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Abstract

It is known that the class of p-normed spaces (0 < p ≤ 1) is an important generalization of usual normed

spaces with rich topological and geometrical structure, but the most of tools and general principles in nature with

nonlinearity have not been developed yet, thus the main goal of this paper is to develop tools for nonlinear analysis

under the framework of p-vector spaces. In particular, we first develop the general fixed point theorems which provide

solutions to answer Schauder conjecture since 1930’s in the affirmative for p-vector spaces when p = 1 (which is just

general topological vector spaces); then the one best approximation result for upper semi-continuous mappings is

given, which is used as a powerful tool to establish fixed points for non-self set-valued mappings with either inward

or outward set conditions; and finally we establish comprehensive existence results of solutions for Birkhoff-Kellogg

Problems, and the general principle of nonlinear alternative by including Leray-Schauder alternative and related

results.

The results given in this paper not only include the corresponding results in the existing literature as special

cases, but also expected to be useful tools for the study of nonlinear problems arising from theory to practice.
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1. Introduction

It is known that the class of p-normed spaces (0 < p ≤ 1) is an important generalization of usual normed spaces,

and it has a rich topological and geometrical structure, and related study has received a lot of attention (e.g.,

see Balachandran [5], Bayoumi [6], Bayoumi et al.[7], Bernuées and Pena [9], Ding [23], Gal and Goldstein [32],

Gholizadeh et al.[33], Jarchow [37], Kalton [39]-[40], Kalton et al.[41], Part[61], Qiu and Rolewicz [66], Rolewicz

[69], Simons [75], Tabor et al.[79], Tan [80], Wang [82], Xiao and Lu [85], Xiao and Zhu[86]-[87], Yuan [91], and

many others).

However, to the best of our knowledge, the corresponding basic tools and associated results in the category of

nonlinear functional analysis have not been well developed, thus the goal of this paper is first to develop tools for

nonlinear analysis under the framework of p-vector spaces. In particular, we first develop the general fixed point

theorems which provide solutions to answer Schauder conjecture since 1930’s in the affirmative for p-vector spaces

when p = 1 (which is just general topological vector spaces); then the one best approximation result for upper

semi-continuous mappings is given, which is used as a powerful tool to establish fixed points for non-self set-valued

mappings with either inward or outward set conditions; and finally we establish comprehensive existence results

of solutions for Birkhoff-Kellogg Problems, and the general principle of nonlinear alternative by including Leray-

Schauder alternative and related results. The results given in this paper do not only include the corresponding

results in the existing literature as special cases, but also would become useful new tools for the study of nonlinear

problems from social science, engineering, applied mathematics and related topics and areas.

Before discussing the study of the best approximation and related nonlinear analysis tools under the framework

of p-vector spaces, we like first to share with readers that that though most of results in nonlinear analysis are

normally highly associated with the convexity hypotheses under the local convex topological vector spaces (of

course, including normed spaces, and Banach spaces, nice metric spaces), it seems surprise that p-vector spaces

which in general do not have the local convex structure comparing with locally convex spaces, but they are provide

some nice properties in the nature way with some kinds of nice approximation and better (i.e., the bigger) structures

for the so-called the convexities of p-convex subset play very important roles for us to describe Birkhoff and Kellogg

problems, and related nonlinear problems (such as fixed point problem and so on) in topological vector spaces

(TVS) based on p-vector spaces’s behaviors for p in (0, 1) (as one p-vector space E reduces to TVS when p = 1),

and also see the corresponding results and properties as pointed by the Remark 2.1 (1), Lemma 2.1(ii) and Lemma

2.3 below).

Here, in particularly, we recall that since the first Birkhoff-Kellogg theorem was introduced and proved by

Birkhoff and Kellogg [10] in 1922 in discussing the existence of solutions for the equation x = λF (x), where λ is a

real parameter, and F is a general nonlinear non-self mapping defined on an open convex subset U of a topological

vector space E, now the general form of the Birkhoff-Kellogg problem is to find the so-called an invariant direction

for the nonlinear set-valued mappings F , i.e., to find x0 ∈ ∂U and λ > 0 if λx0 ∈ F (x0).

Since Birkhoff and Kellogg theorem given by Birkhoff and Kellogg in 1920’s, the study on Birkhoff-Kellogg

problem has been received a lot of attention by scholars since then. For example, in 1934, one of the fundamental
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results in nonlinear functional analysis, famously called the Leray-Schauder alternative by Leray and Schauder [46]

was established via topological degree. Thereafter, certain other types of Leray-Schauder alternatives were proved

using different techniques other than topological degree, see works given by Granas and Dugundji [34], Furi and Pera

[31] in the Banach space setting and applications to the boundary value problems for ordinary differential equations

in noncompact problems, a general class of mappings for nonlinear alternative of Leray-Schauder type in normal

topological spaces, and some Birkhoff-Kellogg type theorems for general class mappings in topological vector spaces

by Agarwal et al.[1], Agarwal and O’Regan [2]-[3], Park [59]. In particular, recently by using the Leray-Schauder

type coincidence theory to establish some Birkhoff-Kellogg problem, Furi-Pera type results for a general class of

mappings by O’Regan [54] and references wherein. In this paper, based on the application of our best approximation

as a tool, the general principle for the existence of solutions for Birkhoff-Kellogg problems and related nonlinear

alternatives will be established, which then also allows us to give general existence of Leray-Schaduer type and

related fixed point theorems for non-self mappings in general p-vector spaces for (0 < p ≤ 1). These new results

given in this paper not only include the corresponding results in the existing literature as special cases, but also

expected to be useful tools for the study of nonlinear problems arising from theory to practice.50

Now we give a brief introduction on the best approximation theorem related to the development of the nonlinear

analysis as a powerful tool with some background.

We all know that the beat approximation in nature related to fixed points for non-self mappings, which tightly

link with the classical Leray-Schauder alternative based on the Leray-Schauder continuation theorem by Leray and

Schauder [46], which is a remarkable result in nonlinear analysis; and in addition, there exist several continuation

theorems, which have many applications to the study of nonlinear functional equations (see O’Regan and Precup

[55]). Historically, it seems that the continuation theorem is based on the idea of obtaining a solution of a given

equation, starting from one of the solutions of a simpler equation. The essential part of this theorem is the “Leray-

Schauder boundary condition”. It seems the “continuation method” was initiated by Poincare [64], Bernstein [8].

Certainly, Leray and Schauder[46] in 1934 gave the first abstract formulation of “continuation principle” using the

topological degree (see also Granas and Dugundji [34], Isac [38], Rothe [70]-[71], Zeidler [92]). But in this paper, we

will see how the best approximation method could be used for the study of fixed point theorems in p-vector space

for 0 < p ≤ 1 which as a basic tool, will help us to develop the principle of nonlinear alterative, Leray-Schauder

alternative, fixed point theorems of Rothe, Petryshyn, Atlman type for non-self mappings, and related fixed point,

nonlinear alternative with different boundary conditions. Moreover, the new results given in this paper are highly

expected to become useful tools for the study on optimization, nonlinear programming, variational inequality,

complementarity, game theory, mathematical economics, and related other social science area.

It is well-known that the best approximation is one of very important aspects for the study of nonlinear problems

related to the problems on their solvability for partial differential equations, dynamic systems, optimization, math-

ematical program, operation research; and in particularly, the one approach well accepted for study of nonlinear

problems in optimization, complementarity problems and of variational inequalities problems and so on, strongly

based on today called Fan’s best approximation theorem given by Fan [29] in 1969 which acts as a very powerful
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tool in nonlinear analysis, and see the book of Singh et al.[76] for the related discussion and study on the fixed point

theory and best approximation with the KKM-map principle), among them, the related tools are Rothe type and

principle of Leray-Schauder alterative in topological vector spaces (TVS), and local topological vector spaces (LCS)

which are comprehensively studied by Chang et al.[18], Chang et al.[19]-[21], Carbone and Conti [14], Ennassik and

Taoudi [25], Ennassik et al.[26], Isac [38], Granas and Dugundji [34], Kirk and Shahzad [43], Liu [48], Park [62],

Rothe [70]-[71], Shahzad [72]-[74], Xu [88], Yuan [89]-[91], Zeidler [92], and references wherein.

On the other hand, since the celebrated so-called KKM principle established in 1929 in [44], was based on the

celebrated Sperner combinatorial lemma and first applied to a simple proof of the Brouwer fixed point theorem.

Later it became clear that these three theorems are mutually equivalent and they were regarded as a sort of

mathematical trinity (Park [62]). Since Fan extended the classical KKM theorem to infinite-dimensional spaces in

1961 by Fan [28]-[30], there have been a number of generalizations and applications in numerous areas of nonlinear

analysis, and fixed points in TVS and LCS as developed by Browder [11]-[13] and related references wherein. Among

them, Schauder’s fixed point theorem [77] in normed spaces is one of the powerful tools in dealing with nonlinear

problems in analysis. Most notably, it has played a major role in the development of fixed point theory and related

nonlinear analysis and mathematical theory of partial and differential equations and others. A generalization of

Schauder’s theorem from normed space to general topological vector spaces is an old conjecture in fixed point theory

which is explained by the Problem 54 of the book “The Scottish Book” by Mauldin [50] as stated as Schauder’s

conjecture: “Every nonempty compact convex set in a topological vector space has the fixed point property, or

in its analytic statement, does a continuous function defined on a compact convex subset of a topological vector

space to itself have a fixed point?” Recently, this question has been recently answered by the work of Ennassik

and Taoudi [25], Ennassik et al.[26] by using the p-seminorm methods under p-vector spaces; and also singificant

contribution by Cauty [16], plus corresponding contributions by Askoura and Godet-Thobie [4], Cauty [15], Chang

[17], Chang et al.[18], Chen [22], Dobrowolski [24], Gholizadeh et al.[33], Isac [38], Li [47], Nhu [51], Okon [52],

Park [61]-[63], Reich [67], Smart [78], Weber [83]-[84], Xiao and Lu [85], Xiao and Zhu [86]-[87], Yuan [89]-[91] and

related references wherein under the general framework of p-vector spaces for even non-self set-valued mappings

(0 < p ≤ 1).

Though the goal of this paper is to establish the general new tools of nonlinear analysis based on the new

best approximation theorem for p-vector spaces by applying the KKM principle from abstract convex spaces for100

0 < p ≤ 1, actually we will see that as the applications of the best approximations, a number of new results which are

Birkhoff-Kellogg type, related nonlinear alternative, and fixed point theorems for non-self set-valued with boundary

conditions, Rothe, Petryshyn type, Altman type, Leray-Schedule types and related others are established. These

results indeed also provide solutions for Schauder’s conjecture in the affirmative way with the extension to non-self

mappings under general p-vector spaces (0 < p ≤ 1) which may not locally convex (see Kalton [39]-[40], Kalton et

al.[41], Jarchow [37], Roloewicz [69], Fan [27]-[30], Singh et al.[76], and related references).

The paper has six sections. Section 1 is the introduction. Section 2 describes general concepts for the p-convex

subsets of topological vector spaces (0 < p ≤ 1). In Section 3, then some basic results of KKM principle related
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to abstract convex spaces are given. In Section 4, as the application of the KKM principle in abstract convex

spaces which including p-convex vector spaces as a special class (0 < p ≤ 1) by combining the embedding lemma

for compact p-convex subsets from topological vector spaces into locally p-convex spaces, we provide a general fixed

point theorems for upper semi-continuous set-valued mappings for compact p-convex subsets in vector spaces for

both inward and outward sets. In section 5, this is the main part of the paper as the general best approximation

result is given first for p-vector spaces, which then is used as a powerful tool to establish the general principle for

Birkhoff-Kellogg alternative, and related nonlinear alterative and by including Leray-Schauder alternative, Rothe

type and Altman type associated with different boundary conditions are established under p-convex vector spaces

for (0 < p ≤ 1). In section 6, we give a number of new results based on general principles of Birkhoff-Kellogg, and

Leray-Schauder alternative given by Section 5 with considering the general existence of solutions for Birkhoff-Kellogg

problems and fixed points of non-self mappings with different boundary conditions. .

For the convenience of our discussion, throughout this paper, all p-convex topological vector spaces and the

compact p-convex sets are always assumed to be Hausdorff, and 0 < p ≤ 1 unless specified.

2. The Basic Results of p-Vector Spaces

We now recall some notion and definitions for p-convex topological vector spaces which will be used below (see

Jarchow [37], Kalton [39], Rolewicz [69], Bayoumi [6], Gholizadeh et al.[33], or Ennassik and Taoudi [25], Xiao and

Lu [85], Xiao and Zhu [86], ).

Definition 2.1. A set A in a vector space X is said to be p-convex if for any x, y ∈ A, s, t ≥ 0, we have

(1− t)1/px+ t1/py ∈ A, whenever 0 ≤ t ≤ 1. If A is 1-convex, it is simply called convex (for p = 1) in general vector

spaces.

Definition 2.2. If A is a subset of a topological vector space X, the closure of A is denoted by A, then the p-convex

hull of A and its closed p-convex hull denoted by Cp(A), and Cp(A), respectively, which is the smallest p-convex

set containing A, and the smallest closed p-convex set containing A, respectively.

Definition 2.3. Let A be p-convex and x1, · · · , xn ∈ A, and ti ≥ 0,
n∑
1

tpi = 1. Then
n∑
1

tixi is called a p-convex

combination of {xi} for i = 1, 2, · · · , n. If
n∑
1

|ti|p ≤ 1, then
n∑
1

tixi is called an absolutely p-convex combination.

It is easy to see that
n∑
1

tixi ∈ A for a p-convex set A.

Definition 2.4. A subset A of a vector space X is called circled (or balanced) if λA ⊂ A holds for all scalars λ

satisfying ∥λ∥ ≤ 1. We say that A is absorbing if for each x ∈ X, there is a real number ρx > 0 such that λx ∈ A

for all λ > 0 with |λ| ≤ ρx.

By the definition 2.4, it is easy to see that the system of all circled subsets of X is easily seen to be closed under

the formation of linear combinations, arbitrary unions, and arbitrary intersections. In particular, every set A ⊂ X

determines a smallest circled subset Â of X in which it is contained: Â is called the circled hull of A. It is clear

that Â = ∪|λ|≤1λA holds, so that A is circled if and only if (in short, iff) Â = A. We use Â to denote for the closed

5

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2022                   doi:10.20944/preprints202204.0203.v1

https://doi.org/10.20944/preprints202204.0203.v1


circled hull of A ⊂ X.

In addition, if X is a topological vector space, we use the int(A) to denote the interior of set A ⊂ X and if

0 ∈ int(A), then int(A) is also circled; and use the ∂A to denote the boundary of A in X.

Definition 2.5. A topological vector space is said to be locally p-convex if the origin has a fundamental set of

absolutely p-convex 0-neighborhoods. This topology can be determined by p-seminorms which are defined in the

obvious way (see P.52 of Bayoumi [6], Jarchow [37] or Rolewicz [69]).

Definition 2.6. Let X is a vector space and R+ is a non-negative part of a real line R. Then a mapping

P : X −→ R+ is said to be an p-seminorm if it satisfies the requirements for (0 < p ≤ 1)

(i) P (x) ≥ 0 for all x ∈ X;150

(ii) P (λx) = |λ|pP (x) for all x ∈ X and λ ∈ R;

(iii) P (x+ y) ≤ P (x) + P (y) for all x, y ∈ X.

An p-seminorm P is called an p-norm if x = 0 whenever P (x) = 0. A vector space with a specific p-norm is

called an p-normed space. Of course if p = 1, X is is a usual normed space.

By Lemma 3.2.5 of Balachandra [5], the following proposition gives a necessary and sufficient condition for an

p-seminorm to be continuous.

Proposition 2.1. Let X be a topological vector space, P is an p-seminorm on X and V := {x ∈ X : P (x) < 1}.

Then P is continuous if and only if 0 ∈ int(V ), where int(V ) is the interior of V .

Now given an p-seminorm P , the p-seminorm topology determined by P (in short, the p-topology) is the class

of unions of open balls B(x, ϵ) := {y ∈ X : P (y − x) < ϵ} for x ∈ X and ϵ > 0.

Definition 2.7. A topological vector space X is said to be locally p-convex if it has a 0-basis consisting of p-convex

neighborhoods for (0 < p ≤ 1). If p = 1, X a usual locally convex space.

We also need following notion for the so-called p-gauge (see Balachandra [5]).

Definition 2.8. Let A be an absorbing subset of a vector space X. For x ∈ X and 0 < p ≤ 1, set PA = inf{α >

0 : x ∈ α
1
pA}, then the non-negative real-valued function PA is called the p-gauge (gauge if p = 1). The p-gauge of

A is also known as the Minkowski p-functional.

By Proposition 4.1.10 of Balachandra [5], we have the following proposition.

Proposition 2.2. Let A be an absorbing subset of X. Then p-gauge PA has the following properties:

(i) PA(0) = 0;

(ii) PA(λx) = |λ|pPA(x) if λ ≥ 0;

(iii) PA(λx) = |λ|pPA(x) for all λ ∈ R provided A is circled;

(iv) PA(x+ y) ≤ PA(x) + PA(y) for all x, y ∈ A provided A is p-convex.

In particular, PA is a p-seminorm if A is absolutely p-convex (and also absorbing).

Recall that a given p-seminorm, is said to be an p-norm if x = 0 whenever P (x) = 0. A vector space with a

specific p-norm is called an p-normed space. The p-norm of an element x ∈ E will usually be denoted by ∥x∥p. If

p = 1, X is a usual normed space. If X is an p-normed space, then (X, dp) is a metric linear space with a translation
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invariant metric dp such that dp = dp(x, y) = ∥x − y∥p for x, y ∈ X. We point out thatp-normed spaces are very

important in the theory of topological vector spaces. Specifically, a Hausdorff topological vector space is locally

bounded if and only if it is an p-normed space for some p-norm ∥ · ∥p, where 0 < p ≤ 1 (see p.114 of Jarchow [37]).

we note that examples of p-normed spaces include such as Lp(µ) - spaces and Hardy spaces Hp, 0 < p < 1, endowed

with their usual p-norms.

Remark 2.1. We like to make the following important two points as follows:

(1) First, by the fact that (e.g., see Kalton et al.[41], or Ding [23]), there is no open convex non-void subset in

Lp[0, 1] (for 0 < p < 1) except Lp[0, 1] itself, this means that p-normed paces with 0 < p < 1 are not necessarily

locally convex. Moreover, we know that every p-normed space is locally p-convex; and incorporating Lemma 2.3

below, it seems that p-vector spaces (for 0 < p ≤ 1 ) is a nicer space as we can use p-vector space to approximate

(Hausdorff) topological vector spaces (TVS) in terms of Lemma 2.1 (ii) below for the convex subsets in TVS by

using a bigger p-convex subsets in p-vector spaces for p ∈ (0, 1) by also considering Lemma 2.3 below, in this way, it

seems P -vector spaces seems having better properties in terms of p-convexity than the usually (1−) convex subsets

used in TVS.

(2) Second, it is worthwhile noting that a 0-neighborhood in a topological vector space is always absorbing by

Lemma 2.1.16 of Balachandra [5], or Proposition 2.2.3 of Jarchow [37]).

. We also note that by Proposition 4.1.12 of Balachandra [5], we have the following proposition.

Proposition 2.3. Let A be a subset of a vector space X, which is absolutely p-convex (0 < p ≤ 1) and absorbing.

Then, we have that

(i) The p-gauge PA is a p-seminorm such that if B1 := {x ∈ X : PA(x) < 1}, and B1 = {x ∈ X : PA(x) ≤ 1}.

then B1 ⊂ A ⊂ B1; in particular, kerPA ⊂ A, where kerPA := {x ∈ X : PA(x) = 0}.

(ii) A = B1 or B1 according as A is open or closed in the PA-topology.

Remark 2.2. Let X be a topological vector space and let U be an open absolutely p-convex neighborhood of the

origin, and let ϵ be given. If y ∈ ϵ
1
pU , then y = ϵ

1
pu for some u ∈ U and PU (y) = PU (ϵ

1
pu) = ϵPU (u) ≤ ϵ (as u ∈ U200

implies that PU (u) ≤ 1). Thus, PU is continuous at zero, and therefore, PU is continuous everywhere. Moreover,

we have U = {x ∈ X : PU (x) < 1}.

Indeed, since U is open and the scalar multiplication is continuous, we have that for any x ∈ U , there exists

0 < t < 1 such that x ∈ t
1
pU and so PU (x) ≤ t < 1.This shows that U ⊂ {x ∈ X : PU (x) < 1}. The conclusion

follows by Proposition 2.3 above.

The following result is a very important and useful result which allows use to make the approximation for convex

subsets in topological vector spaces by p-convex subsets in p-convex vector spaces. For the reader’s self-contained

in reading, we provide a sketch of proof below (see also Lemma 2.1 of Ennassik and Taoudi [26], Remark 2.1 of Qiu

and Rolewicz [66]).

Lemma 2.1. Let A be a subset of a vector space X, then we have

(i) If A is r-convex, with 0 < r < 1, then αx ∈ A for any x ∈ A and any 0 < α ≤ 1.

7
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(ii) If A is convex and 0 ∈ A, then A is s-convex for any s ∈ (0, 1].

(iii) If A is r-convex for some r ∈ (0, 1), then A is s-convex for any s ∈ (0, r].

Proof. (i) As r ≤ 1, by the fact that “for all x ∈ A and all α ∈ [2(n+1)(1− 1
r ), 2n(1−

1
r )], we have αx ∈ A” is true

for all integer n ≥ 0. Taking into account that the fact that (0, 1] = ∪n≥0[2
(n+1)(1− 1

r ), 2n(1−
1
r )], thus the result is

obtained.

(ii) Assume that A is a convex subset of X with 0 ∈ A and take a real number s ∈ (0, 1]. we show that A is

s-convex. Indeed, let x, y ∈ A and α, β > 0 with αs + βs = 1. Since A is convex, then α
α+βx+ β

α+β y ∈ A. Keeping

in mind that 0 < α+ β < αs + βs = 1, it follows that αx+ βy = (α+ β)( α
α+βx+ β

α+β y) + (1− α− β)0 ∈ A.

(iii) Now, assume that A is r-convex for some r ∈ (0, 1) and pick up any real s ∈ (0, r]. We show that A

is s-convex. To see this, let x, y ∈ A and α, β > 0 such that αs + βs = 1. First notice that 0 < α
r−s
r ≤ 1

and 0 < β
r−s
r ≤ 1, which imply that α

r−s
r x ∈ A and β

r−s
r ∈ A. By the r-convexity of A and the equality

(α
s
r )r + (β

s
r )r = 1, it follows that αx+ βy = α

s
r (α

r−s
r x) + β

s
r (β

r−s
r y) ∈ A. This competes the sketch of the proof.

�
Remark 2.3. We like to point out that the results (i) and (iii) of Lemma 2.1 do not hold for p = 1. Indeed, any

singleton {x} ⊂ X is convex in topological vector spaces; but if x ̸= 0, then it is not p-convex for any p ∈ (0, 1).

We also need the following Proposition which is proposition 6.7.2 of Jarchow [37].

Proposition 2.4. Let K be compact in a topological vector X and (1 < p ≤ 1). Then the closure Cp(K) of

the p-convex hull, and the closure ACp(K) of absolutely p-convex hull of K are compact if and only if Cp(K) and

ACp(K) are complete, respectively.

We also need following fact, which is a special case of Lemma 2.4 of Xiao and Zhu [86].

Lemma 2.2. Let C be a bounded closed p-convex subset of p-seminorm X with 0 ∈ intC, where (0 < p ≤ 1). For

every x ∈ X define an operator by r(x) := x

max{1,(PC(x))
1
p }

, where PC is the Minkowski p-functional of C. Then C

is a retract of X and r : X → C is a continuous such that

(1) if x ∈ C, then r(x) = x;

(2) if x /∈ C, then r(x) ∈ ∂C;

(3) if x /∈ C, then the Minkowski p-functional PC(x) > 1.

Proof. Taking s = p in Lemma 2.4 of Xiao and Zhu [86], Proposition 2.3 and Remark 2.2, thus the proof is

compete. �

Remark 2.4. As discussed by Remark 2.2, Lemma 2.2 still holds if “the bounded closed p-convex subset C of

the p-normed space (X, ∥ · ∥p)” is replaced by that “X is a p-seminorm vector space and C is a bounded closed

absorbing p-convex subset with 0 ∈ intC of X”.

Before we close this section, we like to point out that the structure of p-convexity when p ∈ (0, 1) is really

different from what we normally have for the concept of “convexity” used in topological vector spaces (TVS), in

particular, maybe the following fact is one of reasons for us to use better (p-convex) structures in p-vector spaces to

approximate the corresponding structure of the convexity used in TVS (i.e., the p-vector space when p = 1). Based
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on the discussion in P.1740 of Xiao and Zhu [86](see also Bernués and Pena [9] and Sezer et al.[93]), we have the

following fact.

Lemma 2.3. Let x be a point of p-vector space E, where assume 0 < p < 1, then the p-convex hull and the closure

of {x} is given by

Cp({x}) =

 {tx : t ∈ (0, 1]}, if x ̸= 0,

{0}, if x = 0;
(1)

and

Cp({x}) =

 {tx : t ∈ [0, 1]}, if x ̸= 0,

{0}, if x = 0.
(2)

But note that if x is a given one point in p-vector space E, when p = 1, we have that C1({x}) = C1({x}) = {x},

This shows significantly different for the structure of p-convexity between p = 1 and p ̸= 1!250

As an application of Lemma 2.3, we have the following fact for (set-valued) mappings with non-empty closed

p-convex values in p-vector spaces for p ∈ (0, 1), which are truly different from any (set-valued) mappings defined

in topological vector spaces (i.e., for a p-vector space with p = 1).

Lemma 2.4. Let U be a non-empty subset of a p-vector space E (where 0 < p < 1), with zero 0 ∈ U , and assume

a (set-valued) mapping T : U → 2E is with non-empty closed p-convex values. Then T has at least one fixed point

in U , actually we have 0 ∈ ∩x∈UT (x) ̸= ∅.

Proof. For each x ∈ U , as T (x) is non-empty closed p-convex, by Lemma 2.3, we have at leat 0 ∈ T (x). It implies

that 0 ∈ ∩x∈UT (x) and thus zero of E is a fixed point of T . This completes the proof. �

Finally, for a a given p-convex subset C of a given p-vector space E with that zero 0 ∈ int(C) with the p-

seminorm P (for example, thinking of the P -seminorm which is indeed the PU , which is the Minkowski p-functional

of U), we denoted by dP (x,C) := inf{PU (x− y) : y ∈ C} the distance of {x} with the set C in E for 0 < p ≤ 1.

For the convenience of our discussion again, throughout this paper, we assume all p-convex vector space X

discussed is complete unless specified (0 < p ≤ 1).

3. The KKM Principle in Abstract Convex Spaces

As mentioned in the introduction, since Knaster, Kuratowski and Mazurkiewicz (in short, KKM)[44] in 1929

obtained the so-called KKM principle (theorem) to give a new proof for the Brouwer fixed point theorem in finite

dimensional spaces; and later in 1961, Fan [28] (see also Fan [30]) extended the KKM principle (theorem) to any

topological vector spaces and applied it to various results including the Schauder fixed point theorem. Since then

there have appeared a large number of works devoting applications of the KKM principle (theorem). In 1992,

such research field was called the KKM theory first time by Park [56], then the KKM theory has been extended

to general abstract convex spaces by Park [60](see also Park [61] and [62]) which actually include locally p-convex

spaces (0 < p ≤ 1) as a special class.
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Here we first give some notion and a brief introduction on the abstract convex spaces which play important

role for the development of KKM principle and related applications. Once again, the corresponding comprehensive

discussion on KKM theory and its various applications to nonlinear analysis and related topics, we refer to Mauldin

[50], Granas and Dugundji [34], Park [62] and [63], Yuan [90]-[91] and related comprehensive reference there.

Let ⟨D⟩ denote the set of all nonempty finite subsets of a given non-empty set D, and 2D denotes the family of

all subsets of D. We have the following definition of abstract convex spaces which essentially introduced by Park

[60].

Definition 3.1. An abstract convex space (E,D; Γ) consists of a topological space E, a nonempty set D, and a

set-valued mapping Γ : ⟨D⟩ → 2E with nonempty values ΓA := Γ(A) for each A ∈ ⟨D⟩, such that the Γ-convex hull

of any D′ ⊂ D is denoted and defined by coΓD
′ := ∪{ΓA|A ∈ ⟨D′⟩} ⊂ E.

A subset X of E is said to be a Γ-convex subset of (E,D; Γ) relative to D′ if for any N ∈ ⟨D′⟩, we have ΓN ⊆ X,

that is, coΓD
′ ⊂ X. For the convenience of our discussion, in the case E = D, the space (E,E; Γ) is simply denoted

by (E; Γ) unless specified.

Definition 3.2. Let (E,D; Γ) be an abstract convex space and Z a topological space. For a set-valued mapping (or

say, multimap) F : E → 2Z with nonempty values, if a set-value mapping G : D → 2Z satisfies F (ΓA) ⊂ G(A) :=∪
y∈A

G(y) for all A ∈ ⟨D⟩, then G is called a KKM mapping with respect to F . A KKM mapping G : D → 2E is a

KKM mapping with respect to the identity map 1E .

Definition 3.3. The partial KKM principle for an abstract convex space (E,D; Γ) is that, for any closed-valued

KKM mapping G : D → 2E , the family {G(y)}y∈D has the finite intersection property. The KKM principle is that,

the same property also holds for any open-valued KKM mapping.

An abstract convex space is called a (partial) KKM space if it satisfies the (partial) KKM principle (resp.). We

now gave some known examples of (partial) KKM spaces (see Park [60], and also [61]) as follows.

Definition 3.4. A ϕA-space (X,D; {ϕA}A∈⟨D⟩) consists of a topological space X, a nonempty set D, and a family

of continuous functions ϕA : ∆n → 2X (that is, singular n-simplices) for A ∈ {D} with |A| = n + 1. By putting

ΓA := ϕA(∆n) for each A ∈ ⟨D⟩, the triple (X,D; Γ) becomes an abstract convex space.

Definition 3.5. For a ϕA-space (X,D; {ϕA}) , we recall that any set-valued mapping G : D → 2X satisfying

ϕA(∆J) ⊂ G(J) for each A ∈ ⟨D⟩ and J ∈ ⟨A⟩ is called a KKM mapping.

By the definition, it is clear that every ϕA-space is a KKM space, thus we have the following fact (see Lemma300

1 of Park [61]).

Lemma 3.1. Let (X,D; Γ) be a ϕA-space and G : D → 2X a set-valued (multimap) with nonempty closed [resp.

open] values. Suppose that G is a KKM mapping, then {G(a)}a∈D has the finite intersection property.

Definition 3.6. We recall that a topological vector space is said to be locally p-convex if the origin has a funda-

mental set of absolutely p-convex 0-neighborhoods. This topology can be determined by p-seminorms which are

defined in the obvious way (see Jarchow [37], or P.52 of Bayoumi [6]).

Now we have a new KKM space as follows inducted by the concept of p-convexity (see Park [61]).

Lemma 3.2. Suppose that X is a subset of topological vector space E and p ∈ (0, 1], and D is a nonempty subset
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of X such that Cp(D) ⊂ X. Let ΓN := Cp(N) for each N ∈ ⟨D⟩. Then (X,D; Γ) is a ϕA-space.

Proof. Since Cp(D) ⊂ X, ΓN is well-defined. For each N = {x0, x1, · · · , xn} ⊂ D, we define ϕN : ∆n → ΓN by∑n
i=0 tiei 7→

∑n
i=0(ti)

1
pxi. Then clearly (X,D; Γ) is a ϕA-space. This completes the proof. �

4. The Fixed Points of Set-Valued Mappings in p-Vector Spaces

In this section, we will establish fixed point theorems for upper semi-continuous mappings for non-compact

p-convex subsets in p-vector spaces, which will be a tool used in section 5 to conduct the best approximation for

non-self set-valued mappings in p-vector spaces, and related to Rothe and Leray-Schaude typees, for which we will

discuss in section 5 below. Here, we first gather together some definitions and known facts needed in this section.

Definition 4.1. Let X and Y be two topological spaces. A set-valued mapping (also saying, multifunction)

T : X −→ 2Y is a point to set function such that for each x ∈ X, T (x) is a subset of Y . The mapping T is said to be

upper semi-continuous (USC) if the subset T−1(B) := {x ∈ X : T (x) ∩B ̸= ∅} (resp., the set {x ∈ X : T (x) ⊂ B})

is closed (resp., open) for any closed (resp., open) subset B in Y . The function T : X → 2Y is said to be lower

semi-continuous (LSC) if the set T−1(A) is open for any open subset A in Y .

As an application of KKM principle for general abstract convex spaces with the help of embedding lemma for

Hausdorff compact p-convex subsets from topological vector spaces (TVS) into locally p-convex vector spaces, we

have the following a general existence result for the “approximation” of fixed points for upper and lower semi-

continuous set-valued mappings in p-convex vector spaces for 0 < p ≤ 1 (see the corresponding related results given

by Theorem 2.7 of Gholizadeh et al. [33], Theorem 5 of Park [61] and related discussion wherein).

The following result is originally given by given by Yuan [91], here we provide the sketch of its proof for the

purpose of reading’s self-containing.

Theorem 4.1. Let A be a p-convex compact subset of a locally p-convex vector space X, where 0 < p ≤ 1. Suppose

that T : A → 2A is lower (resp. upper) semi-continuous with non-empty p-convex values. Then for any given U

which is a p-convex neighborhood of zero, there exists xU ∈ A such that T (xU ) ∩ (xU + U) ̸= ∅.

Proof. Suppose U is any given element U, which is a symmetric open neighborhood V of U for which V + V ⊂ U

in locally p-convex neighborhood of zero, we prove the results by two cases for T is LSC and USC.

Case 1, by assuming T is lower semi-continuous: As X is locally p-convex vector space, suppose that U is the

family of neighborhoods of 0 in X. For any element U of U, there is a symmetric open neighborhood V of U

for which V + V ⊂ U . Since A is compact, so there exist x0, x1, · · · , xn in A such that A ⊂ ∪n
i=0(xi + V ). By

using the fact that A is p-convex, we find D := {b0, b2, · · · , bn} ⊂ A for which bi − xi ∈ V for all i ∈ {0, 1, · · · , n}

and we define C by C := Cp(D) ⊂ A. By the fact that T is LSC, it follows that the subset F (bi) := {c ∈ C :

T (c) ∩ (xi + V ) = ∅} is open in C (as the set xi + V is open) for each i ∈ {0, 1, · · · , n}. For any c ∈ C, we have

∅ ̸= T (c) ∩ A ⊂ T (c) ∩ ∪n
i=0(xi + V ), it follows that ∩n

i=0F (bi) = ∅. Now applying Lemma 3.1 and Lemma 3.2,

which implies that that there is N := {bi0 , bi1 , · · · , bik} ∈ ⟨D⟩ and xU ∈ Cp(N) ⊂ A for which xU /∈ F (N), and so

T (xu)∩ (xij + V ) ̸= ∅ for all j ∈ {0, 1, · · · , k}. As bi − xi ∈ V and V + V ⊂ U , which imply that xij + V ⊂ bij +U ,
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which means that T (xU ) ∩ ((bij + U) ̸= ∅, it follows that N ⊂ {c ∈ C : T (xU ) ∩ (c + U) ̸= ∅}. By the fact that

the subsets C, T (xU ) and U are p-convex, we have that xU ∈ {c ∈ C : T (xU ) ∩ (c + U) ̸= ∅}, which means that

T (xU ) ∩ (xU + U) ̸= ∅.

Case 2, by assuming T is upper semi-continuous: We define F (bi) := {c ∈ C : T (c) ∩ (xi + V ) = ∅}, which is

then open in C (as the subset xi + V is closed) for each i = 0, 1, · · · , n. Then the argument is similar to the proof

for the case T is USC, and by applying Lemma 3.1 and Lemma 3.2 again, it follows that there exists xU ∈ A such

that T (xU ) ∩ (xU + U) ̸= ∅. This completes the proof. �

By Theorem 4.1, we have the following Fan-Glicksberg fixed point theorems (Fan [27]) in locally p-convex vector350

spaces for (0 < p ≤ 1), which also improve or generalize the corresponding results given by Yuan [90], Xiao and Lu

[85], Xiao and Zhu [86]-[87] into locally p-convex vector spaces.

Theorem 4.2. Let A be a p-convex compact subset of a locally p-convex vector space X, where 0 < p ≤ 1. Suppose

that T : A → 2A is upper semi-continuous with non-empty p-convex closed values. Then T has one fixed point.

Proof. Assume U is the family of neighborhoods of 0 in X, and U ∈ U, by Theorem 4.1, there exists xU ∈ A such

that T (xU ) ∩ (xU + U) ̸= ∅. Then there exists aU , bU ∈ A for which bU ∈ T (aU ) and bU ∈ aU + U . Now, two nets

{aU} and {bU} in Graph(T ), which is a compact graph of mapping T as A is compact and T is semi-continuous,

we may assume that aU has a subnet converging to a, and {bU} has a subnet converging to b. As U is the family

of neighborhoods for 0, we should have a = b (e.g., by the Hausdorff separation property), and a = b ∈ T (b) due to

the fact that Graph(T) is close (e.g., see Lemma 1.1 of Yuan [89]), thus the proof is compete. �
For a given set A in vector space X, we denote by “lin(A)” the “linear hull” of A in X.

Definition 4.2. Let A be a subset of a topological vector space X and let Y be another topological vector space.

We shall say that A can be linearly embedded in Y if there is a linear map L : lin(A) → Y (not necessarily

continuous) whose restriction to A is a homeomorphism.

The following embedded Lemma 4.1 is a significant result due to Theorem 1 of Kalton [39], which says though

not every compact convex set can be linearly imbedded in a locally convex space (e.g., see Roberts [68] and Kalton et

al.[41]), but for p-convex sets when 0 < p < 1, every compact p-convex set in topological vector spaces be considered

as a subset of a locally p-convex vector space, hence every such set has sufficiently many p-extreme points.

Secondly, by the property (ii) of Lemma 2.1 above, each convex subset of topological vector space is always

p-convex for 0 < p ≤ 1, thus it is possible for us to transfer the problem involved p-convex subsets from topological

vector spaces into the locally p-convex vector spaces, which indeed allows us to establish the existence of fixed

points for upper semi-continuous set-valued mappings for compact p-convex subsets in topological vector spaces

(0 < p ≤ 1) to cover case when the underlying is just a topological vector space, which provides the answer for

Schauder’s conjecture in the affirmative.

Lemma 4.1. Let K be a compact p-convex subset (0 < p < 1) of a topological vector space X. Then, K can be

linearly embedded in a locally p-convex topological vector space.
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Proof. It is Theorem 1 of Kalton [39], which completes the proof. �

Remark 4.1. At this point, it is important to note that Lemma 4.1 does not hold for p = 1. By Theorem 9.6 of

Kalton et al.[41], it was shown that the spaces Lp = Lp(0, 1), where 0 < p < 1, contain compact convex sets with

no extreme points, which thus cannot be linearly embedded in a locally convex space, see also Roberts [68].

Now we have the following fixed point theorems of upper semi-continuous set-valued mappings for compact

p-convex subsets in topological vector spaces (which may not be locally convex). The single-valued version was

first given by Theorem 3.3 of Ennassik and Taoudi [25] applying the p-seminorm argument in p-vector spaces for

0 < p ≤ 1. Here we apply KKM theory to establish the set-valued versions for upper semi-continuous mappings,

and the technique skill used here called “functional method”.

Theorem 4.3. If K is a nonempty compact p-convex subset of a topological vector space X, with (0 < p ≤ 1),

then any upper semi-continuous set-valued mappings T : K → 2K with non-empty p-convex closed value, has at

least a fixed point.

Proof. We complete the argument by following two steps.

First step, by assuming that K is p-convex, with 0 < p < 1. By Lemma 4.1, it follows that K can be linearly

embedded in a locally p-convex space E, which means that there exists a linear map L : lin(K) → E whose

restriction to K is a homeomorphism. Define the mapping S : L(K) → L(K) by (Lx) := L(Tx) for x ∈ X. This

mapping is easily checked to be well defined. It is also continuous since L is a homeomorphism and T is continuous

on K. Furthermore, the set L(K) is compact, being the image of a compact set under a continuous mapping. It is

also p-convex since it is the image of an p-convex set under a linear mapping. Then, by Theorem 4.2, there exists

x ∈ K such that S(Lx) = Lx. As L(Tx) = Lx, which implies (since L is a homeomorphism) that Tx = x.

Second step, consider p = 1, by the factK is convex. Choose an arbitrary x0 ∈ K and putK0 := {x−x0 : x ∈ K}.

Then we have that, K0 is a compact convex subset of X which contains the zero element. By Lemma 2.1 (ii), we also

conclude that K0 is p-convex for any p ∈ (0, 1). Now, define the mapping R : K0 −→ K0 by R(x− x0) := Tx− x0

for each x ∈ K. Clearly, R is continuous. Now applying the result from the first step to R, we conclude that there400

exists x ∈ K such that R(x− x0) = x− x0, which implies that Tx = x. Thus the proof is complete. �

Remark 4.2. Theorem 4.3 says that each compact p-convex subsets (0 < p ≤ 1) in topological vector spaces, has

the fixed point property, which does not only include or improve most available results for fixed point theorems

in the existing literature as special cases. In particular, the single-valued version of Theorem 4.3 was first given

by Ennassik and Taoudi (Theorem 3.3 of [25]) by using the p-seminorm method, here this paper it was given by

combing both KKM theory and p-convex structure. Here we also mention a number of related works and authors,

see Mauldin [50], Granas and Dugundji [34], Ennassik and Taoudi [26], Park [62]-[63] and references wherein).

Indeed Theorem 4.3 provides an answer to Schauder conjecture for set-valued version under the general p-vector

spaces which include topological vector spaces as a special of classes.

We recall that for two given topological spaces X and Y , and a set-valued mapping T : X → 2Y is said to
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be compact if there is compact subset set C in Y such that F (X)(= {y ∈ F (X), x ∈ X}) is contained in C,

i.e., F (X) ⊂ C. Now we have the following non-compact version of fixed point theorems for compact set-valued

mappings defined on a general p-convex subset in p-vector spaces for 0 < p ≤ 1.

Theorem 4.4 (Non-Compact Schauder Fixed Point Theorem). If C is a nonempty closed p-convex subset

of a vector space E with (0 < p ≤ 1) and T : C → 2C being an upper semi-continuous set-valued mapping with

non-empty closed p-convex values, if F (C) is contained in a compact subset of C, then T has at least one fixed

point.

Proof. As T is compact, there exists a compact subset A in C such that T (C)(:= {T (x) : x ∈ C}) ⊂ A. Let

K := Cp(A), the closure of the p-convex hull of set A in C. Then K is compact p-convex by Proposition 2.4, and

the mapping T : K → 2K is upper semi-continuous with non-empty closed p-convex values. Now by Theorem 4.3,

it follows that T has a fixed point x ∈ K ⊂ C such that x ∈ T (x). This completes the proof. �
As an immediate consequence of Theorem 4.3, we have following result which gives an affirmative answer to

Schauder’s conjecture for upper semi-continuous version in topological vector spaces (TVS).

Corollary 4.1. If K is a nonempty compact convex subset of a topological vector space X, then any upper

semi-continuous set-valued mappings T : K → 2K with non-empty closed convex values has at least a fixed point.

Proof. Apply Theorem 4.3 with p = 1, this completes the proof. �

Corollary 4.1 also improve or unifies corresponding results given by Askoura and Godet-Thobie [4], Cauty [15],

Cauty [16], Chen [22], Isac [38], Li [47], Nhu [51], Okon [52], Park [63], Reich [67], Smart [78], Yuan [90], Theorem

3.3 of Ennssik and Taoudi [26], Theorem 3.14 of Gholizadeh et al.[33], Xiao and Lu [85], Xiao and Zhu [86]-[87]

under the framework of topological vector spaces for set-valued mappings instead of single-valued functions.

In this section, as an application of KKM principle for abstract convex spaces with Kalton’s remarkable embedded

lemma [39] for compact p-convex sets in topological vector spaces, we establish the general fixed point theorems of

upper semi-continuous set-valued mappings, which allow us to answer Schauder’s conjecture in the affirmative.

In addition, comparing with topological method or related arguments used by Askoura et al.[4], Cauty [15]-

[16], Nhu [51], Reich[67] and others, the way used in this paper provides an accessible way for which we called

“functional analysis approach” for the study of nonlinear problems under the category of nonlinear functional

analysis for p-convex vector spaces (0 < p ≤ 1) with the combination of KKM theory as a powerful tool.

5. The Best Approximation and Applications to Birkhoff-Kellogg Alternative in p-Vector Spaces

The goal of this section is first to establish one general best approximation, which in turn is used as a tool to

derive the general principle for the existence of solutions for Birkhoff-Kellogg Problems. Here, we recall that since

the first Birkhoff-Kellogg theorem was introduced and proved by Birkhoff and Kellogg [10] in 1922 in discussing

the existence of solutions for the equation x = λF (x), where λ is a real parameter, and F is a general nonlinear

non-self mapping defined on an open convex subset U of a topological vector space E, now the general form of the
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Birkhoff-Kellogg problem is to find the so-called an invariant direction for the nonlinear set-valued mappings F ,

i.e., to find x0 ∈ U and λ > 0 such that λx0 ∈ F (x0).

We know that after Birkhoff and Kellogg theorem given by Birkhoff and Kellogg in 1920’s, the study on Birkhoff-

Kellogg problem has been received a lot of attention by scholars since then, for example, one of the fundamental

results in nonlinear functional analysis, called the Leray-Schauder alternative by Leray and Schauder [46] in 1934,

was established via topological degree. Thereafter, certain other types of Leray-Schauder alternatives were proved

using different techniques other than topological degree, see work given by Granas and Dugundji [34], Furi and Pera450

[31] in the Banach space setting and applications to the boundary value problems for ordinary differential equations,

and a general class of mappings for nonlinear alternative of Leray-Schauder type in normal topological spaces, and

also Birkhoff-Kellogg type theorems for general class mappings in TVS by Agarwal et al.[1], Agarwal and O’Regan

[2]-[3], Park [59]; in particular, recently by using the Leray-Schauder type coincidence theory to establish some

Birkhoff-Kellogg problem, Furi-Pera type results for a general class of mappings by O’Regan [54] and references

wherein.

In this section, based on the application of our best approximation first established below, the general principle

for the existence of solutions for Birkhoff-Kellogg problems and related nonlinear alternatives will be established,

which then also allows us to give general existence of Leray-Schaduer type and related fixed point theorems for

non-self mappings in general p-vector spaces for (0 < p ≤ 1). These new results given in this paper not only include

the corresponding results in the existing literature as special cases, but also expected to be useful tools for the study

of nonlinear problems arising from theory to practice.

We also note that the general nonlinear alternative related to the Leray-Schauder alternative under the framework

of p-vector spaces for (0 < p ≤ 1) in this section, would be useful tools for the study of nonlinear problems. In

addition, the corresponding results in the existing literature for Birkhoff-Kellogg problems and the Leray-Schauder

alternative have been studied comprehensively by Granas and Dugundji [34], Isac [38], Park [60]-[62], Carbone and

Conti [14], Chang and Yen [19], Chang et al.[20]-[21], Kim et al.[42], Shahzad [74]-[72], Singh [76]; and in particular,

many general forms recently given by O’Regan [53] and references wherein.

Let C be a subset of a p-vector space E and x ∈ E for 0 < p ≤ 1. Then the p-Inward set IpC(x) and p-Outward

set Op
C(x) are defined by

IpC(x) := {x+r(y−x) : y ∈ C, for any r ≥ 0 (1) if 0 ≤ r ≤ 1, with (1−r)p+rp = 1; or (2) if r ≥ 1, with ( 1r )
p+

(1− 1
r )

p = 1}; and

Op
C(x) := {x + r(y − x) : y ∈ C, for any r ≤ 0 (1) if 0 ≤ |r| ≤ 1, with (1 − |r|)p + |r|p = 1; or (2) if |r| ≥

1, with ( 1
|r| )

p + (1− 1
|r| )

p = 1}.

Obviously, when p = 1, the both Inward and Outward sets IpC(x), O
p
C(x) are reduced to the definition for the

Inward set IC(x) and the Outward set OC(x), respectively in topological vector spaces introduced by Halpern and

Bergman [36] and used for the study of non-self mappings related to nonlinear functional analysis in the literature.

In this paper, we will mainly focus on the study of the p-Inward set IpU (x) for the best approximation and related to

the boundary condition for the existence of the fixed points in p-vector spaces. By the special property of p-convex
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concept when p ∈ (0, 1) and p = 1, we have the following fact.

Lemma 5.1 Let C be a subset of a p-vector space E and x ∈ E, where for 0 < p ≤ 1. Then for both p-Inward and

Outward sets IpC(x) and Op
C(x) defined above, we have

(I) when p ∈ (0, 1), IpC(x) = [{x} ∪ C], and Op
C(x) = [{x} ∪ {2x} ∪ −C],

(II) when p = 1, in general [{x} ∪ C] ⊂ IpC(x), and [{x} ∪ {2x} ∪ −C] ⊂ Op
C(x).

Proof. First, when p ∈ (0, 1), by the definitions of IpC(x), the only real number r ≥ 0 satisfying the equation

(1 − r)p + rp = 1 for r ∈ [0, 1] is r = 0 or r = 1, and when r ≥ 1, the equation ( 1r )
p + (1 − 1

r )
p = 1 implies that

r = 1. The same reason for Op
C(x), it follows that r = 0 and r = −1.

Secondly when p = 1, all r ≥ 0, and all r ≤ 0 satisfy the requirement of definition for IpC(x) and Op
C(x),

respectively, thus the proof is compete. �

Now we have the following general existence best approximation result for non-self upper semi-continuous set-

valued mappings in p-vector spaces for (0 < p ≤ 1).

Theorem 5.1 (Best approximation for inward sets). Let U be an open p-convex subset of the p-vector spaces E

(0 ≤ p ≤ 1) the zero 0 ∈ U , and C a closed p-convex subset of E with also zero 0 ∈ C, and assume F : U∩C → 2C is a

compact and upper semi-continuous mapping with non-empty closed p-convex values. In addition, for each x ∈ ∂CU

with y ∈ F (x) (actually only requiring that for y ∈ F (x)∩(C�U)), P
1
p

U (y)−1 ≤ P
1
p

U (y−x) for 0 < p ≤ 1 (this is trivial

when p = 1). Then there exist x0 ∈ U∩X and y0 ∈ F (x0) such that PU (y0−x0) = dP (y0, U∩C) = dp(y0, I
p

U
(x0)∩C),

where PU is the Minkowski p-functional of U . More precisely, we have the following either (I) or (II) holding:

(I) F has a fixed point x0 ∈ U ∩C (i.e., 0 = PU (y0 − x0) = PU (y0 − x0) = dP (y0, U ∩C) = dp(y0, I
p

U
(x0) ∩C));

(II) there exists x0 ∈ ∂C(U) and y0 ∈ F (x0) with

PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, I
p

U
(x0) ∩ C) > 0.

Proof. As the mapping F is compact, there exists a compact subset C1 ⊂ C such that F (U ∩ C) ⊂ C1. Now let

C0 := Cp({0} ∪ C1), the closure of the p-convex hull of set {0} ∪ C1 in E. Then C0 is compact p-convex in E by

Proposition 2.4 (see also Proposition 6.7.2 and 6.7.3 of Jarchow [37]), and also C0 ⊂ C. By the fact that 0 ∈ U ∩C0

and we know that U ∩ C0 ̸= ∅. Now let r : E → U defined by

r(x) :=
x

max{1, (PU (x))
1
p }

for each x ∈ E, where PU is the Minkowski p-functional of U . Since 0 ∈ int(U) = U , it follows that r is continuous

by Lemma 2.2 and Since C0 is p-convex and 0 ∈ C0, we have that r(C0) ⊂ C0, thus r(U ∩ C0) ⊂ U ∩ C0. Let500

X0 := U ∩C0 and f be the restriction of r to X0 and let T (x) := F ◦f(x) for each x ∈ C, we have that T (X0) ⊂ X0.

By the fact that X0 is compact p-convex, and the mapping T : X0 → 2X0 is upper semi-continuous with non-empty

compact p-convex values, now by Theorem 4.4, the mapping T = F ◦ f has a fixed point z0 ∈ X0 = U ∩C0 ⊂ U ∩C

such that z0 ∈ T (z0) = F ◦ f(z0). We define x0 := f(z0) ∈ X0, then x0 ∈ (f ◦ F )(x0) and thus there exists

y0 ∈ F (x0) such that x0 = f(y0).
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Now we have the two cases: (i) y0 ∈ U ∩ C0 ⊂ U ∩ C; or (ii) y0 ∈ C�U .

First, if y0 ∈ U ∩ C, then x0 = f(y0) = y0 by the definition of f is the restriction of r on X = U ∩ C, and then

we have the following best approximation of Fan’s type (as x0 ∈ U ∩ C ⊂ Ip
U
(x0) ∩ C))

PU (y0 − x0) = 0 = dP (y0, U ∩ C) = dp(y0, IU (x0) ∩ C),

which means that x0 = y0 ∈ F (x0) which is a fixed point of the mapping F defined on U ∩ C.

Second, if y0 ∈ C�U , then x0 = f(y0) =
y0

(PU (y0))
1
p
, which means that PU (x0) = PU (

y0

(PU (y0))
1
p
) = PU (y0)

PU (y0)
= 1,

thus we have that x0 ∈ ∂C(U) by Lemma 2.2. Now for any x ∈ U ∩ C, it follows that PU (x) ≤ 1 and note that

PU (y0 − x0) = PU (y0 −
y0

(PU (y0))
1
p

) =
((PU (y0))

1
p − 1)p

PU (y0)
PU (y0) = ((PU (y0))

1
p − 1)p.

On the other hand, for 0 < p ≤ 1, by the assumption we have ((PU (y0))
1
p − 1)

1
p ≤ PU (y0 − x). By the following

inequality

PU (y0)− 1 ≤ PU (y0)− PU (x) = PU ((y0 − x) + x)− PU (x) ≤ PU (y0 − x),

we show that PU (x0 − y0) ≤ PU (y0 − x) for any x ∈ U ∩ C. Thus when y0 /∈ U , we have the following best

approximation of Fan’s type:

PU (y0 − x0) = inf{PU (y0 − z) : z ∈ U ∩ C} = dP (y0, U ∩ C) > 0,

and we also have that when y0 /∈ U , it has PU (y0 − x0) = ((PU (y0))
1
p − 1)p > 0 for 0 < p ≤ 1.

Now we go to show indeed the following best approximation of Fan’s type is also true:

PU (y0 − x0) = inf{PU (y0 − z) : z ∈ U ∩ C} = dP (y0, U ∩ C) = dP (y0, I
p

U
(x0) ∩ C) = dP (y0, I

p

U
(x0) ∩ C).

By the fact that U ∩C) ⊂ Ip
U
(x0) ∩C, let z ∈ Ip

U
(x0) ∩C�(U ∩C), we first claim that PU (y0 − x0) ≤ PU (y0 − z).

If not, we have PU (y0 − x0) > PU (y0 − z). As z ∈ Ip
U
(x0) ∩ C�(U ∩ C), there exists y ∈ U and a non-negative

number c (actually c ≥ 1 as shown soon below) with z = x0 + c(y − x0). Since z ∈ C, but z /∈ U ∩ C, it implies

that z /∈ U . By the fact that x0 ∈ U and y ∈ U , we must have the constant c ≥ 1; otherwise, it implies that

z(= (1− c)x0+ cy) ∈ U , this is impossible as by our assumption, z /∈ U . Therefore we know that c ≥ 1, this implies

that y = 1
c z + (1 − 1

c )x0 ∈ C (as both x0 ∈ C and z ∈ C). On the other hand, as z ∈ Ip
U
(x0) ∩ C�(U ∩ C), and

c ≥ 1 with ( 1c )
p + (1− 1

c )
p = 1, it then follows that

PU (y0 − y) = PU [
1

c
(y0 − z) + (1− 1

c
)(y0 − x0)] ≤ [(

1

c
)pPU (y0 − z) + (1− 1

c
)pPU (y0 − x0)] < PU (y0 − x0),

which contradicts that PU (y0 − x0) = dP (y0, U ∩C) as shown above since y ∈ U ∩C, we must have PU (y0 − x0) ≤

PU (y0− y)! This helps us to complete the claim: PU (y0−x0) ≤ PU (y0− z) for any z ∈ Ip
U
(x0)∩C�(U ∩C), which

means that the following best approximation of Fan’s type holding:

0 < dP (y0, U ∩ C) = PU (y0 − x0) = dp(y0, I
p

U
(x0) ∩ C).
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Now by the continuity of PU , it follows that the following best approximation of Fan type is also true:

0 < PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, I
p

U
(x0) ∩ C) = dp(y0, I

p

U
(x0) ∩ C).

The proof is complete. �

Remark 5.1. Based on the Proof of Theorem 5.1, we have that: 1) For the condition “x ∈ ∂CU with y ∈ F (x),

P
1
p

U (y) − 1 ≤ P
1
p

U (y − x) for 0 < p ≤ 1”, indeed we only need that for “x ∈ ∂CU with y ∈ F (x) ∩ (C�U)),

P
1
p

U (y)− 1 ≤ P
1
p

U (y − x) for 0 < p ≤ 1”; and 2) when p=1, we have the similar best approximation result based for

TVS based on outward sets below (see Theorem 3 of Park [58] and related discussion by references wherein).

For the p-vector space with p = 1 being a topological vector space E, we have the following best approximation

for the outward set OU (x0) based on the point {x0} respect the convex subset U in E.

Theorem 5.2 (Best approximation for outward sets). Let U be an open convex subset of the topological

vector spaces E (i.e., the p-vector space with p = 1) the zero 0 ∈ U , and C a closed convex subset of E with also zero

0 ∈ C, and assume F : U ∩C → 2C is a compact and upper semi-continuous mapping with non-empty closed convex

values. Then there exist x0 ∈ U ∩X and y0 ∈ F (x0) such that PU (y0 − x0) = dP (y0, U ∩C) = dp(y0, OU (x0) ∩C),

where PU is the Minkowski p-functional of U . More precisely, we have the following either (I) or (II) holding:

(I) F has a fixed point x0 ∈ U ∩C (i.e., 0 = PU (y0 − x0) = PU (y0 − x0) = dP (y0, U ∩C) = dp(y0, OU (x0)∩C));

(II) there exists x0 ∈ ∂C(U) and y0 ∈ F (x0) with

PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, OU (x0) ∩ C) = dp(y0, OU (x0) ∩ C) > 0.

Proof. We define a new mapping F1 : U ∩ C → 2C by F1(x) := {2x} − F (x) for each x ∈ U ∩ C, then F1

is also compact and upper semi-continuous mapping with non-empty closed convex values, and F1 satisfies all

hypothesis of Theorem 5.1 wit p = 1. By Theorem 5.1, there exists x0 ∈ U ∩ X and y1 ∈ F1(x0) such that

PU (y1 − x0) = dP (y1, U ∩ C) = dp(y1, IU (x0) ∩ C). More precisely, we have the following either (I) or (II) holding:

(I) F1 has a fixed point x0 ∈ U ∩ C (so 0 = PU (y1 − x0) = PU (y1 − x0) = dP (y1, U ∩ C) = dp(y1, IU (x0) ∩ C));

(II) there exists x0 ∈ ∂C(U) and y1 ∈ F1(x0) with

PU (y1 − x0) = dP (y1, U ∩ C) = dp(y1, OU (x0) ∩ C) > 0.

Now for any x ∈ OU (x0), there exist r < 0, u ∈ U such that x = x0 + r(u − x0). Let x1 = 2x0 − x, then

x1 = 2x0 − x0 − r(u − x0) = x0 + (−r)(u − x0) ∈ IU (x0). Let y1 = 2x0 − y0, for some y0 ∈ F (x0). As we have

PU (y1 − x0) = dP (y1, U ∩ C) = dp(y1, IU (x0) ∩ C), it follows that PU (y1 − x0) ≤ PU (y1 − x1), which implies that

PU (x0 − y0) = PU (y1 − x0) ≤ PU (y1 − x1) = PU (2x0 − y0 − (2x0 − x)) = PU (y0 − x)

for all x ∈ OU (x0). Thus we have PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, OU (x0) ∩ C) and by the continuity of PU ,

it follows that

PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, OU (x0) ∩ C) > 0.
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This completes the proof. �
Now by the application of Theorem 5.1 and Theorem 5.2, the Remark 5.1 and the argument used in Theorem 5.1,

we have the the following general principle for the existence of solutions for Birkhoff-Kellogg Problems in p-Vector

Spaces, where (0 < p ≤ 1).

Theorem 5.3 (The Principle of Birkhoff-Kellogg alternative). Let U be an open p-convex subset of the

p-vector spaces E (0 ≤ p ≤ 1) with the zero 0 ∈ U , and C a closed p-convex subset of E with also zero 0 ∈ C.

Assume the F : U ∩ C → 2C is a compact and upper semi-continuous mapping with non-empty closed p-convex

values, then it has at least one of the following two properties:

(I) F has a fixed point x0 ∈ U ∩ C such that x0 ∈ F (x0),

(II) there exists x0 ∈ ∂C(U) and y0 ∈ F (x0) and λ ∈ (0, 1) such that x0 = λy0 ∈ λF (x0). In addition, if

each x ∈ ∂CU with y ∈ F (x), P
1
p

U (y) − 1 ≤ P
1
p

U (y − x) (this is trivial when p = 1; and actually only requiring for

y ∈ F (x)∩ (C�U)), P
1
p

U (y)− 1 ≤ P
1
p

U (y−x)), the best approximation between x0 and y0 is given by PU (y0 −x0) =

dP (y0, U ∩ C) = dp(y0, I
p

U
(x0) ∩ C) > 0.

Proof. If (I) is not the case, then (II) is proved by the Remark 5.1 and by following the proof in Theorem

5.1 for the case (ii): y0 ∈ C�U , with y0 = f(x0) ∈ f(x0). Indeed, As y0 /∈ U , it follows that PU (y0) > 1, and

x0 = f(y0) = y0
1

(PU (y0))
1
p
. Now let λ = 1

(PU (y0))
1
p
, we have λ < 1 and x0 = λy0 with y0 ∈ F (x0). Finally, the

additionally assumption in (II) allows us to have the best approximation between x0 and y0 obtained by following

the proof of Theorem 5.1 as PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, I
p

U
(x0) ∩ C) > 0. This completes the proof. �

As an application of Theorem 5.2 for the non-self set-valued mappings discussed in Theorem 5.3 with outward

set condition, we have the following general principle of Birkhoff-Kellogg alternative in topological vector spaces

(TVS).

Theorem 5.4 (The Principle of Birkhoff-Kellogg alternative in TVS). Let U be an open convex subset

of the topological vector space E (i.e., p = 1) with the zero 0 ∈ U , and C a closed convex subset of E with also550

zero 0 ∈ C. Assume the F : U ∩ C → 2C is a compact and upper semi-continuous mapping with non-empty closed

convex values, then it has at least one of the following two properties:

(I) F has a fixed point x0 ∈ U ∩ C such that x0 ∈ F (x0),

(II) there exists x0 ∈ ∂C(U) and y0 ∈ F (x0) and λ ∈ (0, 1) such that x0 = λy0. In addition, the best

approximation between x0 and y0 is given by PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, IU (x0) ∩ C) > 0.

On the other hand, by the Proof of Theorems 5.1 and 5.2, we note that for case (II) of Theorem 5.2, the

assumption “each x ∈ ∂CU with y ∈ F (x), P
1
p

U (y)−1 ≤ P
1
p

U (y−x)” is only used to guarantee the best approximation

“PU (y0 − x0) = dP (y0, U ∩C) = dp(y0, I
p

U
(x0) ∩C) > 0”, thus we have the following Leray-Schauder alternative in

p-vector spaces, which, of course, includes the corresponding results in TVS as special cases.

Theorem 5.5 (Leray-Schauder Nonlinear Alternative). Let C a closed p-convex subset of p-seminorm vector

space E with 0 ≤ p ≤ 1 and the zero 0 ∈ C. Assume the F : C → 2C is a compact and upper semi-continuous
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mapping with non-empty closed p-convex values, and let ε(F ) := {x ∈ C : x ∈ λF (x), for some 0 < λ < 1}. Then

either F has a fixed point in C or the set ε(F ) is unbounded.

Proof. By assuming the case (I) is not true, i.e., F has no fixed point, then we claim that the set ε(F ) is unbounded.

Otherwise, assume the set ε(F ) is bounded. and assume P is the continuous p-seminorm for E, then there exists

r > 0 such that the set B(0, r) := {x ∈ E : P (x) < r} , which contains the set ε(F ), i.e., ε(F ) ⊂ B(0, r), which

means for any x ∈ ε(F ), P (x) < r. Then B(0.r) is an open p-convex subset of E and the zero 0 ∈ B(0, r) by Lemma

2.2 and Remark 2.4. Now let U := B(0, r) in Theorem 5.3, it follows that for the mapping F : B(0, r) ∩ C → 2C

satisfies all general conditions of Theorem 5.3, and we have that any x0 ∈ ∂CB(0, r), no any λ ∈ (0, 1) such that

x0 = λy0, where y0 ∈ F (x0). Indeed, for any x ∈ ε(F ), it follows that P (x) < r as ε(F ) ⊂ B(0, r), but for any

x0 ∈ ∂CB(0, r), we have P (x0) = r, thus the conclusion (II) of Theorem 5.3 does not have hold. By Theorem

5.3 again, F must have a fixed point, but this contradicts with our assumption that F is fixed point free. This

completes the proof. �

Now assume a given p-vector space E equipped with the P -seminorm (by assuming it is continuous at zero)

for 0 < p ≤ 1, then we know that P : E → R+, P−1(0) = 0, P (λx) = |λ|pP (x) for any x ∈ E and λ ∈ R. Then

we have the following useful result for fixed points due to Rothe and Altman types in p-vector spaces, which plays

important roles for optimization problem, variational inequality, complementarity problems.

Corollary 5.1. Let U be an open p-convex subset of p-vector space E and zero 0 ∈ U , plus C is a closed p-convex

subset of E with U ⊂ C, where 0 < p ≤ 1. Assume that F : U → C is a compact single-valued mapping with

non-empty closed p-convex values. If one of the following is satisfied,

(1) (Rothe type condition): PU (F (x)) ≤ PU (x) for all x ∈ ∂U ,

(2) (Petryshyn type condition): PU (x) ≤ PU (F (x)− x) for all x ∈ ∂U ,

(3) (Altman type condition): |PU (F (x))|
2
p ≤ [PU (F (x)− x)]

2
p + [PU (x)]

2
p for all x ∈ ∂U ,

then F as a fixed point.

Proof. By the conditions (1), (2) and (3), it follows that the conclusion of (II) in Theorem 5.3 “there exist

x0 ∈ ∂C(U) and λ ∈ (0, 1) such that x0 = λF (x0)” does not hold, thus by the alternative of Theorem 5.3, F has a

fixed point. This completes the proof. �.

By the fact that when p = 1, each p-vector space is a topological vector space, and thus we have the follow-

ing classical Fan’s best approximation result as a powerful tool for the study in the optimization, mathematical

programming, games theory, and mathematical economics, and others related topics in applied mathematics.

Corollary 5.2 (Fan’s best approximation). Let U be an open convex subset of a topological space E with the

zero 0 ∈ U , and C a closed convex subset of E with also zero 0 ∈ C, and assume F : U ∩ C → 2C is a compact

and upper semi-continuous mapping with non-empty closed convex values, and assume PU being the Minkowski

p-functional of U in E. Then there exist x0 ∈ U ∩ X and y0 ∈ T (x0) such that PU (y0 − x0) = dP (y0, U ∩ C) =

dp(y0, IU (x0) ∩ C). More precisely, we have the following either (I) or (II) holding, where WU (x0) is either inward

set IU (x0), or the outward set OU (x0):
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(I) F has a fixed point x0 ∈ U∩C (so that 0 = PU (y0−x0) = PU (y0−x0) = dP (y0, U∩C) = dp(y0,WU (x0)∩C));

(II) there exists x0 ∈ ∂C(U) and y0 ∈ F (x0) with

PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0,WU (x0) ∩ C) = PU (y0)− 1 > 0.

Proof. When p = 1, then it automatically satisfies that the inequality: P
1
p

U (y)−1 ≤ P
1
p

U (y−x), and indeed we have

that for x0 ∈ ∂C(U), with y0 ∈ F (x0), we have PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0,WU (x0) ∩ C) = PU (y0) − 1.

The conclusions are given by Theorem 5.1 and Theorem 5.2. The proof is complete. �600

We like to point out the similar results on Rothe and Leray-Schauder alternative have been developed by Isac

[38], Park [57], Potter [65], Shahzad [72]-[74], Xiao and Zhu [86], and related references wherein as tools of nonlinear

analysis in topological vector spaces. As mentioned above, when p = 1 and take F as a continuous mapping, then

we obtain the version of Lerary-Schauder in TVS and this we omit it statement in details.

6. The Solutions of Birkhoff-Kellogg Problems and Principle of Leray-Schauder Alternatives in p-

Vector Spaces

As applications of results in Section 5 above, we new establish general results for the existence of solutions for

Birkhoff-Kellogg problem, and the principle of Leray-Schauder alternatives in p-vector spaces for 0 < p ≤ 1.

Theorem 6.1 (Birkhoff-Kellogg alternative in p-vector spaces). Let U be an open p-convex subset of the

p-vector spaces E (where, 0 ≤ p ≤ 1) with the zero 0 ∈ U , and C a closed p-convex subset of E with also zero 0 ∈ C,

and assume F : U ∩ C → 2C is a compact and upper semi-continuous mapping with non-empty closed p-convex

values. In addition, for each x ∈ ∂C(U) with y ∈ F (x), P
1
p

U (y)− 1 ≤ P
1
p

U (y − x) for 0 < p ≤ 1 (this is trivial when

p = 1), where PU is the Minkowski p-functional of U . Then we have that either (I) or (II) holding below:

(I) there exists x0 ∈ U ∩ C such that x0 ∈ F (x0),

(II) there exists x0 ∈ ∂C(U) with y0 ∈ F (x0) and λ > 1 such that λx0 = y0 ∈ F (x0) (i.e., F (x0) ∩ {λx0 : λ >

1} ≠ ∅).

Proof. By following the argument and symbols used in the proof of Theorem 5.1, we have that either

(1) F has a fixed point x0 ∈ U ∩ C; or

(2) there exists x0 ∈ ∂C(U) and y0 ∈ F (x0) with x0 = f(y0) such that

PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, IU (x0) ∩ C) = PU (y0)− 1 > 0,

where ∂C(U) denotes the boundary of U relative to C in E, and f is the restriction of the continuous retraction r

respect to the set U in E.

If F has no fixed point, then above (2) holds and x0 /∈ F (x0). As given by the proof of Theorem 5.1, we have

that y0 ∈ F (x0) and y0 /∈ U , thus PU (y0) > 1 and x0 = f(y0) =
y0

(PU (y0))
1
p
, which means y0 = (PU (y0))

1
px0. Let

λ = (PU (y0))
1
p , then λ > 1 and we have λx0 = yo ∈ F (x0). This completes the proof. �.
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Theorem 6.2 (Birkhoff-Kellogg alternative in TVS). Let U be an open convex subset of a topological space

E with the zero 0 ∈ U , and C a closed convex subset of E with also zero 0 ∈ C, and assume F : U ∩ C → 2C is

a compact and upper semi-continuous mapping with non-empty closed convex values. Then we have the following

either (I) or (II) holding, where WU (x0) is either inward set IU (x0), or the outward set OU (x0):

(I) there exists x0 ∈ U ∩ C such that x0 ∈ F (x0),

(II) there exists x0 ∈ ∂C(U) with y0 ∈ F (x0) and λ > 1 such that λx0 = y0 ∈ F (x0) (i.e., F (x0) ∩ {λx0 : λ >

1} ≠ ∅).

Proof. When p = 1, then it automatically satisfies that the inequality: P
1
p

U (y)−1 ≤ P
1
p

U (y−x), and indeed we have

that for x0 ∈ ∂C(U), with y0 ∈ F (x0), we have PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0,WU (x0) ∩ C) = PU (y0) − 1.

The conclusions are given by Corollary 5.2. The proof is complete. �

Indeed we have the following fixed points for non-self mappings in p-vector spaces for 0 < p ≤ 1 under different

boundary conditions.

Theorem 6.3 (Fixed Points of non-self mappings). Let U be an open p-convex subset of the p-vector spaces

E (where, 0 ≤ p ≤ 1) with the zero 0 ∈ U , and C a closed p-convex subset of E with also zero 0 ∈ C, and assume

F : U ∩ C → 2C is a compact and upper semi-continuous mapping with non-empty closed p-convex values. In

addition, for each x ∈ ∂C(U) with y ∈ F (x), P
1
p

U (y)−1 ≤ P
1
p

U (y−x) for 0 < p ≤ 1 (this is trivial when p = 1), where

PU is the Minkowski p-functional of U . If F satisfies any one of the following conditions for any x ∈ ∂C(U)�F (x)

(i) For each y ∈ F (x), PU (y − z) < PU (y − x) for some z ∈ IU (x) ∩ C;

(ii) For each y ∈ F (x), there exists λ with |λ| < 1 such that λx+ (1− λ)y ∈ IU (x) ∩ C;

(iii) F (x) ⊂ IU (x) ∩ C;

(iv) F (x) ∩ {λx : λ > 1} = ∅;

(v) F (∂U)) ⊂ U ∩ C;

(vi) For each y ∈ F (x), PU (y − x) ̸= ((PU (y))
1
p − 1)p;

then F must has a fixed point.

Proof. By following the argument and symbols used in the proof of Theorem 5.1, we have that either

(1) F has a fixed point x0 ∈ U ∩ C; or

(2) there exists x0 ∈ ∂C(U) and y0 ∈ F (x0) with x0 = f(y0) such that

PU (y0 − x0) = dP (y0, U ∩ C) = dp(y0, IU (x0) ∩ C) = PU (y0)− 1 > 0,

where ∂C(U) denotes the boundary of U relative to C in E, and f is the restriction of the continuous retraction r650

respect to the set U in E.

First, suppose that F satisfies the condition (i), if F has no fixed point, then above (2) holds and x0 /∈ F (x0).

Then by the condition (i), it follows that PU (y0 − z) < PU (y0 − x0) for some z ∈ IU (x) ∩ C, this contradicts with

the best approximation equations given by (2) above, thus F mush have a fixed pint.

Second, suppose that F satisfies the condition (ii), if F has no fixed point, then above (2) holds and x0 /∈ F (x0).
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Then by the condition (ii), there exists λ > 1 such that λx0 + (1− λ)y0 ∈ IU (x) ∩ C. It follows that

PU (y0 − x0) ≤ PU (y0 − (λx0 + (1− λy0)) = PU (λ(y0 − x0)) = |λ|pPU (y0 − x0) < PU (y0 − x0)

this is impossible and thus F must have a fixed point in U ∩ C.

Third, suppose that F satisfies the condition (iii), i.e., F (x) ⊂ IU (x)∩C;, then the (2), we have that PU (y0−x0)

and thus x0 = y0 ∈ F (x0), which means F has a fixed point.

Forth, suppose that F satisfies the condition (iv), if if F has no fixed point, then above (2) holds and x0 /∈ F (x0).

As given by the proof of Theorem 5.1, we have that y0 /∈ U , thus PU (y0) > 1 and x0 = f(y0) =
y0

(PU (y0))
1
p
, which

means y0 = (PU (y0))
1
px0, where (PU (y0))

1
p > 1, this contradicts with the assumption (iv), thus F must have a

fixed point. in U ∩ C.

Fifth, suppose that F satisfies the condition (v), then x0 /∈ F (x0). As x0 ∈ ∂CU , now by the condition (v)

F (∂U) ⊂ U ∩ C, it follows that for any y0 ∈ F (x0), we have y0 ∈ U ∩ C, thus y /∈ U� ∩ C, which implies that

0 < PU (y0 − x0) = dP (y0, U ∩C) = 0, this is impossible, thus F must have a fixed point. Here, like pointed out by

Remark 5.1, we know that based on the condition (v),F has a fixed point by applying F (∂U) ⊂ U ∩ C is enought,

not needing the general hypothesis: “for each x ∈ ∂C(U) with y ∈ F (x), P
1
p

U (y)− 1 ≤ P
1
p

U (y − x) for 0 < p ≤ 1”.

Finally, suppose that F satisfies the condition (vi), if F has no fixed point, then above (2) holds and x0 /∈ F (x0).

Then the condition (v) implies that PU (y0 − x0) ̸= ((PU (y))
1
p − 1)p, but the our proof in Theorem shows that

PU (y0 − x0) = ((PU (y))
1
p − 1)p, this is impossible, thus F must have a fixed point. Then the proof is complete. �

Now by taking the set C in Theorem 6.1 as the whole p-vector space E itself, we have the following general

results for non-self upper semi-continuous set-valued mappings under the application of Theorem 6.1 above by

including Rothe, Petryshyn, Altman and Leray-Schauder types’ fixed points as special cases.

Taking p = 1 and C = E in Theorem 6.3, we have the following fixed points for non-self upper semi-continuous

set-valued mappings associated with inward or outward sets in topological vector spaces (TVS) as follows.

Theorem 6.4 (Fixed Points of non-self mappings with boundary conditions). Let U be an open convex

subset of the topological vector spaces E with the zero 0 ∈ U , and assume F : U → 2E is a compact and upper

semi-continuous mapping with non-empty closed convex values. If F satisfies any one of the following conditions

for any x ∈ ∂(U)�F (x)

(i) For each y ∈ F (x), PU (y − z) < PU (y − x) for some z ∈ IU (x) (or z ∈ OU (x))

(ii) For each y ∈ F (x), there exists λ with |λ| < 1 such that λx+ (1− λ)y ∈ IU (x) (or, OU (x)).

(iii) F (x) ⊂ IU (x) (or OU (x))

(iv) F (x) ∩ {λx : λ > 1} = ∅;

(v) F (∂(U)) ⊂ U ;

(vi) For each y ∈ F (x), PU (y − x) ̸= PU (y)− 1;

then F must has a fixed point.

In what follow, based on the best approximation theorem in p-vector space, we will also give fixed point theorems
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for non-self mappings, which would play important roles in nonlinear analysis in p-vector space as shown below to

be used to give the principles of Rothe type and Leray-Schauder alternatives in next section.

First, as discussed by Remark 5.1, the proof of Theorem 5.2, with the strongly boundary condition “F (∂(U)) ⊂

U ∩ C” only, we can prove that F has a fixed point, thus we have the following fixed point theorem of Rothe type

in p-vector spaces.

Theorem 6.5 (Rothe Type). Let U be an open p-convex subset of the p-vector spaces E (where, 0 ≤ p ≤ 1)

with the zero 0 ∈ U . Assume F : U → 2E is a compact and upper semi-continuous mapping with non-empty closed

p-convex values with that F (∂(U)) ⊂ U , then F must has a fixed point.

Now as applications of Theorem 6.5, we give the following Leray-Schauder Alternative in p-vector spaces for

non-self set-valued mappings associated with the boundary condition which often appear in the applications.

Theorem 6.6 (The Leray-Schauder Alternative in p-Vector Spaces). Let E be a p-convex vector space,

where 0 < p ≤ 1, B ⊂ E a closed p-convex such that 0 ∈ intB. Let F : [0, 1] × B → E be upper semi-continuous

set-valued with non-empty closed p-convex values, and the set F ([0, 1] × B) be relatively compact in E. If the

following assumptions are satisfied:700

(1) x /∈ F (t, x) for all x /∈ ∂B and t ∈ [0, 1],

(2) F ({0} × ∂B) ⊂ B,

then there is an element x∗ ∈ B such that x∗ ∈ F (1, x∗).

Proof. For any n ∈ N , we consider the mapping

Fn(x) =


F (

1− PB(x)

ϵn
,

x

PB(x)
), if 1− ϵ ≤ PB(x) ≤ 1,

F (1,
X

1− ϵn
), if PB(x) < 1− ϵn,

(3)

where PB is the Minkowski p-functional of B and {ϵn}n∈N is a sequence of real numbers such that limn→∞ ϵn = 0

and 0 < ϵn < 1
2 for any n ∈ N . We observe that for each n ∈ N , the mapping Fn is upper semi-continuous with

non-empty closed p-convex values on B and Fn(B) is relatively compact in E. From assumption (2), we have that

fn(∂B) ⊂ B, and the assumptions of Theorem 6.5 (see also Theorem 4.4) are satisfied, then for each n ∈ N , there

exists an element un ∈ B such that un ∈ Fn(un).

We first prove the following statement: “It is impossible to have an infinite number of the elements un satisfy

the following inequality: 1− ϵn ≤ PB(un) ≤ 1. ”

If not, we assume to have an infinite number of the elements un satisfy the following inequality:

1− ϵn ≤ PB(un) ≤ 1.

As Fn(B) is relatively compact and by the definition of mappings Fn, we have that {un}n∈N is contained in a

compact set in E. Without loss of the generality (indeed, each compact set is also countably compact), we define

the sequence {tn}n∈N by tn := 1−PB(un)
ϵ for each n ∈ N . Then we have that {tn}n∈N ⊂ [0, 1] and we may assume
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that limn→∞ tn = t ∈ [0, 1]. The corresponding subsequence of {un}n∈N is denoted again by {un}n∈N and it also

satisfies the inequality: 1− ϵn ≤ PB(un) ≤ 1, which implies that limn→∞ PB(un) = 1.

Now let u∗ be an accumulation point of {un}n∈N , thus have limn→∞(tn,
un

PB(un)
, un) = (t, u∗, u∗). By the fact

that F is compact, we have assume that un ∈ F (tn,
un

PB(un)
) for each n ∈ N , it follows that u∗ ∈ F (t, u∗), this

contradicts with the assumption (1) as we have limn→∞ PB(un) = 1 (which means that u∗ ∈ ∂B, this is impossible).

Thus it is impossible to have that “to have an infinite number of elements un satisfy the inequality: 1 − ϵn ≤

PB(un) ≤ 1” , which means that there is only a finite number of elements of sequence {un}n∈N satisfying the

inequality: 1− ϵn ≤ PB(un) ≤ 1. Now, without loss of the generality, for n ∈ N , we have the following inequality:

PB(un) < 1− ϵn.

By the fact that limn→(1 − ϵn) = 1, un ∈ F (1, un

1−ϵ ) for all n ∈ N and assume that limn→ un = u∗, then the

upper semi-continuity of F with non-empty closed values implies that the graph of F is closed, and by the fact

un ∈ F (1, un

1−ϵ ), it implies that u8 ∈ F (1, u∗). This completes the proof. �

As a special case of Theorem 6.6, we have the following principle for the implicit form of Leray-Schauder type

alternative for set-valued mappings in p-vector spaces for 0 < p ≤ 1.

Corollary 6.1 (The Implicit Leray-Schauder Alternative). Let E be a p-convex vector space, where 0 < p ≤

1, B ⊂ E a closed p-convex such that 0 ∈ intB. Let F : [0, 1]×B → E be continuous with non-empty values, and

the set F ([0, 1]×B) be relatively compact in E. If the following assumptions are satisfied:

(1) F ({0} × ∂B) ⊂ B,

(2) x /∈ F (0, x) for all x ∈ ∂B,

then at least one of the following properties is satisfied:

(i) there exists x∗ ∈ B such that x∗ ∈ F (1, x∗); or

(ii) there exists (λ∗, x∗) ∈ (0, 1)× ∂B such that x∗ ∈ F (λ∗, x∗).

Proof. The result is an immediate consequence of Theorem 6.6, this completes the proof. �

We like to point out the similar results on Rothe and Leray-Schauder alternative have been developed by Isac [38],

Park [57], Potter [65], Shahzad [72]-[74], and related references wherein as tools of nonlinear analysis in topological

vector spaces.

When p = 1 and take F as a continuous mapping, then we obtain the version of Lerary-Schauder in TVS and

this we omit it statement in details.

Before closing the discussion of this paper, we like to point out that the best approximation, fixed point theorems

and the general principle of Leray-Schauder alternative for non-self mappings established in this paper would play

important roles for the nonlinear analysis under the framework of p-vector spaces, as did before for nonlinear analysis

for topological vector spaces.

As the goal of this paper is develop a number of new analysis tools in nature in the category of nonlinear analysis

under the general framework of p-vector spaces for (0 < p ≤ 1), and they are expected to become useful tools for the

study on optimization, nonlinear programming, variational inequality, complementarity, game theory, mathematical
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economics, and related other social science area. In particular, we first establish one best approximation, acting as

a tool to establish the principle of nonlinear alternative, which then allows us to give general principle of nonlinear

alternative under the general framework of p-vector spaces for (0 < p ≤ 1). The results given in this paper on the

principle of nonlinear alterative and Leray-Schauder type not only include the corresponding results in the existing

literature as special cases, but also would become very useful new tools for many new problems from both social

science, engineering, applied mathematics and related areas.750

Finally, like what mentioned in the beginning of this paper, we do expect that nonlinear results and principles of

the best approximation theorem established in this paper would play a very important role for the nonlinear analysis

under the general framework of p-vector spaces for (0 < p ≤ 1), as shown by those results give in Section 5 and

Section 6 above for the fixed point theorems of non-self mappings, principle of nonlinear alternative, Rothe type,

Leray-Schauder alternative which do not include corresponding results in the existing literature as special cases,

but also would be important tools for the study of optimization, nonlinear programming, variational inequality,

complementarity, game theory, mathematical economics and related topics and area forthcoming.
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