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Abstract: Antibodies constitute a major component of serum on protein mass basis. We also know
that the structural diversity of these antibodies exceeds that of all other proteins in the body and
they react with an immense number of molecular targets. What we still cannot quantitatively de-
scribe is, how antibody abundance is related to affinity, specificity and cross reactivity. This igno-
rance has important practical consequences: we also do not have proper biochemical units for char-
acterizing polyclonal serum antibody binding. The solution requires both a theoretical foundation,
a physical model of the system, and technology for the experimental confirmation of theory. Here
we argue that the quantitative characterization of interactions between serum antibodies and their
targets requires systems-level physical chemistry approach and generates results that should help
create maps of antibody binding landscape.
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1. Introduction

Our immune system is responsible for more than protecting us from pathogens. It
also regulates the removal of our own molecules and cells, once these are losing function
due to ageing, attrition, infection. It maintains a healthy balance with the myriad of mi-
crobes and viruses present in our bodies[1]. To carry out these functions, the system uti-
lizes an intricate regulatory mechanism that tunes its potential for destruction over a very
wide range[2][3]. The humoral adaptive immune system consists of cells (B cells) and sol-
uble molecules (antibodies) and has the remarkable ability to generate an immensely di-
verse repertoire of its element by adjusting, amongst others, one critical factor of molecu-
lar interactions: affinity[4,5]. Together with albumin and other macromolecules antibodies
(AD) create a molecularly crowded environment in blood, where molecules are in constant
interaction with each other. Because of the huge structural diversity of antibody binding
sites these interactions in the blood and with all molecules and cells contacted by blood,
the strength of binding interactions also spans a huge range. In this article we expand a
conceptual framework, based on physics and B-cell differentiation, for the distribution
and organization of antibody interactions and argue that a recently developed quantita-
tive serology technology is suitable for characterizing the proposed model.

2. Immunological and Physical Rules of the System: B Cells as Sensors and Effectors

Antibodies are present in three main forms in blood: as part of a receptor complex,
the B-cell antigen receptor (BCR) or membrane immunoglobulin (mlg), with cellular sig-
naling capacity[6-8]; in secreted, freely circulating form (this is what we usually refer to
as serum antibodies)[9][10], and in receptor-bound form, attached to the immunoglobulin
Fc receptors of cells[11-13]. The last form is responsible for effector functions and is not
dealt with in this article, but is also important in quantitative modeling of antibody ho-
meostasis.



Based on the form of antibody they express there are three categories of B cells: 1)
resting naive B2 lymphocytes and memory B cells (MBC) display BCR but do not secrete
Abs; 2) activated Bl cells, pre-plasmablasts, lymphoblasts express both surface and se-
creted Ab; 3) plasma cells, such as short-lived plasma cells (SLPC) and long-lived plasma
cells (LLPC) only secrete antibodies. The second and third group together is also called
antibody secreting cells (ASC). In accord with these categories, these cell types function
as antigen (Ag) sensors, as both sensors and effectors and as effectors only (Figure 1). A
feedback mechanism based on antigen concentration and antibody engagement operates
to generate sensors and effectors against all potential targets[8]. In short, the extent of an-
tigen binding to BCR determines cell survival via signals delivered through the BCR. Too
much or too little BCR engagement leads to cell death, while the proper extent of BCR
engagement initiates cell activation or cell survival. Activated B cells become lympho-
blasts, with the ability to secrete antibody and yet depend on BCR signals for survival.
Terminally differentiated antigen secreting cells, plasma cells, do not depend on BCR sig-
nals but produce secreted antibodies, which in turn reduce the concentration of target
antigen. As antigen is cleared the immune response retracts, short-lived effector cells
(SLPC) die and new steady state equilibrium is established. Affinity maturation of anti-
bodies changes the concentration of antigen required for a given extent of antibody en-
gagement, therefore results in memory cells capable of more sensitive detection (sensor
MBC) or more effective removal (LLPC) of antigen. The new equilibrium allows MBC
with increased sensitivity to survive, backing up the front line of secreted antibodies. Cy-
cles of these events shape the lymphocyte repertoire and the theoretical space of all anti-
body interactions.
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Figure 1. Categorization of antibodies based on sensor and effector function. The two functional
types of antibodies, two corresponding cell types and the mixed type are shown. BCR, B-cell recep-
tor.

3. The Configuration Space of Serum Antibodies

From the medical and biological perspective, the humoral immune response takes
place in various anatomical locations of the host: lymph nodes, spleen, bone marrow,
blood or periphery. The specialized structure of these tissues contributes to the develop-
ment, differentiation and activation of B-cells and antibody secreting cells. Nevertheless,
all these tissues are physically connected, and while cell trafficking is regulated and cells
are not allowed to go anywhere, secreted circulating antibodies do reach most tissues.
Naive and memory B cells are recruited into the pool of ASC by antigenic stimulation and
co-stimulation by other cells. There is a continuous supply of antibodies from ASC into
the circulation, along with a continuous removal via immunoglobulin Fc receptors on im-
mune effector cells. This flow of antibodies maintains target antigen concentrations at lev-
els defined by the immune system. Where antibodies are present, they continuously
search for their highest affinity binding partner — in other words for their lowest energy
bound state. For a physical interpretation of the whole system of antibody interactions, it
is reasonable to simplify the system, neglect anatomy and introduce an abstract space in-
stead: the antibody interaction space.



This interaction space can be thought of as a coordinate system of chemical poten-
tials. Chemical potential here refers to the ability of the system to contribute to the gener-
ation of Ab-Ag complexes. An Ab with given specificity can be identified by a vector
pointing towards a given direction in the landscape of molecular targets (Figure 2). The
chemical potential of the antibody is determined by the affinity (standard chemical poten-
tial), the concentration and its thermodynamic activity coefficient (see later). In the center
of the system is the generation of lymphocyte precursors, which develop into antibody
secreting cells as they mature[14]. Within the boundaries of the system cells generate a
diverse repertoire of surface antibodies (B-cell receptors, BCR) that allows them to probe
the complete antigen landscape or antigenome. In fact, BCRs are probing not whole mol-
ecules but rather patches of molecular surfaces called epitopes. We can think of the hori-
zon of interaction space as the continuity of epitopes forming a canvas around the inter-
action space, as the landscape of target molecular surface patterns. Once a B-cell starts
secreting an antibody, it will push the boundary of the system towards the recognized
epitope to an extent determined by its chemical potential (Figure 2).

la
4 n..d_g
naive state . Cs
)
&
o
. -~ effector Ab
c ! 1
— immune ‘L d
L] system g sensor Ab
- o |
u L]
© B e
o ~ effector/sensor Ab
o Y
By 3
9} ) 2 ?
s je\®
primary response primary memory secondary response secondary memory

Figure 2. Inmune responses displayed in configuration space of antibody interactions. Distance of
the lines representing immune system boundary from the center corresponds to chemical potential.

During an immune response, naive and memory cells of the adaptive immune sys-
tem are activated, expanded and differentiated. B cells in germinal centers undergo affin-
ity maturation: somatic hypermutations introduce changes into antibody structure, fol-
lowed by the selection of structural variants with higher affinity[4,5,15,16]. The process
gives rise to genetically different new clones carrying antibodies with higher chemical
potential. As long as the stimulus persists, germinal centers generate these new clones by
cycles of random somatic hypermutation and selection. The result is the expansion of the
system in the configuration space (Figures 2 and 3): sensor-effector lymphoblasts start se-
creting antibodies and also increase their antibodies” affinity by mutations.

As the stimulus is cleared by the immune response, most effector cells die and only
memory cells remain. This corresponds to a retraction and reorganization in configuration
space. It is important to note that the new boundary of the system is established by the
negotiation between the host and the intruder: very harmful intruders will tend to leave
a long-lasting and high affinity imprint, while softer attacks will have weaker effects. Reg-
ulatory mechanisms in the host also cut back clones with potentially harmful autoimmune
effects. This negotiation results in a steady state, which entails the formation of networks
that insert newly generated clones into a previously established architecture. The system



of interactions optimizes itself: randomness is finally replaced by hierarchy and optimized
antibody cross-reactivity networks. Activated cells will disappear, with resting lympho-
cytes and LLPC with adjusted affinity surviving (Figure 3).

The immune system is never totally at rest. It is the dynamism, the constant restruc-
turing of this landscape by antigenic stimuli that maintains system architecture and ad-
justs the configuration space to the molecular environment. Therefore, whilst the overall
hierarchy is expected to be governed by the laws of physics, shifting and changing locally

active sites respond to the biological needs of the system.
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Figure 3. Expansion and affinity maturation of germinal center B cells displayed in configuration
space. Naive and memory sensor B cells seed an active response, being activated via BCR. Somatic
hypermutations generate random shifts in configuration space (blue lines between purple nodes),
selection of higher affinity mutants produces lymphoblasts. Secretion of antibodies with higher af-
finity appears as a protrusion of the interaction space towards the targeted antigen. Following an

active immune response, the system retracts leading to a steady state with new borders, correspond-
ing to LLPC and MBC with an affinity higher than original.

4. Probing Serum Antibody Configuration Space: Quantitative Systems Serology

Understanding the underlying hierarchy and architecture of the network of antibod-
ies has an immediate practical use: the design of serological assays with results that char-
acterize this network. Current serological assays are standardized according to medical
purposes, with the aim of establishing optimal cut-off values for diagnostic accuracy. The
units obtained this way do not allow any kind of comparison of results even for the iden-
tical antigen when different platforms are used or different antibody isotypes are meas-
ured. The units are standardized but arbitrary with no biochemical meaning [17].

By using the configuration space model, we can identify the parameters that are re-
quired to describe such a system. Considering that serum antibodies are mixtures of mol-
ecules with a wide range of affinities against antigenic targets and wide range of concen-
trations of each molecule, it is reasonable to assume that these parameters need to be esti-



mated. We can probe this space by measuring the formation of antigen-antibody com-
plexes in immunoassays and map the space by applying mathematical functions that
model physical properties of the system.

The logistic function (also referred to as logistic equation, logistic growth curve or
Verhulst model) describes population growth with an exponential growth limited by
maximum capacity of the system. While originally it was introduced for modeling growth
in time, it is also used for modeling chemical reactions and antibody-antigen binding re-
actions. In immunoassays we follow the increase of concentration of reaction products
(Ab-Ag complexes) as a function of the logarithm of increasing concentrations of a reac-
tant. Thus, the growth in this case is not in time but along an experimentally created con-
centration series. Time factor in these reactions can be omitted if the reaction is allowed to
reach a point where concentrations of reaction components do not change any more: equi-
librium is reached.

For a reaction where we increase Ag concentration and follow the concentration of
bound Ab (equivalent to measuring Ab-Ag complexes), we can rewrite the differential
equation

Z—IX:r*N*(l—%) (1)
where N is the number of entities and K is the capacity of the system for such entities,
and r is the rate of exponential growth, as

dAb, P )
—_— =7 % * .

Ab,

where Ab, is bound antibody concentration, Ab; is total antibody and Ag is total
antigen concentration.

This means that the rate of change of generation of bound antibody while increasing
Ag is determined by the actual bound antibody concentration, its relationship to the total
antibody concentration and the rate parameter. Because of the use of the logarithm of Ag
concentration the increase of bound antibody concentration is exponential, limited by the
availability of antibody, as expressed in the second part of the function.

We can simplify this expression by using the relative proportion of concentration of
antibody bound under equilibrium conditions to total antibody concentration. This is in
fact characterized by the thermodynamic activity coefficient of serum antibodies y,;, a
coefficient that adjusts concentrations to relative thermodynamic activity a

a = Yap * Ab; 3)
Using y,, = a/Ab, and a = Ab,, equation (2) becomes
AYap
m—r*hb*(l—mb) 4)

The explicit solution of this differential equation is the function known to immunol-
ogists as the four-parameter logistic function or 4PL (see Appendix A) with a lower limit
of zero. The 4PL can be used to estimate the affinity of a monoclonal antibody with known
concentration [18]. However, the 4PL models an ideal binding curve, which may not re-
flect real binding that is modified by other interactions. To allow for an asymmetry in the
binding curve and thereby take into account such intricate events, the five-parameter
model, 5PL was introduced (see Appendix A) [19].
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Figure 4. Probing the configuration space with antigen. Configuration space (a and b) can be probed
(brown arrow) by measuring the changes of chemical potential of serum antibodies with the antigen
of interest, using an immunoassay. Using antigen microspot titration key parameters of interaction,
such as standard chemical potential and limiting activity coefficient can be modeled by the Richards
curve (c and d), including the determination of inflection point (blue circle) position. During an
active immune response (a and c), the apparent affinity increases, as reflected by a decreased aver-
age standard chemical potential, and changes in clonal composition alter the limiting coefficient. A
memory response (b and d) is characterized by optimized affinity and clonal heterogeneity. [Ag];,
antigen concentration at point of inflection.

However, while the 5PL is the solution of a modified differential equation, it is less
suitable for the description of a system’s behavior because of its parametrization. First
order differential equations define relationships between functions representing physical
quantities and their derivatives, the latter representing rates of change of the physical
quantity. In an immunoassay the physical quantity is the amount of antigen-antibody
complex (or bound antibody) formed during the assay, once equilibrium is reached. The
rate of change in this quantity, while changing reaction conditions by titrating antibody
or antigen, is the derivative of the function that relates the amount of complex formed to
the logarithm of the titrated component. We proposed the use of the generalized logistic
model or Richards growth model[20,21] instead of 5PL[22], because the Richards growth
function, like the 5PL, is the solution of the differential equation

d¥ap _ T v
m—;*hb*(l—{mb} ) )

but is parameterized in a way that [Ag]i is the point of inflection of the curve. This
differential function implies that besides the activity coefficient of antibody and the rate
parameter, the rate of generation of bound antibody while increasing Ag, is determined
by a power of the activity coefficient. The exponent in the power expression v is a param-

eter that modifies the influence of the ratio % on the rate of growth of bound antibody.
t

The reason for this modification is the changing behavior of antibodies at different antigen
concentrations. This parameter introduces asymmetry into the sigmoid binding curve, in
a way that is more suitable for the description of the system. We propose that v is related
to a special activity coefficient, y;; = 1/v, which defines Ag thermodynamic activity at
infinite Ab dilution, and is determined by the composition of antibodies in the total pool
(Figure 4 and 5).
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Figure 5. Interpretation of the limiting activity coefficient of antigen. The limiting thermodynamic
activity coefficient reflects the contribution of epitope to binding by all antibody structures or the
epitope-paratope fit in other words. Only the outlines of the paratope surfaces are shown (circles)
to allow the visualization of overlaps. (a) A monoclonal antibody paratope-epitope fit is shown for
comparison. Memory formation (b) reduces surviving clones to minimal optimal binders, while
during an active immune response (c) several structurally distinct antibodies co-exist and compete
for binding.

By fitting the Richards curve to experimental binding data from Ag and Ab titration
experiments we can obtain the parameters that are suitable for the quantitative character-
ization of serum Ab. One of these is the antigen concentration at the point of inflection
[Ag]i and the other is the limiting activity coefficient (Figure 4.) [22]. The first is an estimate
of the apparent equilibrium dissociation constant (determined by average standard chem-
ical potential) of the antibodies bound to the Ag. The second characterizes the hierarchy
of antibodies bound to the Ag. The mapping of these values to collections of structurally
related epitopes could serve as a starting point for describing the serum antibody binding
landscape.

5. Steps towards Systems Serological Mapping of Immunity

The key message of our article is that the binding landscape of serum antibodies can-
not be approached as the simple sum of individual, independent interactions. The word
binding is rather meaningless unless we identify conditions and quantify interaction en-
ergy. Blood plasma is crowded with macromolecules, with a significant contribution from
circulating antibodies. The conditions are therefore defined by the composition of anti-
bodies, by the intricate cross-reactivity network of antibodies, their structures and con-
centrations. Most of the immunological studies have been directed towards defining how
an active immune response happens. Molecular biology helped us clone, sequence and
recombinantly express monoclonal antibodies. Structural biology allowed the characteri-
zation of antibody structures in detail. Now it is time to organize this information into a
complex biological system. We propose that instead of examining the active phase of an
immune response, the characterization of landscape of serum antibody binding in steady
state is a better goal from the point of view of physics.

The ability to quantitatively characterize and map serum antibody binding to vast
collections of antigens can open several possibilities. Via the standardization of simplex
measurements, we could generate comparable binding data from quantitative immuno-
assays and integrate that into epitope databases. Epitope databases would develop into
quantitative databases in terms of incorporating binding strength data. By generating an-
tigen arrays with whole molecule antigens, peptides, and modified random peptides suit-
able for binding strength quantitation we can attempt to create complete maps of serum
antibody binding landscape. By the selective detection of isoforms: IgG, IgA, IgM, IgE a
further dimension, related to biological effects, can be introduced into the database. On
the long term such quantitative maps of individual’s Ab interaction spaces should become
the foundations for immunodiagnostics and therapeutics as well.
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Appendix A

Comparison of logistic functions
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Representative curves in the diagrams use identical [Ag]i and the indicated v values. diff.eq., differential equation

To help the comparison of the three logistic functions the minimum and maximum values are set to 0 and 1, respectively. This sim-
plifies the functions, though the number of parameters is less than suggested by the name. This normalization also allows to treat y

as the thermodynamic activity coefficient of Ab, instead of the concentration of bound antibodies. The basic function is modified as

implicated in the table to obtain the respective functions: four-parameter logistic (4PL), five-parameter logistic (5PL) and general-

ized logistic (GL) or Richards function. As the functions show, compared to the 4PL, the 5PL function introduces parameter v, as

the exponent 1/v of the denominator. The generalized form, in addition to this change, also introduces v as multiplying factor of

the ratio of antigen concentration [Ag] and antigen concentration at inflection point [Ag]i with power -r.




