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Abstract. Recently we started the development of Holographic Dendrogramic Theory (DH-theory). It is 

based on the novel mathematical representation of the relational event universe (in the spirit of (Smolin, 

Barbour, Rovelli). Elementary events are represented by branches of dendrograms, finite trees, which are 

generated from data with clustering algorithms. In this note we study the dynamics of the event-universe 

generated by the appearance of a new event. Generally, each new event can generate the complete 

reconstruction of the whole dendrogramic universe. However, we found (via numerical simulation) 

unexpected stability of this universe. Its events are coupled via the hierarchic relational structure which is 

relatively stable with respect even random generation of new events. We also observe the regularity 

patterns in location of new events on dendrograms. In the curse of evolution, the dendrogram’s 

complexity increases and determine the arrow of time the event universe. We use the complexity measure 

from particle shape dynamics which was shown to be increase in both direction away from a Janus point 

and thus determine the arrow of time in symmetrical manner away from a Janus point. The particle shape 

dynamics theory is a relational theory with close ideological resemblance to DH-theory as both relays on 

Mach’s principle and Leibniz’s relationalism and his principles. By using the complexity measure on 

dendrograms and its p-adic string representation, we demonstrate the emergence of time arrow from the 

p-adic zero-dimensional field, where space and time are absent.   

Keywords: event-universe, dendrograms, hierarchic relational representation, dendrogramic dynamics, 

shape dynamics, stability of event-universe, arrow of time  

1.Introduction 

In the series of papers [1-3], we developed basics of Holographic Dendrogramic Theory (DH-

theory).This theory grew up from information physics (starting with Wheeler’s “it from bit” [4]) and 

relational event representation of the universe(Smolin, Barbour, Rovelli [5-13]). The latter approach was 

combined with methods of p-adic theoretical physics in which physical structures are represented by p-

adic numbers.1 In contrast to the main stream, we explore not the number theoretical methods, but the 

 
1 See [16-29] for applications to strings and quantum theory; see [30-32] for applications to disordered systems (spin glasses). 
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treelike geometry in that p-adic numbers (see Appendix A) are visualized as the branches of the p-adic 

tree (the homogeneous tree with  p>1 edges leaving each vertex).2  

In DH-theory, the elementary events such as outcomes of measurements are represented by the 

branches of a finite tree, so-called dendrogram.3 The latter by itself represents a complex event combined 

of elementary events. A dendrogram can be generated from experimental data with the aid of a hierarchic 

clustering algorithm.4 One of the aims of development of DH-theory is to merge classical and quantum 

descriptions; the same dendrogramic description of events is used in both cases. The degree of classicality 

and quantumness of events is characterized by dendrogram’s size, increasing of size is treated as 

increasing of classicality (see, e.g., [2] for application to the violation of CHSH inequality). The merging 

of the classical and quantum descriptions might lead to the resolution of the problem of creation of 

quantum gravity.  

In complete accordance with ontic-epistemic approach to science [42-47], DH-theory has two 

counterparts. The epistemic one is devoted to special (hierarchically relational) structuring of knowledge 

obtained by an observer from experiments. The ontic one gives the mathematical model of “the universe 

as it is”. In our theory the epistemic and ontic descriptions are naturally coupled: they are based on finite 

and infinite trees, respectively. This paper is based on the results of numerical simulation, and we would 

not concern the ontic model (cf. [1-3]). The epistemic counterpart of DH-theory is briefly presented in 

section 2, a few words about its ontic counterpart are said in section 3. 

In this note we study the dynamics of the event-universe generated by the appearance of a new 

event. Generally, each new event can generate the complete reconstruction of the whole dendrogramic 

universe. The elementary events created up to the moment t=k are hierarchically ordered via the 

dendrogram’s structure. And the appearance of a new event at t=k+1 can, in principle, destroy the 

previous hierarchic structure. The dynamics which is local in the physical space becomes nonlocal in 

dendrogram-space. Thus, all events are permanently in dynamical motion; an event which had happened a 

milliard years ago is not frozen at same point of the dendrogram-space, contemporary events disturb it 

and vice versa: the position of newly generated event in the dendrogram-space is determined by all 

previously occurred events. The dendrogram-universe is in the permanent motion and recombination.  

Nevertheless, this event-motion has some degree of regularity and stability. The appearance of a 

new event does not generate a totally random redistribution of events. Only very special dendrogramic 

configurations can be created with high probability. The presence of the hierarchic relational structure in 

the event-universe   

Total recombination of the events and the change of the structure of the event-universe also can 

happen, but with relatively small probability (a kind of catastrophic perturbation of the otherwise stable 

hierarchic interrelation between events in the universe).  

This (unexpected) stability and regularity of the hierarchically coupled event-universe is one of 

the main outputs of our extensive numerical simulation. Here by stability, we understand the relative 

stability of the dendrogram’s structure. The majority of previously happened events preserve their 

positions. The number of dendrogram’s levels is also stable (under appearance of just one new event). By 

 
2 The treelike geometry was heavily explored in cognitive modelling  and psychology [33-38], see even our recent paper on 

applications of DH-theory to the medical diagnostics of mental disease [39].  
3  Cf. with discrete and fractal approach to quantum physics [40,41]. 
4 Although the form of a dendrogram depends on the concrete algorithm, the general structure of theory is the same for all basic 

algorithms. In our studies, we use the simplest algorithms of 2-adic, 0/1 (yes-no) clusterization.   
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regularity, we understand the following feature of the dendrogramic dynamics. The branches of a 

dendrogram can be represented by vectors with 0/1 coordinates or the corresponding natural numbers in 

the binary representation. At the moment t=k, a dendrogram D_n representing n elementary events has 

N(D_n)levels. A new elementary event generated at t=k+1 can in principle be any natural number 

between 0 and 2^{ N(D_n)}. However, this new event can take only very special values (in the natural 

number representation).  

We showed that even random generation of a new event does not induce (statistically) crucial 

redistribution of events on the dendrogram, the graphs of figures 1, 2 demonstrate some patterns of 

regularity.  As we also see from figure 3, the dendrogramic event-universe is essentially stable w.r.t. 

appearance of a new event: with high probability most events do not change their tree-representation. 

As was noted, the dendrogram dynamics induces not only redistribution of events, but also 

increasing of dendrogram’s size and thus its number of levels. Quite trivially, the number of 

dendrogram’s levels N= N(D_n) for the dendrogram D_n with n events increases with the increase of the 

number of events n. Similarly, to entropy, N(D_n) can be used to determine the arrow of time. However, 

in contrast to entropy (governed by the second law of thermodynamics, N(D_n) has local minimums on 

the increasing phone.  

The increasing number of levels, which is an expectable feature, is not satisfactory enough to serve as 

a “thermodynamical” law that concerns only the scale free structure of the dendrogram (in a similar 

manner we obtained scale free features of dendrograms as the ratio of dendrogramic constants of nature in 

a recent study [3]). Moreover, we need a macro-state function that, given a certain initial size of a 

dendrogram, will give us some probabilities on the future macro-state in the dynamical development of 

the dendrogram or p-adic string representation of the future events. Each of the macro-states will have a 

finite number of possible micro states. These micro states are all possible dendrogram structures, where n 

is the number of events.  The result of evaluating a  certain structural feature of all these micro states  will 

correspond to the same  macro state value which is event related . This kind of a state function, like 

entropy, will provide predictive tools for the dendrogramic dynamics of any developing system of events. 

To capture the scale free dynamical features of dendrograms dynamics, we use the shape complexity 

measure which was introduced by Barbour et al. in the framework of N-body shape dynamics theory [14-

15].  In this context we suggest the following definitions. 

1. Definition of a micro state: 

Unique dendrogramic structure (coded in a p-adic manner) of relations between events                              

Or                                                                                                                                                              

event’s p-adic representation of its relation to the rest of the events 

2. Definition of a macro state: 

Certain structural feature value that is the same for different dendrogram structures                                                  

Or                                                                                                                                                                      

different p-adic representation of events 

Shape Dynamics is a field theory describing gravity differently than General Relativity. Although the 

differences between the two theories in the most situations are indistinguishable, the two theories have 

different ontology. Some differences to note are that shape dynamics is not based on spacetime 

representation; instead, the entities in shape dynamics are three-dimensional geometries fitted together by 

relational principles. These fitted relations results in Temporal relationalism : time emerges from physical 

changes in shapes. The relational principle of shape dynamics is the Mach-Poincare Principle: 
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 Physical (or relational) initial configurations and their first derivatives alone should determine 

uniquely the future evolution of the system [15]. 

This principle is implemented through an intrinsic derivative which is called best matching. The best 

matching allows one, by using only relational data, to say when points are at the same position at different 

temporal instances. Moreover, Barbour et al. [10-15] formulated  an intrinsic feature of a system  serving  

as physically meaningful labeling of change, where the evolution of the structure of a system  is towards 

configurations (i.e., shapes) that maximize the complexity of the system, in what follows we will define 

this complexity measure in the event/dendrogramic universe. We note that although previous studies in 

shape dynamics [9-12] showed that the complexity increase in both directions away from a Janus point 

and thus determine the arrow of time in symmetrical manner away from a Janus point. However, we 

cannot produce data in a reverse temporal order and thus cannot find a Janus point with its two opposite 

symmetrical time arrow directions. Thus, our results will indicate an arrow of time directed from past to 

future only.  

We show in section 5  that the shape complexity measure can be used as a statistical law of the dynamics 

of the evolving dendrograms. This statistical law eventually leads to the determination of the arrow of 

time in a manner similar to the second law of thermodynamics but with different consequences, which 

will be discussed in section 7, then when operating with entropy [10, 14-15] . 

Our main motivation in this paper is to have the methods and tools to predict behavour of complex 

systems. In particular, in the framework of medical diagnosis and as a follow up to our recent study on 

EEG signals of the brain these tools will help us to enticipate epileptic and psychotic seizures [39]  

The next two sections are devoted to the brief representation of the foundations of DH-theory. In 

principle, the reader can jump directly to section 4 in that we consider the (numerically simulated) 

dendrogramic dynamics for the simplest physical dynamics given by a randomly generated time series. 

The latter is transferred into the time series of dendrograms. And we study its statistical properties.  

2. Brief introduction to epistemic DH-theory 

2.1. Info-physical principles  

 

Here we briefly recall the basic principles of DH-theory [1-3]. This theory is about the special 

information representation physical universe, the event representation (cf. Smolin, Barbour, Rovelli [5-

9]).  

Principles:  

(P1) Event physics. The basic structures in nature are events.  

(P2) Relational structures. Interrelations between events are basic structures of the theory.. 

(P3) Hierarchy. Relational structures are hierarchic. 

(P4) Operational representation. An observable A is composition of preparation and measurement 

procedures, P and M: A= MP (first preparation and then measurement).  

(P5) Event-picture of experimental data. Experimental data is used to form the event-picture. Elementary 

events are single datapoints; events are subsets of experimental dataset.  

(P4) Relational observables. Data collected for a physical observable A serves as the input for algorithm 

Λ for detection of a relational structure. The composition R= Λ A(=Λ MP) is a relational observable.5 

(P5) Free will. The assumption on observer’s free will to select different observables (e.g., axes of PBSs) 

is extended and an observer O has free will to select an event-relational structure expressed via algorithm 

Λ. 

2.2. Mathematical formalism 

 
5 First preparation, then measurement, and finally clustering algorithm.  
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We list the main mathematical methods serving as the base of the DH-theory [1-3]. 

(M1) Hierarchic clustering algorithms. Relational structures are determined by hierarchic clustering 

algorithms. 

(M2) Dendrogramic (treelike) representation. Outputs of relational observables are dendrograms (finite 

trees).  Dendrograms represent events, their branches (points on the dendrogram’s basement) represent 

elementary events corresponding to measurement’s outcomes. 

(M3) Ultrametricity. Natural metric on a dendrogram is ultrametric based on the common root of two 

branches, connecting the tree’s root with points of the basement of a dendrogram.  

(M4) P-adic number encoding of elementary events. Elementary events can be encoded by natural 

numbers and the ultrametric is given by the p-adic absolute value (see Appendix A).  

 

For a big dataset, the set of all subsets is too big. To make the situation numerically treatable, our 

modelling is restricted to time series, and, for each natural number L, observer O can split the series into 

blocks of the length L. These are L-events. Denote this event-selection operation by the symbol Φ = Φ(L).  

Model is restricted to relational observables of the form R= Λ Φ M P.  Consider now clustering algorithm 

Λ = Λ (p) with p-branching structure, where p>1 is a natural number.  

 

P-adic tree is a homogeneous tree such that, for each node, there are one incoming and p 

outcoming wedges. P-adic tree with n-levels (branches of length n) is denoted by the symbol Z(p,n). Its 

branches are encoded either by vectors x=(x0 x1 … x(n-1)), xj=0,…, p-1, or  by natural numbers {0, 1,…, 

p^{n-1}}. In the latter representation, Z(p,n) has the ring structure with mod p^n addition, subtraction, and 

multiplication (see Appendix A).  

 

(M5) Configuration space. Relational observable R=Λ(p) Φ(L) M P takes values in Z(p,n), where n=L-1.  

 

2.3. Explanatory comments 

(C1) Causal vs. relational structures. Typically, causal structures are employed as event-relational 

structures. But this leads to the apotheosis of the role of space-time (or at least time, as in works of 

Smolin, Barbour, Rovelli  [5-10] ). The use of space-time and causal structures based on it led to 

tremendous success in natural science. However, events can be related not only via causality, but via 

more complex relational structures. Moreover, one of the most important physical theories, quantum 

mechanics, is acausal, at least in some basic interpretations.6 

 
(C3) Bohr’s principle of complementarity and event-physics. Bohr repeatably stated that outcomes of physical 

observables are not objective properties of systems but generated in the process of a measurement. This is the basic 

part of his principle of complementarity []. But the notion of a system without objective properties 

is not so foundationally attractive as the notion explored in classical physics. This led to attempts to define systems 

operationally via measurement outputs.7  

 

(C4) Operational approach to observation. This approach is widely explored in quantum measurement 

theory. It is closely related to the Copenhagen viewpoint that quantum mechanics is about state 

preparation and measurement procedures, P and M, and outputs of the latter. (In particular, originally the 

Feynman’s integral formalism was rejected by Bohr as unphysical, since it handles system’s trajectories 

between P and M.) However, most operational researchers still refer to systems. 

 

 
6 Here we do not discuss "quantum nonlocality", but measurement acausality which was emphasized by von Neumann. This issue 

is related to solution of measurement problem in quantum mechanics and to theories with hidden variables. 
7 In private discussions with one of the authors (AKH), Zeilinger defined photon as photodetector’s click. It is even more natural 

to consider this click not as the exhibition of the physical system’s existence (in this case, photon), but as an event. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2022                   doi:10.20944/preprints202204.0193.v1

https://doi.org/10.20944/preprints202204.0193.v1


(C5) Real vs. ultrametric representations. Traditionally, the event-approach to physics has been handled 

within real-number representation with emphasizing the role of space time and causal structure on it 

(e.g., Smolin, Barbour, Rovelli). Geometrically this is straight-line (multi-dimensional) picture of the 

universe.  However, generally hierarchic relational structures have the treelike geometry. This leads to 

ultrametric representation. One of the simplest and at the same time well-developed of them is based on 

p-adic trees.  We remark that if p=1, then the p-adic tree trivializes and coincides with discretized real line 

– lattice.  

 

(C6) Free will vs. total determinism. In DH-theory, the hypothesis that an observer O has free will plays 

the important role. In physics, free will is treated restrictively as the ability of O to select settings of 

measurement devices, e.g., in the Bell type experiments. In the absence of free will the selection of 

experimental settings would be predetermined. The latter situation is well accommodated under the 

superdeterminism hypothesis. Although most quantum physicists accept the free will assumption, others 

do not. Typically, free will vs superdeterminism are considered as mutually exclusive foundational 

viewpoints. In DH-theory these view points can be brought closer together as superdeterminism exist as a 

dynamical law that connects one event to the other (see the action principle in [1,3]) while free of will 

exist along it side with the choice or rather “the willingness” of how much events the observer decides  to 

observe and how he separate these events into different sub-systems of his observable Universe [2]. Thus 

in every choice the observer makes his observable universe will still be superdetrmined by the dynamical 

law.    

 

(C7) Dimensionality of configuration space. In physics configuration spaces are multidimensional and the 

dimension by itself carries physical meaning. In DH-theory, all configuration spaces are treelike, they can 

be visualized in the Euclidean space as two dimensional structures. Moreover, in general topology their 

dimension can be characterized internally, and it equals to zero. Hence, we work with zero-dimensional 

configuration topological spaces. This possibility to describe events happening in the four dimensional 

physical space with the zero dimensional topological structures is the essence of the holographic 

representation which is basic in DH-theory. Such holography is very special (see [1] for details and 

illustration by a figure). 

3. Brief introduction to ontic DH-theory 

In this paper, we work solely with the experimental data 

3.1. Principles 

(PO1) Events and relations.  Event-relational hierarchic structure of the universe is mathematically 

represented by an infinite tree endowed with common root ultrametric. Elementary events are represented 

by branches of the tree; events are all possible sets of branches. 

(PO1a) P-adic universe. Restriction of trees to p-adic ones gives the p-adic picture of universe: infinite 

homogeneous tree with one incoming and p-outcoming wedges for each node. This tree is endowed with 

the ring algebra, addition, subtraction, and multiplication of branches, the ring of p-adic integers Zp. 

(8PO2) Super-determinism. All possible events are predetermined and simultaneously present in the 

treelike event-universe.  

 

3.2. Mathematical features of p-adic universe 

 

 
8 So, observer’s free will disappears in the ontic universe: One may say that “epistemic free will” is apparent; this is observer’s 

illusion generated by incomplete knowledge about the event interrelations. An observer O cannot see the complete picture given 

by the infinite tree of interrelations between events and he has the feeling of free will. But, since O would never be able to 

approach the ontic picture – to map all possible events (in past and future) onto the infinite tree, - for him super-determinism is a 

theoretical abstraction.  
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(U1) Zp is totally disconnected.9  

(U2) Zp is disordered: it is impossible to introduce an order structure compatible with algebraic 

operations. 

(U3) Zp is zero dimensional as a topological space.  

 

4. predictability of evolving dendrogram  

We started by examining n events (𝐸𝑚 𝑤ℎ𝑒𝑟𝑒 𝑚 ∈ 1,2 … 𝑛   𝑎𝑛𝑑 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠), for 

that purpose we generated n random numbers ( in the figures below we show the example for n=50, but 

examining different n’s was done with the same qualitative results). From these base n events we 

constructed a dendrogram 𝐷𝑛 by using the procedure outlined in appendix B. We then add another event 

generated randomly and from the n+1 events we compose a dendrogram 𝐷𝑛+1. 

Thus for the dendrogram 𝐷𝑛 we have n branches each  path  of branch 𝑚 

 𝑤ℎ𝑒𝑟𝑒 𝑚 ∈ 1,2 … 𝑛   𝑎𝑛𝑑 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 

from root to leaf corresponds to event m. each branch is a string of 1/0 where 1 represents bifurcation of 

the branch to the left and 0 is a bifurcation of the branch to the right.  This string can be represented by a 

natural number 𝑉𝑚 by using the the p-adic expansion  

𝑉𝑚 =  ∑ 𝑎𝑖2𝑖−1

𝑘

𝑖=1

  𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 ∈ 0,1 𝑎𝑛𝑑 𝑘 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 

Thus we represent each event as a natural number which corresponds to the event path in the dendrogram. 

Our main concern is to understand to what extend we can predict what will be the natural number 𝑉𝑚+1 

representing event 𝐸𝑛+1 in the 𝐷𝑛+1 dendrogram. For that purpose, we followed the following procedure:  

1. We randomly generated a base (fixed) 𝑛 events  and composed out of it the 𝑛 edges dendrogram 

2. Then to the same 𝑛 events we added one more event  𝐸𝑛+1and computed its natural number 

representation  𝑉𝑛+1. 

3. We generated the 𝐸𝑛+1 event 6000 times and each time computed its  𝑉𝑛+1. 

4. We then changed the base 𝑛 events and repeated steps 2 and 3 for this new 𝑛 base events  

5. We changed the base 𝑛 events 100 times  

We first checked what will be 𝑉𝑛+1 (the p-adic expansion representing 𝐸𝑛+1) in the following case: 𝐸𝑛+1  

doesn’t cause the original dendrogram 𝐷𝑛 (with 50 edges) to change the number of levels in it. So, if, for 

example, 𝐷𝑛 has 9 levels,  𝐷𝑛+1 has 9 levels as well. As is shown in figure 1,  the natural number 𝑉𝑛+1 

representing 𝐸𝑛+1is very predictable and tends to favour  values closer to 

2𝑘 − 1 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ − inf, 1 , 2 … 𝑟   𝑎𝑛𝑑 𝑟 = max 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 

in each interval [2^𝑘𝑖
  2^𝑘𝑖+1]. We also  see that less than 400 natural numbers were obtained out of 512 

possible such numbers 

 

 
9 The formal topological definition [33] is that each point x has the basis of neighbourhoods which are at the same time open and 

closed (“clopen”). It is equivalent to more intuitive definition. the set of locally constant functions (i.e., constructed from 

characteristic functions of balls) is dense in the space of real-valued continuous functions. Another interesting property is that any 

continuous trajectory t to x(t) with real time parameter t is piecewise constant; so the real time dynamics consists of jumps. 
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Figure 1 probability density function of natural number representing  the p-adic expansion representing 

an added event. We generated base 50 random numbers and added 6000 times another random number 

(𝐸𝑛+1) to them resulting in 51 edges dendrogram . adding the extra event was done under the restriction 

that 𝐷𝑛 𝑎𝑛𝑑 𝐷𝑛+1 both had  number of levels equal to 9. we repeated the procedure for 100 base 50 

random numbers. For all 100 base 50 random numbers we show the distribution of the possible value of 

the natural number 𝑉𝑛+1 representing 𝐸𝑛+1. About 400 such natural number values occurred out of 512.   

We also show (in figure 2) that given one fixed base 50 events only very limited set of natural numbers 

can result which  represents the 𝐸𝑛+1 event: around 80 such natural numbers out of possible 512 (9 levels 

of dendrogram). Although in  figures 1,2, we simulated with 𝑛 = 50 base events dendrograms where 

𝐷𝑛 𝑎𝑛𝑑 𝐷𝑛+1 both had  number of levels equal to 9, we witnessed similar qualitative results with 

100,150,200…500 base events and different number of levels. 

 

Figure 2 probability density function of natural number representing  the p-adic expansion representing 

an added event. We generated only oned base 50 random numbers and added 600000 times another 

random number (𝐸𝑛+1) to them resulting in 51 edges dendrogram . we show the distribution of the 

possible value of the natural number 𝑉𝑛+1 representing 𝐸𝑛+1. About 80 such natural number values 

occurred out of 512.   

Moreover, we checked how many 𝑉𝑚 in the 𝐷𝑛 dendrogram will change their natural number 

representation upon adding the 𝐸𝑛+1  event with the result of a 𝐷𝑛+1 dendrogram. This is shown in figure 

3 which demonstrated essential stability of the dendrogram representing n events w.r.t. to appearance of a 

new event.  
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Figure3 possible rearrangements of dendrogram structure upon adding a new event. We generated only 

oned base 50 random numbers events 𝐸1−𝐸50 and added 600000 times another random number (𝐸𝑛+1) to 

them resulting in 51 edges dendrogram. adding the extra event with the restriction that 𝐷𝑛 𝑎𝑛𝑑 𝐷𝑛+1 both 

had  number of levels equal to 9. We checked, for each iteration, how many of the base 50 events p-adic 

representation changed upon adding the extra event 𝐸51 

 

Furthermore, when we removed the  restriction that if 𝑁(𝐷𝑛)=9  then N(𝐷𝑛+1)=9 . Thus in the case 

where  𝑁(𝐷𝑛)=9 but N(𝐷𝑛+1) can have any maximal ball value by adding 𝐸𝑛+1 we again witnessed the 

same qualitative results as in figure 1 but with more possible 𝑉𝑚 values (figure 4) 

Figure 4 

 

 

 

 

Figure 4 probability density function of natural number representing  the p-adic expansion representing 

an added event. We generated base 50 random numbers and added 6000 times another random number 

(𝐸𝑛+1) to them resulting in 51 edges dendrogram . adding the extra event without  the restriction that 

𝐷𝑛 𝑎𝑛𝑑 𝐷𝑛+1 both had  number of levels equal to 9.  we repeated the procedure for 100 base 50 random 
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numbers. For all 100 base 50 random numbers we show the distribution of the possible value of the 

natural number 𝑉𝑛+1 representing 𝐸𝑛+1. About 400 such natural number values occurred out of 512.   

 

Again checking how many edges in the 𝐷𝑛 dendrogram will change their natural number representation 

upon adding the 𝐸𝑛+1.with the result of a 𝐷𝑛+1 dendrogram. We see  (figure 5) that although  now  𝐷𝑛+1 

can result in any maximal ball value we obtain the same qualitative result as in figure 3 which is with the 

restriction that if the 𝑁(𝐷𝑛) = 9  then 𝑁(𝐷𝑛+1) = 9. 

 

Figure 5 possible rearrangements of dendrogram structure upon adding a new event. We generated only 

oned base 50 random numbers events 𝐸1−𝐸50 and added 600000 times another random number (𝐸𝑛+1) to 

them resulting in 51 edges dendrogram. adding the extra event without  the restriction that 𝐷𝑛 𝑎𝑛𝑑 𝐷𝑛+1 

both had  number of levels equal to 9. We checked, for each iteration, how many of the base 50 events p-

adic representation changed upon adding the extra event 𝐸51 

Checking the number of levels of the newly formed dendrogram  𝐷𝑛+1 showed a very significant peak in 

the maximal ball value of 9 (figure 6) 

 

Figure 6 Number of levels of the new 𝐷𝑛+1upon edding the 𝐸𝑛+1   . We generated only oned base 50 

random numbers events 𝐸1−𝐸50 and added 600000 times another random number (𝐸𝑛+1) to them 

resulting in 51 edges dendrogram. adding the extra event without  the restriction that 𝐷𝑛 𝑎𝑛𝑑 𝐷𝑛+1 both 

had  number of levels equal to 9. We checked, for each iteration, what will be 𝑁(𝐷51) when 𝑁(𝐷50) = 9 
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5. Complexity measures of events and dendrograms 

Our main motivation in this section is to understand the dynamical process which changes the 

dendrogram structure upon adding more and more events. In order to obtain a meaningful measure of 

dendrogramic structure dynamics, we need to overcome the trivial problem that by  adding events to a 

dendrogram we are repeatedly making the dendrogram larger. So, we have a sequence  

𝐷𝑛 , 𝐷𝑛+1 , 𝐷𝑛+2  …. .We therefore need some scale invariant measure of the system.  

Interestingly we have shown in previous study [???] the scale free similarities between different 

size dendrogram and their relations to the constants of nature 𝐺, ℎ 𝑎𝑛𝑑 𝑐. In order to quantify in a scale 

free manner, the complexity of a dendrogram structure (and even the structure of a single branch in a 

dendrogram, as detailed below), we decided to use the complexity measure suggested by Julian Barbour 

in his studies of N-body shape dynamics. 

We first present Barbours complexity measure in an N-body system with N masses 

𝑙𝑟𝑚𝑠 =
√∑ ∑ 𝑚𝑖𝑚𝑗𝑟𝑖𝑗

2𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

2

𝑀
    𝑎𝑛𝑑  

1

𝑙𝑚ℎ𝑙
=

1

𝑀2
(∑ ∑

𝑚𝑖𝑚𝑗

𝑟𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 ) 

𝑠ℎ𝑎𝑝𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑙𝑟𝑚𝑠

𝑙𝑚ℎ𝑙
 

5.1.   Complexity measure of dendrograms. 

We started from n=50 events (random numbers) that were composed into dendrogram than we added one 

event at a time and composed the dendrogram of  n+1 events. This procedure was done repeatadly up 

until the event n=5000.  In order, to measure the shape complexity of the  dendrogram , with  n events , 

we assign 

𝑚𝑖 = 𝑉𝑖  𝑤ℎ𝑒𝑟𝑒 𝑉𝑖 is the monna map representing the i′th dendrogram  branch p − adic expansion  

𝑉𝑖 =  ∑ 𝑎𝑚2−𝑚−1

𝑘

𝑚=1

  𝑤ℎ𝑒𝑟𝑒 𝑎𝑚 ∈ 0,1 𝑎𝑛𝑑 𝑘 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚  

And  

𝑟𝑖𝑗 = |𝑉𝑖 − 𝑉𝑗| 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗  

 By adding more and more events the dendrogram shape complexity measure tends to rise. The mean of 

the distribution of the shape complexity measure values constantly move its peak to higher values (figure 

7) 
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 Figure 7 shape complexity measure of dynamically growing dendrograms. A. We started with  only one 

base 50 random numbers events 𝐸1−𝐸50 and added each time an extra event 𝐸𝑛 where n=51,52…5000 

resulting in a dendrogram sequence 𝐷50, 𝐷51 … . 𝐷5000 for each such dendrogram we computed its shape 

complexity measure.   B. histogram of the  shape complexity measure values of the 4950  dendrogram 

structures. 

 

5.2.  Complexity measure of the ball distribution in the p-adic representation of an event  

We again  started from n=50 events (random numbers) that were composed into dendrogram than we 

added one event at a time and composed the dendrogram of  n+1 events. This procedure was done 

repeatadly up until the event n=5000. Each time we examined the added event, the n+1 event, branch 1/0 

string and then we calculate the shape complexity measure in the following way: for a string 

𝑎1, 𝑎2, 𝑎3 … . 𝑎𝑛  we identify the 𝑖 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 = 1 this is a p-adic ball value 

thus   

𝑚𝑗 = 𝑖 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 = 1 

And   

𝑟𝑘𝑗 = |𝑚𝑘 − 𝑚𝑗| 
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Again by adding more and more events the next event branch string shape complexity measure tends to 

rise. The mean of the distribution of the shape complexity measure values  constantly tend to move its 

peak to higher values (figure 8). 

 

Figure 8 shape complexity measure of p-adic representation of the next added event . A. We started with  

only one base 50 random numbers events 𝐸1−𝐸50 and added each time an extra event 𝐸𝑛 where 

n=51,52…5000 resulting in a dendrogram sequence 𝐷51 … . 𝐷5000 and a p-adic representation of the 

added event 𝐸51 … . 𝐸5000 for each such event we computed the  shape complexity measure of its p-adic 

representation in the 𝐷𝑛 dendrogram .   B. histogram of the  shape complexity measure  values of the p-

adic representation of the   𝐸𝑛 event in the  𝐷𝑛  dendrogram of the 4950 events. 

 

One can argue that these results are trivial as by adding sequentially one event at a time the dendrogram 

increases in size and the next event branch path is represented by a longer string, thus we move to higher  

N number of “bodies”. In order to show that higher shape complexity values do not depend on possible 

larger N number of “bodies” in the system, we turn into our static Universe view which was advocated in 

our recent papers. We generated a temporal sequence of  n random number of events and produced, from 

all n events, their static representative dendrogram where their temporal feature was not included in order 

to form the dendrogram. We then calculated the 3 body shape complexity measure obtained from the 

dendrogram in the following way: 
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We start with the first h temporally events and mark them as the past of the h+1 event. Thus our 3 bodies 

are the Universal past of the h+1 event which is calculated as follows : 

 

 𝑩 = ∑ 𝑉𝑗   𝑤ℎ𝑒𝑟𝑒 𝑉𝑗 𝑖𝑠 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ
𝑗=1    

𝑉𝑗 =  ∑ 𝑎𝑚2𝑚−1

𝑘

𝑚=1

  𝑤ℎ𝑒𝑟𝑒 𝑎𝑚 ∈ 0,1 𝑎𝑛𝑑 𝑘 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 

We represent 𝐵 as a binary string 𝑏 and  calcuculate  

𝑚𝑝𝑎𝑠𝑡 = 𝑚1 =  ∑ 𝑏𝑚2−𝑚−1

𝑘

𝑚=1

 𝑤ℎ𝑒𝑟𝑒 𝑏𝑚 ∈ 0,1 𝑎𝑛𝑑 𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑡𝑟𝑖𝑛𝑔 

, the present  𝑚𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 𝑚2 = 𝑉ℎ+1  

𝑤ℎ𝑒𝑟𝑒 𝑉ℎ+1 is the monna map representing the present (h + 1) dendrogram  branch p −

adic expansion   

𝑉ℎ+1 =  ∑ 𝑎𝑚2−𝑚−1

𝑘

𝑚=1

  𝑤ℎ𝑒𝑟𝑒 𝑎𝑚 ∈ 0,1 𝑎𝑛𝑑 𝑘 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚  

 

and the center of mass of   the present and the past 𝑚3 = (𝑚1 − 𝑚2)/2 . We then  calculate the above 

mentioned shape complexity measure  for h=50,51…4950  (thus moving the present each time one event 

to the future).  

where   

𝑟𝑘𝑗 = |𝑚𝑘 − 𝑚𝑗| 

 

For each such temporal sequence we randomized the temporal order of events 10 times and calculated 

again the complexity measure the non-temporal ordered sequence.We show the result of the progressing  

mean values (thus the mean of values of 1 to k where k =100,200…4900) of complexity measures values 

in figure 10A  across   all 400 temporal sequences  and the progressing  mean values of complexity 

measures values across   all 100x400 of randomized temporality sequences  and 

when we move forward the present one event at a time in the direction of our future produced events we 

show, in the figure below, that the shape complexity measure grows with time. Upon reversing the 

direction of time, thus  we move  the present from the future to the past, our 3 bodies system is composed 

of the Universal future of  the, 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑢𝑡𝑢𝑟𝑒 𝑖𝑠 ∶
(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠) − ℎ,  event  which is calculated as follows: 

𝑩 = ∑ 𝑉𝑗
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠−ℎ 
𝑗=number of events     𝑤ℎ𝑒𝑟𝑒 𝑉𝑗 𝑖𝑠 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝑉𝑗 =  ∑ 𝑎𝑚2𝑚−1

𝑘

𝑚=1

  𝑤ℎ𝑒𝑟𝑒 𝑎𝑚 ∈ 0,1 𝑎𝑛𝑑 𝑘 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 

We represent 𝐵 as a binary string 𝑏 and  calcuculate  
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𝑚𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑚1 =  ∑ 𝑏𝑚2−𝑚−1

𝑘

𝑚=1

 𝑤ℎ𝑒𝑟𝑒 𝑏𝑚 ∈ 0,1 𝑎𝑛𝑑 𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑡𝑟𝑖𝑛𝑔 

 

 the present is 𝑚2 = 𝑉𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠−ℎ −1  and calculated as above , and  the center of mass   obtained 

from the  present and the past  is  𝑚3 = (𝑚1 − 𝑚2)/2.  we again calculate the above mentioned shape 

complexity measure for h=50,51…4950  (thus moving the present each time one event to the past) 

where    

𝑟𝑘𝑗 = |𝑚𝑘 − 𝑚𝑗| 

For the randomized temporal order of events we  calculated again the complexity measure the non-

temporal ordered sequence, now in regards to the present and future as definend above .We show the 

result of the progressing  mean values (thus the mean of values of 1 to k where k =100,200…4900) of 

complexity measures values in figure(10B) across   all 400 temporal sequences  and the progressing  

mean values of complexity measures values across   all 100x400 of randomized temporality sequences  

and 

As can be seen in figure 9A-B the shape complexity measure grows always if we consider the present 

direction from past to future (9 A) in both past-present system and future to past in  the  future-present 

system,  where we set the positive direction  as for present moving from the past towards the future. The 

real temporal order of the sequances results in the present-past and present-future  system  complexity 

measure values to be  below the mean of the same systems that are randomized in a non- temporal order  
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Figure 9   Shape complexity measure of the p-adic representation in  the dendrogramic 3-body system. 

we created for that purpose 400 static dendrograms (each event was created in an increasing temporal 

manner) each with 5000 events/edges  A calculating for each sequence the mean  complexity measure of 

its first n values where n=100,200..4900. we show the mean±se of this mean value of across the  400 

dendrograms generated  in the past-present system when present move in the direction of the future. B 

calculating for each sequence the mean complexity measure of its first n values where n=100,200…4900. 

we show the mean±se of this mean value across the  400 dendrograms generated in the future-present 
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system and their mean value when present move in the direction of the future.  C  calculating for each 

sequence the mean complexity measure of its first n values where n=100,200…4900. we show the 

mean±se of this mean value across the  400 dendrograms generated in the past-present-future system 

when present move in the direction of the future.    

 

Again in both simulation, past to future and future to past , we have 𝑚1 increasing in size as a p-adic 

expansion string. Thus again one can argue that the size of the Universal past\future gets  larger  which 

influence the shape complexity measure  to go up. Thus we need to overcome the argument that one 

component’s p-adic string (𝑚1) in the 3 body system gets increasingly bigger. For that purpose we again 

defined the past, present  and future as 𝑚1 𝑎𝑛𝑑 𝑚2 as outlined above for h=50,51…4950  (thus moving 

the present each time one event to the future). As can be seen in the figure 10C, the shape complexity 

decreases when considering the whole system of past, present and future where we set the positive 

direction  as when the  present moves from the past towards the future .More over the real temporal order 

of the sequances results in both systems  mean complexity measure values that are above the mean of 

systems that are randomized in a non- temporal order.  

The above complexity measures are clearly rational numbers and as such not p-adic. Thus, we moved 

from the p-adic 1 bounded ball, where our dendrogram resides in, to the whole of the rational number 

field. This is an unwanted outcome. In order to overcome this problem we represented each complexity 

measure rational number as a p-adic expansion string and calculated the string complexity measure as 

outlined above. In the figure below we show the results of the “p-adic representation of the complexity 

measure” or as we call it the “double Shape complexity measure” 
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    Figure 10 double  Shape complexity measure of the p-adic representation in  the dendrogramic 3-body 

system. we created for that purpose 400 static dendrograms (each event was created in an increasing 

temporal manner) each with 5000 events/edges  A calculating for each sequence the mean double 

complexity measure of its first n values where n=100,200..4900. we show the mean±se of this mean value  

across the  400 dendrograms generated in the past-present system when present move in the direction of 

the future. B calculating for each sequence the mean double complexity measure of its first n values 
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where n=100,200…4900. we show the mean±se of this mean value across the  400 dendrograms 

generated in the future-present  system when present move in the direction of the future.  C  calculating 

for each sequence the mean double complexity measure of its first n values where n=100,200…4900. we 

show the mean±se of this mean value across the  400 dendrograms generated in the past-present-future 

system when present move in the direction of the future.    

 

 Please note that now the whole universe system goes up when the present progress to the future 

with an asymptote of the p-adic ball of 2 thus to 2^-1. The most interesting feature is revealed in the two 

top figures namely in the past and present system, where the present moves in the direction of the future, 

the complexity measure increases from  values greater then 2^-1 and approaches to values closer to 2^0 , 

while in the future and present system, where the present moves in the direction of the future, the 

complexity measure icreases from values greater  then  2^-2 and approaches to values closer to 2^-1. Thus 

the value 2^-1 or the p-adic 2 ball is the janus point of the two systems. These are two “separate” systems 

that operate dynamicaly on two different p-adic balls, where in both the time arrow is defined by the 

complexity measure. 

6. P-adic complexity measure of rational numbers 

Any rational number can be represented by its a p-adic expansion; thus again we can calculate its 

complexity measure of balls distribution as outlined above. We generated a  200 series of random 

numbers in the interval [0 1] . each series contained 5000 such random rational numbers which were 

created temporaly. For each random number we calculated its  complexity measure of balls distribution. 

For n=100,200…4900 we calculated the mean of the first number to the n’s complexity measure values 

(plot on the left). When we calculated from this rational number its double complexity measure value the  

double complexity measure of its p-adic expansion showed a reversed picture of temporality (on the right)  
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Figure 11 Shape complexity measure of the p-adic representation of a random number  . we created for 

that purpose 800 temporal sequences (each event/random number was created in an increasing temporal 

manner)  of 5000 random numbers we then calculated for each number in each  sequence its p-adic 

representation Shape complexity measure. A we then calculated for each sequence the mean complexity 

measure of its first n values where n=300,400,4900. we show the mean±se  across the 800  sequences. B 

we the calculated for each sequence the mean double complexity measure of its first n values where 

n=300,400,4900. we show the mean±se of this mean value of across the 800 sequences  

 Concluding remarks 

 

 DH-theory was created as the novel mathematical representation of natural phenomena which is an 

alternative to the standard space-time picture. Similarly, to, e.g. Smolin, Barbour, Rovelli [5-14], the 

universe is composed of events, so we work in the event-universe. In DH-theory elementary events are 

represented by branches of dendrograms (finite trees). We start the paper with formalization of DH-

theory, by listing and commenting its basic structures and briefly presenting its mathematical basis.  

 

 The main part of this paper is devoted to study of dynamics of the event-universe generated by 

appearance of new events. We found (via extensive numerical simulation) that surprisingly the 

dendrogramic space structure is relatively stable.  In principle, generation of new event can lead to total 

recombination of dendrogram’s branches. However, this is not the case (see histograms at figures of 

section 4). Even randomly generated events are concentrated at the special sectors of the natural number 
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representation of events (branches) and with high probability the rest of the dendrogram is only slightly 

modified or even stable. We can say that dendrogramic universe evolves towards a few special sectors 

and this specific evolution is not a consequence of special dynamical laws, but of the treelike structure of  

the event universe.  

 We show that given some initial data we can predict the future macro state of the system where this 

macro state corresponds to a complexity measure value that was first suggested by Barbour and here 

implemented on dendrograms and p-adic expansion strings. We note again that the ideology and 

principles of DH-theory are closely related to Shape dynamics (and in fact were inspired by some of the 

theory’s ideas). The complexity  scale free measure implemented on p-adic field defines the time arrow 

and combined with the dendrogram size and natural numbers probability densities can be used to predict 

the dynamical evolution of dendrograms as well as any random number generated sequence. Moreover 

we found that the two systems (past-present and present-future) follow the same time arrow, from past to 

future. The double p-adic complexity measure, demonstrates that these two systems operate in two 

distinct ranges of the p-adic field where opposite time directions move away from the 2-1 value. This 

result  is in good agreement with Barbour et al. studies of 3 body shape dynamics simulations. Thus 

overall the complexity of a system, even if randomly generated, increases. This in turn elevates problems 

with the entropic law where increasing disorder, which is in contradiction to the state of the universe, is 

always expected. We hope that these tools can be implemented in real systems that produce non-random 

signal in order to predict their dynamics ( in particular biological signals from EEG signals for prediction 

of unwanted events and condition [39])    

  

 DH-theory can be applied to model not only the physical, but even to biological evolution. Our result 

supports evolution theory in which the variety of new possible evolutionary events is constrained by the 

hierarchic relational (treelike) structure of previously happened events. But, this is the topic for a separate 

work.  

 

Acknowledgments: Varda and Boaz Dotan, Hirsha Leib Tsofnat and Abraham Shor  

 

Appendix A. Ultrametric Spaces, Trees, p-Adic Numbers  

I 

In this appendix, we follow the non-expert friendly presentation from paper [3]. In some 

applications, the point structure of a set X and the properties of a metric ρ may essentially differ from the 

Euclidean case. We are interested in metric spaces X where, instead of the standard triangle inequality, the 

strong triangle inequality, 

ρ (x, y) ≤ max[ρ(x, z), ρ(z, y)]                                                                            (A1) 

is valid. Such a metric is called an ultrametric, and such metric spaces are called ultrametric spaces. 

The strong triangle inequality can be stated geometrically: all triangles are isosceles. 

Let us discuss the main properties of ultrametric space X. We set 

Br(a) = {x ∈ X: ρ(x − a) < r}, Br ~ (a) = {x ∈ X: ρ(x − a) ≤ r}, r > 0, a ∈ X                                         

(A2) 

These are balls of the radius r with the center at the point a. Our standard intuition tells us that Br(a) 

is a closed ball, but not open, and Br ~ (a) is an open ball, but not closed. However, it is not valid for 

ultrametric spaces. 

In an ultrametric space, each ball in X is open and closed at the same time. Each point of a ball may 

serve as a center. A ball may have infinite radii. 
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Let U and V be two balls in ultrametric space X. Thus, there are only two possibilities: (1) the balls 

are ordered by inclusion (i.e., U ⊂ V or V ⊂ U); (2) the balls are disjointed. 

Thus, if two balls have a common point, then one has to be a part of another. 

The symbol Sr(a) denotes the sphere {x ∈ X: ρ(x, a) = r} of the radius r > 0 with the center 

at a. There is also a large deviation from the Euclidean case; the sphere Sr(a) is not a boundary of Br(a) 

or Br ~ (a). 

Consider the following class of ultrametric spaces (X, ρ). Every point x has an infinite number of 

coordinates  

                                                 x = (ao, a1, ..., an)…).  

 

Each coordinate yields a finite number of values a ∈ {0, ..., p − 1}, where p > 1 is a natural number. 

We denote the space of sequences (1) by the symbol X = Zp. The standard ultrametric is introduced in 

this set in the following way. 

Let x = (a0, a1, a2, ..., an), y = (b0, b1, b2, ..., bn) ∈ Zp. We set 

r_p (x, y) = l/pk   if aj = bj, j = 0, 1, ..., k − 1, and ak ≠ bk                                                                

(A3) 

This is a metric and even an ultrametric. To find the distance r_p(x, y) between two strings of 

digits, x and y, we have to find the first position k at which the strings have different digits. The space X 

= Zp coincides with the unit ball centered at zero, X = B1(0); this space is compact. Geometrically, it can 

be represented by the tree (see Figure A1 for the 2-adic tree representing Z2). Here, one vertex, the root 

labeled as R, is incidental for two edges and other vertices are incidental for three edges. We noticed that 

it is convenient to consider this tree as the directed graph; for each vertex I different from R, one edge 

comes from the branch starting at R, the “input edge”, and two edges go out from I, the “output edges”. 

These two edges (or vertices at their ends) are labeled by a = 0, 1. In Figure A1, the order of labeling of 

the output edges is based on the embedding of the tree in the plane, the upper output edges are labeled by 

0 and the lower by 1. This leads to the concrete numerical representation of this tree. However, the rule 

used for the labeling of edges is not obligatory; for each vertex I, we can assign 0/1 to each of the output 

edges in an arbitrary way and obtain another numerical representation of this tree. 

Any finite string, x = (ao, a1, ..., an), aj =0,1,.,, p-1, can be represented by the natural number which 

w.r.t. powers of p, p-adic  expansion,  is given by this string; in particular, if p=2, then this is the usual 

binary expansion of the natural number. Thus the set of natural numbers N is embedded into Zp for each p 

>1. An infinite string, x = (ao, a1, ..., an…), aj =0,1,.,, p-1,  is  represented by the power series converging 

w.r.t. the p-adic ultrametric. On the set of these series, one can define the operations of addition, 

subtraction, multiplication; they are obtained as extensions by continuity of the corresponding operations 

on natural numbers. (The set of natural numbers N is dense in Zp). In this paper, we considered only finite 

trees, i.e., their branches are encoded by finite strings of 0/1 (the 2-adic clustering algorithm was used). 

Thus we can operate on the set of natural numbers  N endowed with the ultrametric induced from Zp. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2022                   doi:10.20944/preprints202204.0193.v1

https://www.mdpi.com/1099-4300/23/8/971/htm#fig_body_display_entropy-23-00971-f0A1
https://doi.org/10.20944/preprints202204.0193.v1


 
                                                      Figure A1: 2-adic tree, geometric image of  Z2. 

 

Appendix B. 

Step 1. Producing an agglomerative hierarchical cluster binary tree from a 

temporal sequence of random number. 

Step 1.1  

Calculating the pairwise distance matrix: for a single 𝐸𝑣𝑒𝑛𝑡𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑗 ∈

1,2. . 𝑁 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 . 

We then calculated ‖𝐸𝑣𝑒𝑛𝑡𝑖 − 𝐸𝑣𝑒𝑛𝑡𝑗‖ where ‖ ‖ is the Euclidean 

distance between the  i’th event  and  j’th event. 

Step 1.2 

We used the ward’s linkage method to recursively link clusters 

according to the distance matrix. The ward’s linkage method calculates the 

increase in the total within-cluster sum of squares as a result of joining two 

clusters. The within-cluster sum of squares is defined as the sum of the 

squares of the distances between all objects in the cluster and the centroid of 

the cluster. The sum of squares metric we used is defined as: 

𝑑(𝑠, 𝑟) = √
2𝑛𝑠𝑛𝑟

(𝑛𝑠 + 𝑛𝑟)
||𝑥̃𝑠 − 𝑥̃𝑟||  

where 

‖ ‖ is the Euclidean distance. 

𝑥̃𝑠 and 𝑥̃𝑟are the centroids of clusters r and s. 

𝑛𝑠 and 𝑛𝑟 are the number of elements in clusters r and s. 

We then obtained, as an output from the ward’s linkage method, the 

agglomerative hierarchical cluster tree, returned as a numeric matrix Z 

which is an (𝑛 – 1)-by−3 matrix, where 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.  

Columns 1 and 2 of Z contain cluster indices linked in pairs to form a 

binary tree. The leaf nodes are marked as cluster indices from 1 to 𝑛. Leaf 
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nodes are the singleton clusters from which all higher clusters are built. 

Each newly formed cluster, corresponding to row Z(I,:), is assigned the 

index 𝑛 + I. The entries Z(I,1) and Z(I,2) contain the indices of the two 

component clusters that form cluster 𝑛 + I. The 𝑛– 1 higher clusters 

correspond to the interior nodes of the clustering tree. Z(I,3) contains the 

linkage distance between the two clusters merged in row Z(I,:). 

Step 2. Producing a p-adic scale free dendrogram from an agglomerative 

hierarchical cluster binary tree. 

Step 2.1 

Each leaf node of the agglomerative hierarchical cluster binary tree has 

a path from root to leaf. The leaf path passes 𝑚 nodes of bifuractions. Each 

node of bifurcation, in a leaf path, bifurcates right or left. Thus, each leaf 

path will be represented as a binary string,  𝑏𝑟𝑎𝑛𝑐ℎ𝑟  𝑟 ∈ 1,2. . 𝑛 𝑛 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.  

‐ The i’th (𝑖 ∈ 1,2. . 𝑚) position of the binary string will have the value 1 

if at the i’th node of bifurcation (𝑖 ∈ 1,2. . 𝑚) the path bifurcates right.  

‐ The i’th (𝑖 ∈ 1,2. . 𝑚) position of the binary string will have the value 0 

if at the i’th node of bifurcation (𝑖 ∈ 1,2. . 𝑚) the path bifurcates left. 

Step 2.2 

All 𝑏𝑟𝑎𝑛𝑐ℎ𝑟 will be joind to form a matrix D, which represents the p-

adic scale free dendrogram with 𝑛 number of rows and 𝑤 number of 

columns where 

𝑛 = 𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

𝑤 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑖′𝑡ℎ 𝑖𝑛 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑟 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 1 
 

Each 𝑏𝑟𝑎𝑛𝑐ℎ𝑟  i’th position that is bigger than its 𝑚 but smaller or equal 

to 𝑤 is filled with the value 0. 

Each row in the D matrix which represents a p-adic scale free dendrogram 

is a string with values of 0/1. 

Each such row represents the 𝑗′𝑡ℎ leaf node branch of the p-adic scale 

free dendrogram, 𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ 1,2. . 𝑛 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠. 
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