirin
at 1/4xMIC on the expression of selected virulence genes of P. aeruginosa PaPh32 was eval-
uated comparatively to tobramycin, by real-time RT-qPCR and the results are resumed in
Figure 9.

The gene expression pattern was dependent on the drug and gene considered. The
pattern observed after exposure to actinomycin D and 5-fluorouracil was nearly the same.
Both drugs downregulated aprA codifying for the alkaline protease (fold-change: -5.53 for
both; p<0.001 vs. unexposed control), whereas upregulated the expression of the QS me-
diator lasI (fold-change: 5.07 and 8.19, respectively; p<0.001), and all efflux pump-related
genes mexA (fold-change: 4.77 and 4.22, respectively; p<0.001), mexB (fold-change: 3.57 and
2.66, respectively; p<0.001), and mexC (fold-change: 20.95 and 115.04, respectively;
p<0.001). In addition, actinomycin D decreased the expression of algD (fold-change: -1.38;
p<0.05), codifying for GDP-mannose 6-dehydrogenase and involved in the alginate
polymerization. The exposure to ciclopirox caused the worst expression pattern, namely
the hyperexpression of all genes but mexC. Finally, ribavirin significantly increased mexA,
mexC, and toxA genes.

It is worth noting that the aprA and toxA - respectively codifying for protease and
exotoxin A, the main P. aeruginosa virulence factors - were both upregulated (fold-change:
2.12 and 1.44, respectively; p<0.001 and p<0.01, respectively) in the case of tobramycin.
Exposure to tobramycin also induced upregulation of mexA (fold-change: 1.58; p<0.001)
and mexC (fold-change: 5.25; p<0.001), whereas algD was down expressed (fold-change: -
1.44; p<0.01).

2.7. In vitro cytotoxic effect on 1B3-1 cells

The cytotoxic potential of actinomycin D, 5-fluorouracil, ciclopirox, and ribavirin
was investigated, in comparison with tobramycin, using a cell-based MTS assay. Each
drug was tested at the maximum concentration active against planktonic and/or biofilm
P. aeruginosa cells (Figure 10).

MTS tetrazolium-based colorimetric assay showed 5-fluorouracil, ribavirin, and to-
bramycin were not toxic for IB3-1 cells, allowing a cell growth comparable to untreated
control cells (Figure 10A). On the contrary, a significant (p<0.0001 vs. CTRL) cytotoxic ef-
fect was observed for ciclopirox and actinomycin D, although to a different extent. Indeed,
when tested at lower concentrations, ciclopirox was revealed to be more toxic, causing a
higher reduction of IB3-1 cells survival (ranging from 47.7% at 1/4xMIC, to 99% at
1/2xMIC) (Figure 10B) compared with actinomycin D (ranging from 38% at 1xMIC, to
56.7% at 2xMIC) (Figures 10C).
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Figure 9. Effect of drugs exposure on the expression of selected P. aeruginosa virulence genes. The effects of exposure to actinomycin D, 5-fluorouracil, ciclopirox, and ribavirin on the 2
expression levels of P. aeruginosa PaPh32 virulence genes aprA (alkaline protease), lasI (quorum sensing), mexA, mexB, and mexC (efflux pumps), toxA (exotoxin A) and algD (alginate) 3
were assessed, comparatively to tobramyecin, by real-time RT-qPCR assay. Each drug was tested at 1/4xMIC for 20 h, while controls (CTRL) were not exposed to the drug. The relative 4
expression of each gene was normalized on the housekeeping proC gene. Results are shown as means + SDs (n = 6) of fold change (FC: 2-2<t) on a log: scale. Statistical significance at 5

ANOVA followed by Tukey’s multiple comparisons post-test: * p<0.05, ** p<0.01, *** p<0.001, and ****p < 0.0001 vs. CTRL. 6
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Figure 10. In vitro cytotoxicity against IB3-1 cells. A) IB3-1 cell monolayers were initially exposed for 24 h to each drug at the highest
biologically active concentration: 5-fluorouracil (5-FLUO, 2048 pg/ml), ribavirin (RIBA, 1024 pg/ml), tobramycin (TOBRA, 512 pg/ml),
ciclopirox (2048 pg/ml) and actinomycin D (266 ug/ml). (B, C) Being toxic at the highest concentration, ciclopirox and actinomycin D
were also evaluated at lower concentrations. The cell viability was measured by an MTS tetrazolium-based colorimetric assay and
expressed as mean + SD absorbance at 490 nm (left Y-axis), and percentage of survival (right Y-axis) vs. CTRL (untreated cells).

Statistical significance at one-way ANOVA + Holm-Sidak's multiple comparisons post-test: **** p<0.0001 vs. CTRL.

3. Discussion
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Repurposing or repositioning FDA-approved pharmacotherapies for off-label use
have recently supplied alternative approaches to identifying new classes of antibiotics and
scaffolds to combat infections caused by MDR pathogens [16]. Herein, we screened eight
FDA-approved “non-antibiotic” drugs for their potential use in treating lung infections
caused by P. aeruginosa in CF patients. With this aim, we tested six P. aeruginosa CF strains
selected because of MDR and high-biofilm producers. First, we evaluated the activity of
each drug against P. aeruginosa planktonic cells. Ciclopirox, followed by 5-fluorouracil,
and actinomycin D were the only ones showing antibacterial activity.

A literature survey revealed that although these compounds had reported bioactivi-
ties, no study was focused on the antibacterial activity against P. aeruginosa in CF patients.
Ciclopirox is an off-patent, broad-spectrum antifungal agent used, as an olamine salt, in
various formulations to treat superficial fungal infections [17]. It has recently been found
to have considerable potential to act against both Gram-positive and Gram-negative bac-
terial pathogens [18,19]. The synthetic fluorinated pyrimidine 5-fluorocytosine is used as
an antimycotic drug with the brand name Ancobon. It has successfully been used to treat
fungal infections in CF patients, including a case of pulmonary candidiasis, without caus-
ing side effects [20]. Actinomycin D, an antitumor antibiotic that inhibits transcription, is
one of the oldest chemotherapy drugs used to treat various types of cancer, such as Wilms
tumor, rhabdomyosarcoma, Ewing's sarcoma, trophoblastic neoplasm, testicular cancer,
and certain types of ovarian cancer [21].

Our results showed that ciclopirox has antibacterial activity against P. aeruginosa CF
strains, with MIC values ranging from 128 to 512 pg/ml. Our findings are consistent with
previous studies focused on Acinetobacter baumannii, Escherichia coli, and Klebsiella pneu-
moniae clinical isolates, although the effect was more potent as indicated by a MIC range
of 5-15 pg/ml [19]. Despite the multiple potential uses of ciclopirox, very little is known
about its antibacterial mechanism, thus warranting further studies. In this frame, Conley
et al. observed that ciclopirox acts against E. coli interfering with galactose metabolism
and blocking LPS synthesis [18]. E. coli and K. pneumoniae preferentially use glucose, me-
tabolizing it through the Emden-Meyerhof-Parnas pathway. In contrast, Pseudomonas spe-
cies use glucose as a secondary carbon source and catabolize it using the Entner-Dou-
doroff pathway [18]. This differential use of glucose as a carbon source might explain why
we observed P. aeruginosa has higher ciclopirox MICs than E. coli and K. pneumoniae. Rib-
avirin, oxyclozanide, meloxicam, furosemide, and toremifene did not show any activity
at the tested concentrations, although higher than those previously revealed as effective
[22,23,24,25].

Tobramycin, along with colistin and aztreonam, is the inhaled antibiotic currently
used for treating P. aeruginosa CF lung infections [26]. However, when antibiotic therapy
is administered continuously and for long periods, it can select for resistant P. aeruginosa
strains [27]. The use of bactericidal rather than bacteriostatic agents as first-line therapy
is, therefore, recommended because the eradication of microorganisms serves to curtail,
although not avoid, the development of bacterial resistance. The results we obtained from
time-kill analyses indicated that actinomycin D and ciclopirox exhibit a strain-dependent
bactericidal activity. Indeed, both drugs were bacteriostatic against the Pa7 strain but
bactericidal against the tobramycin-resistant PaPh32 strain, even until causing a decrease
in the viability under the limit of detection without regrowth over monitored time. Con-
versely, 5-fluorouracil and tobramycin were bacteriostatic and allowed for regrowth, re-
gardless of the strain tested.

Current CF treatment regimens involve not only aggressive use of high-dose antibi-
otics but also combination therapy. However, the limited number of available antibiotics
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makes it difficult to know what combination would be most effective in any clinical situ-
ation. In this frame, several non-antibiotic compounds were reported to synergize with
antibiotics, offering a new direction for fighting emergent drug-resistant pathogens such
as P. aeruginosa. In this regard, Ejim et al. [28] found benserazide (a DOPA decarboxylase
inhibitor to treat Parkinson’s disease) and loperamide (an opioid receptor agonist used to
treat diarrhea) restore minocycline susceptibility in MDR P. ageruginosa strains. In another
study, the antipsychotic agents levomepromazine and chlorpromazine exhibited synergy
with polymyxin B against P. aeruginosa, providing potential chemical scaffolds for further
drug development [29]. In the present study, we tested the activity of tobramycin com-
bined with ciclopirox, actinomycin D, and 5-fluorouracil against both tobramycin-re-
sistant and -susceptible P. aeruginosa CF strains. Unfortunately, no synergistic effect was
found. Each combination resulted indeed in an additive effect, regardless of tobramycin-
resistant and -susceptible strains.

The treatment of pulmonary bacterial infections in CF patients is significantly af-
fected by adaptative strategies that allow pathogens to survive despite repeated, broad-
spectrum courses of antibiotics [30]. Among these strategies, biofilm formation provides
bacterial communities with both physical protection and reservoirs of phenotypically dis-
tinct subpopulations that withstand antimicrobials and immune responses [30].

Though existing antibiotic therapies have improved CF patients’ lung function, sur-
vival, and quality of life, the biofilm lifestyle represents a barrier limiting benefits. In the
present study, the antibiofilm potential of all eight drugs was evaluated, for the first time,
against 24 h-old preformed, mature P. aeruginosa biofilms. Scientific literature is incon-
sistent and fragmented in this regard. Previous studies reported the efficacy of actinomy-
cin D in preventing biofilm formation by S. epidermidis and methicillin-resistant S. aureus
strains [31,32]. Conversely, ciclopirox was previously shown to be not active on biofilm
formation by MDR A. baumannii, E. coli, and K. pneumoniae clinical isolates [18]. Torem-
ifene prevented biofilm formation and eradicated preformed biofilms by the oral bacteria
Porphyromonas gingivalis and Streptococcus mutans [33]. No study was focused on 5-fluor-
ouracil, ribavirin, furosemide, and oxyclozanide. Overall, our findings indicated ciclo-
pirox as the most effective, in some cases even more active than tobramycin. Ciclopirox
always caused a significant dispersion of biofilm biomass, consisting of EPS and cells,
along with a reduction of biofilm viability nearly to eradication. Similarly, actinomycin D
and 5-fluorouracil reduced biofilm viability, although to a lesser extent; furthermore, they
stimulated EPS production as suggested by increased biofilm biomass after exposure. The
same trend was observed for tobramycin when tested at sub-inhibitory concentrations.
The EPS hyperproduction could prevent eradicating cells persisting within biofilms de-
spite repeated rounds of antibiotic treatment due to reduced antibiotic penetration and
inhibition of phagocytosis and complement activation [34]. It is worth noting the activity
of ribavirin, the only one among the drugs without influence on planktonic cell growth
that caused a significant dispersion of preformed biofilm by P. aeruginosa. The lack of pub-
lished studies warrants further studies to elucidate the underlying mechanism(s) of ac-
tion. No antibiofilm activity was observed for meloxicam, previously reported to signifi-
cantly inhibit P. aeruginosa PAOI biofilm formation in a dose-dependent manner [24].

Although repurposing existing drugs offers the advantage of known safety and
pharmacokinetic profiles, the cytotoxicity of these compounds is still to be investigated
for novel applications. Therefore, the potential cytotoxic effect of the biologically active
drugs ciclopirox, actinomycin D, 5-fluorouracil, and ribavirin was investigated, in com-
parison with tobramycin, against human bronchial CF cells. Ribavirin and 5-fluorouracil
did not show any toxicity against CF bronchial cells, similarly to tobramycin. Despite ear-
lier studies showing that ciclopirox has an excellent safety profile toxicity in several ani-
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mal models after several types of administration [35], we found it has potential for poten-
tial cytotoxicity at concentrations lower than 1% commonly used for topical administra-
tion. Actinomycin D, a potent inducer of apoptosis, showed a cytotoxic potential compa-
rable to ciclopirox, in agreement with the previously observed hepatic, blood, gastrointes-
tinal, and immune system-related toxicity [36]. Developing a novel aerosolized formula-
tion of ciclopirox or actinomycin D would be beneficial since it could significantly reduce
the amount of drug-related to a clinically relevant outcome, as already shown for NSAIDs
pulmonary delivery [37]. Moreover, nanoparticulate formulations using biocompatible
and biodegradable polymers could improve the residence time of the drug in the lung by
supplying a depot delivery to the lung following nebulization. Specifically, the incorpo-
ration of PEG has been shown to increase the diffusion of nanoparticles through human
mucoid surfaces [38], which might be particularly relevant in CF patients.

Drug repurposing strategy has also been successfully used to find antivirulence com-
pounds able to decrease the potential damage produced by the pathogens to the host [39].
Unlike conventional antimicrobials, they act without affecting bacterial growth, reducing
the chances of developing resistance. In this context, actinomycin D was previously con-
sidered a potential antivirulence agent against S. aureus due to the hemolysis inhibition
[32], while ciclopirox was found to inhibit pyocyanin, although it increased pyoverdine
production in P. aeruginosa [19]. Therefore, for the first time, we tested the effects of the
biologically active drugs on the expression levels of selected P. aeruginosa virulence genes
using real-time RT-qPCR. The exposure to each drug at 1/4xMIC generally caused in-
creased expression of most genes tested, although to different extents. Specifically, the
most advantageous pattern was observed for ribavirin which increased only mexA, mexC,
and toxA expression, while the worst one was associated with ciclopirox which provoked
hyperexpression of all genes but mexC. It is worth noting that actinomycin D caused down
expression of aprA and algD codifying for the main virulence traits of P. aeruginosa, respec-
tively the alkaline protease and GDP-mannose 6-dehydrogenase involved in the alginate
polymerization needed for adhesion and subsequent biofilm formation. Similarly, we ob-
served that 5-fluorouracil and tobramycin respectively reduced aprA and algD expression.
The anticancer drug 5-fluorouracil was recently proposed for repurposing as a quorum
sensing inhibitor in P. aeruginosa [40]. However, the isolation of drug-insensitive sponta-
neous mutants indicates that resistance mechanisms can emerge even under in vitro con-
ditions where the targeted virulence factor(s) is not required for growth [40]. Conversely,
we found that exposure to 5-fluorouracil caused the down expression of the QS mediator
lasl, probably due to the high variability in antivirulence activities previously observed
among CF strains [40].

4. Materials and Methods

4.1. Drugs
Eight in-use pharmacological agents, encompassing a wide variety of different chem-
ical structures and mechanisms of action, were selected because they were previously
found to have some direct antibacterial activity (Table 4): ribavirin, toremifene, oxycloza-
nide, meloxicam, 5-fluorouracil, actinomycin D, furosemide, and ciclopirox. The amino-
glycoside antibiotic tobramycin was selected as a “comparator” since it is commonly pre-
scribed for the inhalation therapy of P. aeruginosa infection in CF patients. All drugs tested
were purchased from Merck KGaA (Darmstadt, Germany). According to the manufactur-
er's recommendations, stock solutions were prepared in dimethyl sulfoxide (DMSO;
Merck KGaA) or reagent grade water, aliquoted, and stored at —=80°C until use.
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Table 4. FDA-approved "non-antibiotic" drugs tested. We selected some in-use pharmaceuticals found to have some direct antimicrobial effects in previously published studies.

. o Antibacterial  Antibacterial
Drug Therapeutic class  Clinical use Cat.no.»  Solvent® [Stock] . Reference
spectrum activitye
Chronic hepatitis C and
L Nucleoside o .
Ribavirin other flavivirus R9644 H-0 10 mg/ml P. aeruginosa 3000 [22,23]
analogue ] )
infections
S. aureus
) Nonsteroidal L
Toremifene ) Several types of cancer =~ T7204 H:O0, DMSO 33 mg/ml  P. gingivalis 12.5-25 [23,33]
antiestrogen
S. mutans
) Salicylanilide o . )
Oxyclozanide o Fascioliasis in ruminants 34078 DMSO 50 mg/ml P. aeruginosa 256 [25]
anthelmintic
Nonsteroidal anti- Pain and inflammation
Meloxicam inflammatory in rheumatic diseases M3935 H0 10 mg/ml P. aeruginosa 31 [24]
drug and osteoarthritis
. Pyrimidine
5-Fluorouracil ) Several types of cancer F6627 DMSO 50 mg/ml S. aureus 4 [23]
analog
. ) . ) P. aeruginosa [22,23,46,4
ActinomycinD  Actinomycins Several types of cancer A1410 DMSO 4 mg/ml 0.06-32
S. aureus 7]
Peripheral, pulmonary, 50% biofilm
Furosemide Loop diuretic and cerebral edema; PHR1057 DMSO 50 mg/ml P. aeruginosa reductionat 10 [22,23]
hypertension pg/ml
Ciclopirox Antifungal Surface fungal infections SML2011  DMSO 50 mg/ml P. aeruginosa 30 [19]

2 All drugs were from Merck KGaA (Darmstadt, Germany). » H20, reagent grade water; DMSO, dimethyl sulfoxide. ¢ Values are MIC (ug/ml), except for furosemide.
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4.2. Bacterial strains and standardized inoculum preparation

Nineteen clonally distinct P. aeruginosa strains isolated from sputum samples of CF
patients were initially enrolled in the study. Each strain was identified using MALDI-TOF
mass spectrometry and then stored at -80°C until it was cultured twice on Mueller-Hinton
agar (MHA; Oxoid, Milan, Italy) to restore the original phenotype. A standardized inocu-
lum was prepared for each strain, depending on the use.

4.2.1. Biofilm formation

Several colonies grew overnight onto Tryptone Soya Agar (TSA; Oxoid) were resus-
pended in Trypticase Soy broth (TSB; Oxoid) and incubated at 37°C under agitation (130
rpm). After 16h-incubation, the broth culture was adjusted with sterile TSB to an optical
density measured at 550 nm (ODss0) of 1.0 - corresponding to 1-4x108 CFU/ml - and finally
diluted 1:100 (vol/vol) always in TSB.

4.2.2. Drug susceptibility assays of planktonic cells

Several colonies grew overnight onto TSA (Oxoid) were resuspended in sterile NaCl
0.9% (Fresenius Kabi Italia, Verona, Italy), adjusted to a final concentration of 1-2x108
CFU/ml, and finally diluted 1:1000 (vol/vol) in cation-adjusted Mueller-Hinton II broth
(CAMHB; Becton, Dickinson & Co., Milan, Italy).

4.3. Biofilm formation assay

Two hundred microliters of the standardized inoculum were aseptically added to
each well of a 96-well polystyrene tissue culture plate (Falcon BD; Becton, Dickinson &
Co.). Negative controls were prepared similarly using TSB only. After 24 h-incubation at
37°C under static conditions, biofilms were washed twice with PBS (pH 7.2) (Merck
KGaA) to remove non-adherent cells and then fixed at 60°C for 1 h. Biofilm biomass was
stained for 5 min with 200 pl Hucker-modified crystal violet [41], air-dried (37°C, 30 min).
Finally, crystal violet was extracted by exposure for 15 min to 200 ul of 33% glacial acetic
acid (Merck KGaA). Biofilm biomass was measured as ODa92 (Sunrise; Tecan, Milan, Italy).
Based on the efficiency in biofilm formation, each strain was classified as follows [13]: i)
non-biofilm-former (NBF) (OD < ODc); weak biofilm-former (WBF) [ODc < OD < (2 x
ODc)]; moderate biofilm-former (MBF) [(2 x ODc) < OD < (4 x ODc)]; and high biofilm-
former (HBF) (OD >4 x ODc). The cut-off value (ODc) for biofilm formation was defined
as the mean OD of negative controls + 3 x standard deviation.

4.4. Drug susceptibility assays of planktonic cells
The in vitro susceptibility of P. aeruginosa was evaluated, comparatively to tobramy-
cin, using several assays.

4.4.1. Disk diffusion assay

The susceptibility of P. aeruginosa isolates to several antibiotics (i.e., amikacin, ti-
carcillin, piperacillin/tazobactam, ceftazidime, gentamicin, netilmicin, levofloxacin, and
tobramycin) was evaluated by the disk diffusion technique according to the CLSI guide-
lines [42] and using Multodisc Pseudomonas (Liofilchem Srl, Roseto degli Abruzzi, Italy).
A strain was defined as multidrug-resistant (MDR) if non-susceptible to at least one agent
in three or more antimicrobial categories among those tested (aminoglycosides, penicil-
lins, cephalosporins, carbapenems, and fluoroquinolones) [14]. E. coli ATCC25922 and P.
aeruginosa ATCC27853 were used as quality control strains.

4.4.2. MIC and MBC measurements

MIC and MBC values of each “non-antibiotic” drug were measured against 6 P. ae-
ruginosa isolates, selected as representative for MDR and HBF phenotypes. MIC was meas-
ured by the broth microdilution technique, according to the CLSI guidelines [42]. E. coli
ATCC25922 and P. aeruginosa ATCC27853 were used as quality control strains. MBC was
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evaluated by plating onto MHA (Oxoid) 10 ul of broth culture from wells showing no
visible growth at MIC determination. Following incubation at 37°C for 24 h, the MBC
value was defined as the minimum antibiotic concentration needed to eradicate 99.9% of
the starting inoculum. Differences between MIC or MBC values were significant for dis-
crepancies >2 logz concentration steps.

4.4.3. Time-kill assay

Kill kinetics of actinomyecin, 5-fluorouracil, ciclopirox, and tobramycin against se-
lected P. aeruginosa strains were evaluated by broth macrodilution. Briefly, the standard-
ized inoculum (1-2x10°> CFU/ml) was exposed to several concentrations of each drug in
CAMHB and incubated at 37°C. At prefixed times (1, 2, 3, 4, 5, 6, 12, 16, 20, and 24 h), a
cell viable cell count was performed, and the results were expressed by plotting Log
(CFU/ml) over time, considering 10 CFU/ml as the limit of detection (LOD). Control sam-
ples were prepared similarly but were not exposed to drugs. The carry-over antibiotic
effect was not observed. Bactericidal activity was defined as a 23 Log (CFU/ml) reduction.

4.4.4. Checkerboard microdilution assay

The activity of tobramycin combined with 5-fluorouracil, ciclopirox, or actinomycin
D was assessed against selected P. aeruginosa strains by the checkerboard microdilution
method [43]. The fractional inhibitory concentration index (FICi) was calculated as
FICA+FICs, where: FIC of drug A (FICa) = MIC of drug A in combination/MIC of drug A
alone, FIC of drug B (FICs) = MIC of drug B in combination/MIC of drug B alone. FICi was
and interpreted as follows: synergy, FICi < 0.5; additivity, 0.5 < FICi < 4; indifference, FICi
= 2; antagonism, FICi > 4 [43].

4.5. In vitro activity against preformed biofilm
Biofilms were grown for 24 h in a 96-well microtiter plate as previously described in
“Biofilm formation assay”. Next, they were exposed to each drug tested at the desired
concentrations prepared in CAMHB. Following 24 h-exposure at 37°C under static condi-
tions, the effect against mature biofilm was evaluated in terms of biofilm biomass disper-
sion (crystal violet assay, as described in “Biofilm formation assay”) and residual viability.
In the latter case, non-adherent bacteria were removed after drug exposure by washing
once with sterile PBS, then biofilm samples were scraped following a 5-min exposure to
100 pl trypsin-ethylenediaminetetraacetic acid 0.25% (Merck KGaA), and finally the sus-
pension underwent to viable cell count on MHA. The percentage of inhibition of biofilm
formation or dispersal of preformed biofilms following drug exposure was calculated as
follows: i) (1 — ODas92 of test/ODao2 of untreated control) x100, in the case of crystal violet
assay; ii) [(CFU/well of the test)/(CFU/well of untreated control)] x100, in the case of plate
count assay.

4.6. Gene expression assay

The effect of drug exposure on the transcription levels of algD, toxA, lasl, aprA, mexA,
mexB, and mexC virulence genes by P. aeruginosa PaPh32 was assessed by real-time Re-
verse Transcription quantitative PCR (RT-qPCR) using. Planktonic cells were exposed to
each drug at 1/4xMIC for 20 h at 37°C, washed with PBS, and then harvested in Qiazol
(Qiagen; Milan, Italy). RNA was extracted by the phenol-chloroform technique, treated
with DNase I (Merck KGaA), and checked for purity and quantity by NanoDrop-2000
spectrophotometer (Thermo Fisher Scientific Italia Inc.,, Monza, Italy). Strand cDNA was
synthesized from 2 ug of RNA using a High-Capacity cDNA reverse transcription kit
(Thermo Fisher Scientific Italia), and gene expression was then evaluated using 10 ng of
cDNA by RT-qPCR assay on QuantStudioTM 7 Pro Real-Time PCR System (Applied Bio-
systems) using the PowerTrack SYBR Green Master Mix (Thermo Fisher Scientific Italia
Inc.). Primers were designed using as a reference the genome of P. aeruginosa strain
NDTH9845 (GeneBank accession number: CP073080.1) (Table 5).
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Specificity was assessed in silico with BLAST and by PCR endpoint under the same
real-time RT-qPCR conditions. The AACt method was applied to evaluate the relative
gene expression in exposed vs. unexposed cells after normalizing on the proC housekeep-
ing gene expression. The modulation of expression levels was shown as fold change.

4.7. Cytotoxicity evaluation

The cytotoxic effect of each drug was assessed towards IB3-1 bronchial epithelial
cells (ATCC#CRL-2777) isolated from a pediatric CF patient who harbored the
AF508/W1282X mutations within the CFTR gene. Cells were grown as a monolayer at 37°C
in LHC-8 medium (Thermo Fisher Scientific Italia) supplemented with 5% fetal bovine
serum (Gibco, Italy) in a 5% CO: atmosphere. After exposing the monolayer to each drug
at the desired concentration for 24 h, the cell viability was measured by an MTS tetrazo-
lium-based colorimetric assay (CellTiter 96® AQueous One Solution Cell Proliferation As-
say; Promega, Milan, Italy). Briefly, 20 pl of a mixture of MTS [3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] and the electron cou-
pling reagent PES (phenazine ethosulfate) were added to each well containing exposed
cells. Untreated IB3-1 cells were used as control. After 4 h-incubation at 37°C, the ODus2
was measured using an ELISA plate reader (Sunrise, Tecan).

4.8. Statistical analysis

Each experiment was carried out at least in triplicate and repeated on two different
occasions (n 2 6). Statistical analysis was performed using GraphPad software (ver. 8.0;
GraphPad Inc., CA, USA). Data distribution was assessed using the D’ Agostino & Pearson
normality test, and then the differences in the biofilm biomass (ODus2) were evaluated us-
ing: i) ANOVA + Tukey’s multiple comparisons post-test for datasets normally distrib-
uted; ii) ordinary one-way ANOVA + Holm-Sidak's multiple comparisons post-test in case
datasets did not pass the normality test. Differences between percentages were assessed
using Fisher’s exact test. The significance level was set at p<0.05.

5. Conclusions

Overall, our findings indicated ciclopirox and ribavirin as attractive candidates for
repurposing as anti-P. aeruginosa agents in CF patients. Ciclopirox exhibited relevant an-
tibacterial and antibiofilm activities, although further studies are needed to decrease its
cytotoxic potential. At safe concentrations, ribavirin, a guanosine analog with broad-spec-
trum virustatic activity, showed a specific antibiofilm effect since it was not related to
antibacterial activity. In addition, it has already received FDA approval as an aerosol for-
mulation, although for respiratory syncytial virus-infected infants. Ciclopirox and ribavi-
rin have also been shown to have respectively anti-inflammatory [44] and immunomod-
ulatory [45] properties, highly relevant in CF patients where an exuberant, acute inflam-
matory response leads to pulmonary tissue damage and failure in clearing the infection
[1,2].

Ciclopirox and ribavirin might, therefore, represent a good starting point for tradi-
tional medicinal chemistry providing potential chemical scaffolds for further drug devel-
opment. Pre-clinical studies are warranted to evaluate the protective effect in animal mod-
els and pharmacodynamics/pharmacokinetics in humans.
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Table 5. Primer sequences used in real-time reverse transcription-quantitative PCR analyses. The expression of selected virulence genes by P. aeruginosa PaPh32 was evaluated after
20 h-exposure to FDA-approved drugs by real-time RT-qPCR using oligonucleotides designed on the sequence of P. aeruginosa strain NDTH9845 (GeneBank accession number:
CP073080.1). The gene proC was used as housekeeping [48].

Target gene Primer sequences RT-qPCR product (bp) Gene function
algD F: 5-CGACCTGGACCTGGGCTAC-3’ 144 Alginate
R: 5-TCCTCGATCAGCGGGATC-3’
toxA F: 5-TGGAGCGCAACTATCCCAC-¥ 148 Exotoxin A
R: 5-TAGCCGACGAACACATAGCC-3’
lasl F: 5-GAGCTTCTGCACGGCAAGG-3 68 Quorum sensing
R: 5-TTGATGGCGAAACGGCTGAG-3’
aprA F: 5-TACCTGATCAACAGCAGCTACAG-3 195 Alkaline protease
R: 5-GTAGCTCATCACCGAATAGGCG-3
mexA F: 5-AGCAAGCAGCAGTACGCC-¥ 86 Efflux pump
R: 5-GTGTAGCGCAGGTTGATCC-3’
mexB F: 5-GCCTCGATCCATGAGGTAGTG-3’ 74 Efflux pump
R: 5-AGGAACAGGTACATCACCAGG-3’
mexC F: 5-ACGTCGGCGAACTGCAAC-3’ 101 Efflux pump
R: 5-CTGAAGAAAGGCACCTTGGC-3’
proC F: 5-AGGCCGGGCAGTTGCTGTC-3' 178 Proline biosynthesis

R: 5-GTCAGGCGCGAGGCTGTC-3
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