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To have a better protection, strong toughness and good flexibility, all lives and plants must have
skins, similarly, all books should have covers. In this paper, we follow in the footsteps of Poincloux et
al. [Phy.Rev.Lett. 126, 218004 (2021)] and extend their centerline-based theory from books without
covers to hardcover books with internal friction. Our investigations show that the hardcover are
more essential than the core layers in terms of bending response as well as energy absorption. The
central goal of studying the covered book is not only to predict the bending deformation of the
books, but also as a representative case to help finding some clue on the universal behaviours of
multilayered architectures with internal friction.

INTRODUCTION

To have a better protection, toughness, strength, shock
absorption and at same time still to maintain a good flex-
ibility, layered or laminated architectures with internal
sliding features are essential mechanism in natural and
man-made structural system [1, 2]. For example, scaled
skins are a very common structure in both the animal
kingdom and engineering applications, such as lizards,
fish, leaf springs, scaled armour, pangolin and books [1–
13] as shown in Fig.1.

FIG. 1: Layered architectures of fish scales, leaf springs, s-
caled armour, pangolin and books

In the deformation of the layered structures/system,
the interactions between layers play a central role in con-
trolling the overall mechanical performance of the sys-
tem, in particular the interlayered friction is crucial to
the response of elastic system. As pointed by Poincloux
et al. [1], it is a great challenging to predict how the mi-
croscopic architecture and interlayer interactions of a lay-

ered mechanical system give rise to a specific macroscopic
constitutive response, especially for large deformations.

For a multilayers plate with n layers having equal
thickness h, the total bending stiffness is nB for zero
interfacial friction, and n3B for infinite interfacial fric-
tion [14]. What is the bending stiffness of a multilayers
with internal friction ?

Bending stiffness =

 nB with zero friction
What ? with finite friction
n3B with infinite friction

Although we can’t give a definitive answer to this ques-
tion yet, we can still estimate that the stiffness of the mul-
tilayers must be bounded by scale of nB and n3B, where
the bending stiffness of a single layer, B = Eh3W

12(1−ν2) .
The problem is how to quantitatively determine the ef-

fective bending stiffness of the multilayers with internal
friction. Generally speaking, there are two approaches
to deal with this kind of problem, one is "top-down" and
another is "bottom-up" [10, 12, 13]. The "top-down"
is treating the multilayers as a single system and divide
it into several layers, formulating each layer and solv-
ing differential equation systems under both boundary
conditions and interlayers conditions. Obviously, the in-
terlayers conditions are difficulty to be defined due to
the sliding and discontinuation nature between layers.
The "bottom-up" can be viewed as the inversion of the
"top-down" and starting from a single layer and building
up layer by layer, clearly the the "bottom-up" approach
still faces the same challenge as the "top-down", i.e., the
problem of how to define the interlayer conditions. In
addition to the difficulty of the interlayers conditions,
both approaches face a same problem, that is, there are
too many unknowns in the governing equations, which
rapidly escalate with the increase of numbers of layers.

Based on the above analysis, it seems that neither ap-
proach is suitable. In order to resolve the issue, we must
find alternative way, and where is the way out?

Before Poincloux et al. [1], although there were some s-
tudies in other problem involving friction [15–17], howev-
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er, there is no general solution method to tackle friction,
especially when it couples with other ingredients, such
as elasticity, nonlinear geometry, and multiplicity of con-
tacts. Poincloux et al. [1] have made a breakthrough and
studied the multilayers plate with n layers having same
thickness h by performing precision nonlinear bending
tests of a multilayered stack of elastic plates interact-
ing solely through friction. They developed a centerline-
based theory by using dimension reduction procedure to
describe the stack as a nonlinear planar rod with internal
shear. They considered the coupling between the non-
linear geometry and the elasticity of the stacked plates,
treating the interlayer friction perturbatively. This mod-
el yields predictions for the stack’s mechanical response
in three-point bending that are in excellent agreemen-
t with their experiments. Remarkably, they found that
the energy dissipated during deformation can be rational-
ized over 3 orders of magnitude, including the regimes of
a thick stack with large deflection [1].

The success story of Poincloux et al. [1] suggests that
they may have found a new way out. So, what exact-
ly is their method? Although they have not provided
clear statement on their method, here we attempt to
summarize their method based on our own understand-
ing. Poincloux’s method can be interpreted as a modified
"bottom-up". This method consists of two steps, the first
step does not consider internal friction, but calculate the
deformation of the laminated structure and other phys-
ical quantities; the second step introduces friction. The
key to the success of this method is the first step, the ba-
sic idea of which can be understood in this way, that is,
firstly select a thickness middle line as the backbone line,
then start with a single layer analysis, and then carry out
continuation extension in the thickness direction; when
encountering a distance away from the centerline (back-
bone) in the process of continuous extension y, averaging
within each layer by Φ̄(s) ≈ 1

b−a
∫ b
a

Φ(s, η)dη, η ∈ [a, b],
and then adding up the averaging results. It is worth to
mention that the thickness parameter y is not a coordi-
nate and has nothing to do with the coordinates x1, x2

as shown in Fig.2.
The beauty of Poincloux’s modelling is converting the

governing ordinary differential equations into a single or-
dinary differential equation, which reduce the difficulties
of the problem dramatically.

As we known, in nature, all lives and plants must have
skins, similarly, all books should have covers. Although
Poincloux et al. [1] have not studied the book with cov-
ers, their method is quite general and able to be used
to treat other similar problems. To fill up the gap, in
this paper, we follow in the footsteps of Poincloux et al.
[1] and extend their centerline-based theory from books
without covers to the hardcover book with internal fric-
tion. Our later investigations show that the hardcover are
more essential than the core layers in terms of both bend-
ing response and energy absorption, which clearly indi-

FIG. 2: Modelling of a book with hardcover and coordinates.

cates the necessariness of studying the hardcover book.
The central goal of studying the covered book is not on-
ly to predict the bending deformation of the book, but
also as a representative case to help finding some clue
on the universal behaviours of multilayered architectures.
Therefore, it is worth to study the book mechanics prob-
lem even more further.

In this paper, Section 1 we first highlight the layered
architectures and its challenges. Section 2 we introduce
assumptions of theory and derive all formulations. In
Section 3, we discuss the power of bending and energy
dissipation. Section 4 we reduce the general formulations
to small deflection. Section 5 we present discussions of
some numerical studies. Finally, conclusions are drawn.

FORMULATIONS OF A BOOK WITH
INTERLAYER FRICTION

Problem and assumptions: Consider a hardcover book
in Fig.2 whose layout is denoted [c|h...h︸︷︷︸

n

|c]. The book

length is L and width is W , top/bottom hardcover
thickness are c. The plate has n core layers and each
layer thickness is h, hence book stack dimensions is
L ×W × (nh + 2c), where nh + 2c is total plate thick-
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ness (height). The Young’s modular and Poisson ratio of
both the core sheet and hardcover are Ec, E and νc, ν,
respectively.

For investigation of the stack with interlayer friction,
following assumptions will be adopted: 1. The Kirchhoff
hypothesis is applied; 2. Each layer is inextensible; 3. No
delamination; 4. Interlayers can slide with friction.

Interlayers can slide with friction consists of the fol-
lowing contents: (1) Displacements along arc direction
on the interface are discontinue (1) Displacement along
arc direction of each layer are different; (3) Both shear
strain and shear stress on the interface are also discon-
tinue.

The typical multilayer is illustrated in Fig.3.

FIG. 3: Tangent angle θ versus arc length s̃ along the upper-
and lowermost

As we stated in the introduction, Poincloux’s method
is starting from the single layer and then representing
all offset layer’s quantities in terms of centerline’s ones.
These can be done is because of applying the assumptions
of the theory, we can find the multilayers deform collec-
tively with same rotation θ(s) and transverse displace-
ment w(s). Then by summing all averaged quantities,
we can get the resultant quantities of the book, such as
moment and bending energy etc. Since the book is sub-
jected to a transverse load that is uniform at any section
parallel to the s-axis. In such a case, the deflection w
and other quantities of the book are functions of only s.
Therefore, all derivatives with respect to the width are
zero. In such cases, the deflected surface of the book is
cylindrical, and it is referred to as the cylindrical bend-
ing, which can be formulated by theory of rod or beam
in plane stress along the direction of width.

Single layer formulations: The centerline of each layer
is represented by an inextensible curve x(s) with arch
length s and curvature κ(s), where s is reserved for arch
lengths measured along the layer’s centerline, whereas s̃
pertains to the arch length along a off-centerline. The
transverse coordinate y varies from −h/2 at the lower-
most plate to h/2 at the uppermost one.

Assume x(s) as a reference (middle) centerline and
n(s) as the unit normal vector to the centerline of inex-
tensible planar curve. The unit tangent of the centerline

is given by

t =
dx

ds
, |t| = 1, (1)

which is orthogonal to the normal, ie., t · n = 0. The
curvature of the reference (middle) inextensible curve is

κ(s) =
dθ

ds
= |d

2x

ds2
| = |dt

ds
|, (2)

where θ is denoted as the angle between t and horizontal
axis x1. From the planar Frenet’s frame formula, we have
dt
ds = −κn and dn

ds = κt.
The displacement of points with the off the centerline

y is uy(s) = u(s) + (n −N)y, where u(s) is displace-
ment of the points on the centerline. With the Kirchhoff
hypothesis, n −N = θes, where θ(s) is rotation of the
normal of the centerline and equals to the tangent of the
line, i.e., θ = | dtds |, therefore we have displacement com-
ponents in both arch direction uy(s) = u(s) + θy and in
y direction wy(s) = w(s).

Owing to the assumption of inextensible planar curve,
du
ds = 0, hence the strain is

ε = y
dθ

ds
= y(κ− κ0, ) (3)

where the initial curvature κ0.
Plane stress applies to a sheet of material in which the

stress in the thickness direction is much lower than the
stresses within the plane [14]. The stress in the thickness
direction is taken as zero. The offset centerline stress is
expressed as

σ =
E

1− ν2
ε =

E

1− ν2
y(κ− κ0). (4)

The bending moment of a typical layer with thickness h
is defined by M` = 1

2

∫ h
2

−h
2

y(σWdy), where y ∈ [−h2 , h2 ]

and lower index L denotes as "layer", hence

ML =
1

2

∫ h
2

−h
2

y(
E

1− ν2
yκWdy) = B(κ− κ0), (5)

where the bending stiffness of a single layer is B =
Eh3W

12(1−ν2) . The relation reveals that the bending moment
is linear proportional to the curvature.

The bending energy of the layer with thickness h is
defined as Π` = 1

2

∫
Mκds = B

2

∫
(κ− κ0)2ds, hence

ΠL =
B

2

∫
(κ− κ0)2ds. (6)

This relation indicates the bending energy has linkage
with the square of the curvature. In this study, the initial
curvature is assumed as zero, namely κ0 = 0.

Multilayers formulations: Once we have the single lay-
er formulations, we can formulate the multilayers struc-
ture. If we extend the thickness coordinate y to multi-
layers thickness, the final position of a point belonging to
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the layer offset by y from the stack’s centerline is written
as

x̃(s, y) = x(s) + n(s)y, (7)

where x(s) = x1(s)e1 + x2(s)e2 is a reference inexten-
sible planar curve of centerline, n(s) is the unit normal
vector to the centerline(Notes: To prevent too many no-
tations, we use the same notion as the single layer, but
with different meaning, heren x(s) is the centerline (back-
bone) curves of multilayers, which was denoted as xbb in
Poincloux et al. [1]).

The centerline of the stack is represented an inextensi-
ble curve x(s) with arch length and curvature κ(s), where
s is reserved for arch lengths measured along the stack’s
centerline, whereas s̃ pertains to the arch length along
a specific layer. The transverse coordinate y varies from
−(nh+ c)/2 at the lowermost plate to (nh+ c)/2 at the
uppermost one.

The arc length s̃ on the offset curve is giv-
en by ds̃ =

√
ds̃2 =

√
dx̃(s, y) · dx̃(s, y) =

ds
√

(t + y dnds ) · (t + y dnds ). Applying the Frenet’s formu-
la, we have

ds̃ = ds
√

1 + 2yκ+ y2κ2 = (1 + yκ)ds, (8)

Interlayer shear is measured by ds̃−ds = 1+yκ due to the
combined effects of curvature and sheet inextensibility.

The tangent of offset curves is defined as t̃ = dx̃
ds̃ , which

leads to t̃ = (1+yκ)−1(t+y dnds ) = (1+yk)−1(1+yκ)t = t.
This indicate that the offset curves remains parallel to the
centerline x. The curvature of offset curves is given by

κ̃ =
dθ

ds̃
=

dθ

(1 + yk)ds
=

κ

1 + yκ
. (9)

The bending moment of the layer offset y are

ML = Bκ̃ = B
κ

1 + yκ
(10)

The bending moment : The bending moment of the s-
tack is the summation of hardcover and core layer’s bend-
ing moment, i.e., M = MBottom +

∑
M` + MTop, where

MBottom = Ecc
3W

12(1−ν2
c ) κ̃Bottom = Ecc

3W
12(1−ν2

c ) ( κ
1+yκ )Bottom,

MCore = Eh3W
12(1−ν2) κ̃Core = Eh3W

12(1−ν2) ( κ
1+yκ )Core, and

MTop = Ecc
3W

12(1−ν2
c ) κ̃Top = Ecc

3W
12(1−ν2

c ) ( κ
1+yκ )Top.

The problem we are facing is that the bending mo-
ments are the function of y within each layer, according
to Poinclous’s method, we can get rid of it by averaging
them in the domain of y as follows:

Φ̄(s) ≈ 1

y2 − y1

∫ y2

y1

Φ(s, y)dy, y ∈ [y1, y2]. (11)

Therefore, we have

MBottom =
Ecc

3W

12(1− ν2
c )

(
κ

1 + yκ
)Bottom

≈ Ecc
3W

12(1− ν2
c )

(
1

c

∫ −nh
2

−nh
2 −c

κ

1 + yκ
dy

)

=
Bc
c

ln
1− nh

2 κ

1− (nh2 + c)κ
, (12)

where hardcover’s bending stiffness is Bc = Ecc
3W

12(1−ν2
c ) . In

the same way, we have

MTop =
Ecc

3W

12(1− ν2
c )

(
κ

1 + yκ
)Top

≈ Ecc
3W

12(1− ν2
c )

(
1

c

∫ nh
2 +c

nh
2

κ

1 + yκ
dy

)

=
Bc
c

ln
1 + (nh2 + c)κ

1 + nh
2 κ

, (13)

and∑
ML =

∑
B(

κ

1 + yκ
)`

≈ B[
1

h

∫ −nh
2 +h

−nh
2

κ

1 + yκ
dy +

1

h

∫ −nh
2 +2h

−nh
2 +h

κ

1 + yκ
dy

+ ... +
1

h

∫ nh
2 −h

nh
2 −2h

κ

1 + yκ
dy +

1

h

∫ nh
2

nh
2 −h

κ

1 + yκ
dy]

=
B

h

∫ nh
2

−nh
2

κ

1 + yκ
dy =

B

h
ln

1 + nh
2 κ

1− nh
2 κ

,

(14)

Hence, we have the total resultant bending moment as
follows

M =
B

h
ln

1 + nh
2 κ

1− nh
2 κ
− Bc

c
ln

1 + nh
2 κ

1− nh
2 κ

+
Bc
c

ln
1 + (nh2 + c)κ

1− (nh2 + c)κ
. (15)

If c = h, for a book-like-plates with n + 2 layers, the
bending moment isM = B

h ln
1+

(n+2)h
2 κ

1− (n+2)h
2 κ

, and for the plate

with n layers, M = B
h ln

1+ nh
2 κ

1−nh
2 κ

.
The relation between M and κ is nonlinear, hence the

incremental stiffness is defined as KNlin = dM
dκ , hence

KNlin =
B

h

nh

1− (nh2 κ)2
− Bc

c

nh

1− (nh2 κ)2

+
Bc
c

nh+ 2c

1− [(nh2 + c)κ]2
. (16)

In the linear case of small deflection with small curvature
1− (nh2 κ)2 ≈ 1, the above stiffness can be approximated
asKLin ≈ nB+2Bc, which will be used in the last section.
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The bending energy: The bending moment of
the book is the summation of hardcover and core
layer’s bending energy, i.e., ΠB = ΠBottom +∑

Π` + ΠTop, where ΠBottom = 1
2 (
∫
M̃κ̃)Bottomds̃ =

1
2 (
∫
Bcκ̃

2)Bottomds̃ = 1
2 [Bc

∫
( κ

1+yκ )2(1 + yκ)ds]Bottom =
1
2 [Bc

∫
κ2

1+yκds]Bottom, ΠCore = 1
2 [Bc

∫
κ2

1+yκds]Core, and

ΠTop = 1
2 [Bc

∫
κ2

1+yκds]Top.
The problem we are facing is that the bending energy

are also the function of y within each layer, in the same
way, we can also get rid of it by averaging method as
stated before. Therefore, we have

ΠBottom =
1

2
[Bc

∫
κ2

1 + yκ
ds]Bottom

≈ 1

2
Bc

∫ [(
1

c

∫ −nh
2

−nh
2 −c

κ2

1 + yκ
dy

)]
ds

=
Bc
c

∫
κ ln

1− nh
2 κ

1− (nh2 + c)κ
ds, (17)

Similarly, we have

ΠTop =
1

2
[Bc

∫
κ2

1 + yκ
ds]Top

≈ 1

2
Bc

∫ [(
1

c

∫ nh
2 +c

nh
2

κ2

1 + yκ
dy

)]
ds

=
Bc
c

∫
κ ln

1 + (nh2 + c)κ

1 + nh
2 κ

ds, (18)

and∑
ΠL =

∑ 1

2
[B

∫
κ2

1 + yκ
ds]`

≈ 1

2
B

∫
[
1

h

∫ −nh
2 +h

−nh
2

κ2

1 + yκ
dy +

1

h

∫ −nh
2 +2h

−nh
2 +h

κ2

1 + yκ
dy

+ ... +
1

h

∫ nh
2 −h

nh
2 −2h

κ2

1 + yκ
dy +

1

h

∫ nh
2

nh
2 −h

κ2

1 + yκ
dy]ds

=
B

h

∫ (∫ nh
2

−nh
2

κ

1 + yκ
dy

)
ds

=
1

2

B

h

∫
κ ln

1 + nh
2 κ

1− nh
2 κ

ds,

(19)

Hence, we have the total bending energy

ΠB =
1

2

∫ `

−`
κ

[
B

h
ln

1 + nh
2 κ

1− nh
2 κ
− Bc

c
ln

1 + nh
2 κ

1− nh
2 κ

+
Bc
c

ln
1 + (nh2 + c)κ

1− (nh2 + c)κ

]
ds, (20)

Notice the bending moment in Eq.15, we have a simpler
form of bending energy as follows

ΠB =
1

2

∫ `

−`
Mκds, (21)

If c = h, for a book-like-plates with n layers, the bending
energy is ΠB = B

2h

∫
κ ln

1+ nh
2 κ

1−nh
2 κ

ds, which was obtained
by [1].

Equilibrium equation: To derive equilibrium equation
of the stack, we can write down its total energy Π =
ΠB −ΠP , where the work done by force F1 and F2 is

ΠP = 2

∫ `

0

(
−F1 cos θ +

F2

2
sin θ

)
ds. (22)

From variational principle, δΠ = δΠB − δΠP = 0, and
take into account of the symmetry of the deformation,
we can get

δ
1

2

∫ `

0

Mκds−
∫ `

0

[F1 sin θ +
F2

2
cos θ]δθds = 0. (23)

Since κ = dθ
ds , then δk = δ dθds = d

ds (δθ). Executing the
above variational and integrating by parts, we have

1

2

[
(M + κ

dM

dκ
)δθ

]`
0

− 1

2

∫ `

0

[
dM

ds
+

d

ds
(κ
dM

dκ
)]δθds

−
∫ `

0

[F1 sin θ(s) +
F2

2
cos θ(s)]δθds = 0

(24)

Owing to the arbitrary nature of the variational δθ, the
above variational will give us equilibrium equation

δθ :
dM

ds
+

d

ds
(κ
dM

dκ
) + 2F1 sin θ(s) + F2 cos θ(s) = 0,

(25)
and boundary condition at s = 0 and s = L[

(M + κ
dM

dκ
)δθ

]`
0

= 0. (26)

Since dM
dκ = B

h
nh

1−( nh
2 κ)2

− Bc

c
nh

1−( nh
2 κ)2

+
Bc

c
nh+2c

1−[( nh
2 +c)κ]2

, we have dM
ds + d

ds (κdMdκ ) =

2
{

2B
h

nh
2 θ
′′

[1−( nh
2 θ
′)2]2
− 2Bc

c

nh
2 θ
′′

[1−( nh
2 θ
′)2]2
− 2Bc

c

( nh
2 +c)θ′′

[1−[( nh
2 +c)θ′]2]2

}
,,

where θ′ = dθ(s)
ds and θ′′ = d2θ(s)

ds2 .
The equilibrium equation in Eq.25 can be expressed as

follows

h

c

(n+ 2c/h)Bcθ
′′

[1− [(nh2 + c)θ′]2]2︸ ︷︷ ︸
Top

+
nBθ′′

[1− (nh2 θ
′)2]2︸ ︷︷ ︸

Core

− h

c

nBcθ
′′

[1− (nh2 θ
′)2]2︸ ︷︷ ︸

Bottom

+F1 sin θ +
F2

2
cos θ = 0, (27)

where the underbraces indicate the contribution from top
cover, core and bottom cover, respectively. This differ-
ential equation is a strong nonlinear and has to be solved
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numerically. We have written a Matlab code to find its
numerical solutions.

Owing to the symmetric deformation, the rotation
θ = 0 at s = 0, however at s = L the rotation is un-
known, therefore the boundary conditions in Eq.26 will
be simplified to θ(0) = 0,

(
M + κdMdκ

)
s=`

= 0. Since at
s = `, the end is fee and we can enforce the boundary
condition θ′(`) =, i.e., κ(`) = 0, which leads toM(`) = 0,
therefore we have boundary conditions

θ(0) = 0, θ′(`) = 0. (28)

Eq.27 is the equilibrium equation of the books with
hardcover. For the case of c = h and n→ n−2, the above
equilibrium equation will be reduced to the equilibrium
equation derived by Poincloux et al. [1].

To find the centerline curves, we need to reconstruct it
from the rotation by dx1(s)

ds = cos θ(s), dx2(s)
ds = sin θ(s).

The boundary conditions are (θ,x1,x2)|s=0 = (0, 0,−w0)
and (θ′,x1,x2)|s=` = (0, a − b sin θ(`), b(cos θ(`) − 1)),
with b = b0 + nh/2 as the effective radius of the
support. At s = `, the balance relation is satisfied:
−F1 cos θ(`) + F2/2 sin θ(`) = 0.

Interfacial stress in terms of backbone solution: Now
we need to analysis the interfacial interactions so that
we introduce the fiction. It is clear that each layer must
be in a balance state if the stack in equilibrium balance.
Poincloux et al. [1] derived all formulation in this sub-
section based on ds̃ = (1 − yκ)ds).. For self-contained
purpose, we reformulate the relevant quantities based on
ds̃ = (1 + yκ)ds).

Equilibrium equations of a layer

∂M̃(s̃, y)

∂s̃
− Q̃(s̃, y) = 0 (29)

∂Ñ(s̃, y)

∂s̃
+ κ̃(s̃, y)Q̃(s̃, y) = 0 (30)

∂Q̃(s̃, y)

∂s̃
− κ̃(s̃, y)Ñ(s̃, y) + p̃n(s̃, y) = 0. (31)

Shear force in a layer

Q̃(s̃, y) =
∂M̃(s̃, y)

∂s̃
=

1

1 + yκ

∂M̃(s̃, y)

∂s

=
1

1 + yκ

∂Bκ̃(s̃, y)

∂s
=

B

1 + yκ

∂

∂s
(

κ

1 + yκ
)

=
B

1 + yκ
(

1

1 + yκ

∂κ

∂s
+

yκ

(1 + yκ)2

∂κ

∂s
)

=
B

(1 + yκ)3

dκ

ds
=

B

(1 + yκ)3
θ′′. (32)

Membrance force in a layer

∂Ñ(s̃, y)

∂s̃
= −κ̃(s̃, y)Q̃(s̃, y) = − κ

1 + yκ
Q̃(s̃, y)

= − κ

1 + yκ

B

(1 + yκ)3

dκ

ds
(33)

leads to

∂Ñ(s, y)

∂s
= − Bκ

(1 + yκ)3

dκ

ds
= −B

y2

yκ

(1 + yκ)3

d(yκ)

ds

= −B
y2

d

ds

[
1

2
(

yκ

1 + yκ
)2

]
= −B

2

d

ds
(

κ

1 + yκ
)2.

(34)

Integration respect to s, and taking into account of jump
condition ‖Ñ‖` = 0, we have

Ñ(s, y) = −B
2

(
κ

1 + yκ
)2 + C(y)︸ ︷︷ ︸

=0

(35)

Layer normal stress: Let us evaluate the normal stress
applied by the neighbors to a given layer p̃nds̃ for s < `,
we have

p̃nds̃ = p̃n(1 + yκ)ds

= −

[
∂Q̃(s̃, y)

∂s̃
− κ̃(s̃, y)Ñ(s̃, y)

]
(1 + yκ)ds

= −

[
∂Q̃

∂s
− κÑ

]
ds

= −B
[
∂

∂s
(

1

(1 + yκ)3

dκ

ds
) +

κ

2
(

κ

1 + yκ
)2

]
ds, (36)

hence

p̃n(1 + yκ) = −B
[
∂

∂s
(

1

(1 + yκ)3

dκ

ds
) +

κ

2
(

κ

1 + yκ
)2

]
= −B

[
1

(1 + yκ)3

d2κ

ds2
− 3y

(1 + yκ)4
(
dκ

ds
)2 +

κ

2
(

κ

1 + yκ
)2

]
,

(37)

If denote Σ(s, y) as the normal stress at the plate-plate
interfaces. The normal force applied by the plate above
the plate having coordinate y, over an interface element
with length ds̃, is there −Σ(s, y+h/2), the net force expe-
rienced by the plate from the adjacent plates is therefore
Σ(s, y+h/2)−Σ(s, y−h/2) = h∂(1+yκ)

∑
∂y = p̃nds̃, which

can be rewritten as

h
∂[(1 + yκ)Σ]

∂y
= p̃n(1 + yκ) (38)

This equation can be integrated with respect to y, using
the free boundary conditions at top and bottom of the
stack Σ(s,±(nh/2 + c)) = 0, if we start integration from
the bottom cover at y = −(nh2 +c), this yields the normal
stress in the elastic backbone solution as

Σ(s, y) =
1

h(1 + yκ)

∫ y

−nh/2−c
(p̃n(s, ξ)(1 + ξκ))Bottom dξ,

y ∈ [−nh− c,−nh/2],
(39)
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Σ(s, y) =
1

h(1 + yκ)

∫ −nh/2
−nh/2−c

(p̃n(s, ξ)(1 + ξκ))Bottom dξ

+
1

h(1 + yκ)

∫ y

−nh/2
(p̃n(s, ξ)(1 + ξκ))Core dξ,

y ∈ [−nh/2− c,nh/2],
(40)

Σ(s, y) =
1

h(1 + yκ)

∫ −nh/2
−nh/2−c

(p̃n(s, ξ)(1 + ξκ))Bottom dξ

+
1

h(1 + yκ)

∫ nh/2

−nh/2
(p̃n(s, ξ)(1 + ξκ))Core dξ

+
1

h(1 + yκ)

∫ y

nh/2

(p̃n(s, ξ)(1 + ξκ))Top dξ,

y ∈ [nh/2− c,nh/2 + c],
(41)

where (p̃n(s, ξ)(1 + ξκ))Bottom = −Bc[ 1
(1+ξκ)3

d2κ
ds2 −

3ξ
(1+ξκ)4 (dκds )2 + κ

2 ( κ
1+ξκ )2], (p̃n(s, ξ)(1 + ξκ))Core =

−B[ 1
(1+ξκ)3

d2κ
ds2 − 3ξ

(1+ξκ)4 (dκds )2 + κ
2 ( κ

1+ξκ )2], and

(p̃n(s, ξ)(1 + ξκ))Top = −Bc[ 1
(1+ξκ)3

d2κ
ds2 −

3ξ
(1+ξκ)4 (dκds )2 +

κ
2 ( κ

1+ξκ )2].
Normal stress-singular contribution from two rollers:

The expression in Eq.41 for the normal stress is valid
away from the points s = −`, 0, `, where point-like forces
applied. The singular normal stress at the point of inden-
tation s = 0 is not needed because the sliding velocity of
the plates is zero there by symmetry, implying that there
is no frictional dissipation.

Due to the symmetry of deformation, we only need to
derive the singular force at the roller s = `, where the
loint-like net normal force p̃Dn is applied to each plate,
and leads to the following balance of force and moments,

‖Q̃‖` + p̃Dn = 0, ‖Ñ‖` = 0, ‖M̃‖` = 0, (42)

where ‖f‖` = f(`+, y)− f(`−, y) denotes the discontinu-
ity of a function f across the point s = `, namely a jump
at s = `. ‖Ñ‖` = 0 has been used to determine Ñ .

Since M = Bκ̃, thus ‖M‖` = M(`+) − M(`−) = 0
implies κ((`+)) − κ(`−) = 0. Since beyond the point at
s = `, the plates have no deformation but rigid rota-
tion, it means that κ(`+) = 0, therefore κ(`−) = 0 and
d
dsκ(`+) = 0.
Substituting Q̃ = B

(1+yκ)3
dκ
ds into the Eq.42, we

have ‖Q̃‖` = ‖ B
(1+yκ)3

dκ
ds ‖` =

(
B

(1+yκ)3
dκ
ds

)
`+
−(

B
(1+yκ)3

dκ
ds

)
`−

= B
(
dκ
ds

)
`+
− B

(
dκ
ds

)
`−

= −B
(
dκ
ds

)
`−
,

we have

−B
(
dκ

ds

)
`−

+ p̃Dn = 0 (43)

In the same way, we have the normal stress at `, namely(
h∂Σ(1+yκ)

∂y

)
`

= (p̃n(1 + yκ))`, we have

−nh
2
− c < y < −nh

2
: c
∂Σ

∂y
= p̃n,

−nh
2
< y <

nh

2
: h
∂Σ

∂y
= p̃n,

nh

2
< y <

nh

2
+ c : c

∂Σ

∂y
= p̃n, (44)

and surface boundary conditions ΣD(−nh/2 − c) = |F |
and ΣD(nh/2 + c) = 0.

Similar to the treatment by Poincloux et al.,[1], for the
book with two hardcover, the singular contribution to the
transverse stress at s = ` can be obtained by

ΣD(y) = |F |(1

2
− y

nh+ 2c
), (45)

which satisfies the surface conditions at both bottom and
top covers, namely ΣD(±(nh/2 + c)) = 0, where F =
−F1e1 + F2

2 e2 is the point-like force applied by the rollers

below y and |F | =
√
F 2

1 +
F 2

2

4 .
Sliding velocity : Similar to the treatment by Poincloux

et al.,[1], we have the sliding displacement u(s, y) = s̃−s,
then ∂u

∂s = ∂s̃
∂s − 1 = (1 + yκ)− 1 = yκ = y dθds , hence

u(s, y) = yθ(s). (46)

Applying this to a single layer with thickness h, we have
relative displacement at the interface

δ(s, y) = s̃(s, y +
h

2
)− s(s, y − h

2
) = hθ. (47)

The time derivative of this relation gives the relative s-
liding velocity

δ̇ = (s, y) = hθ̇(s). (48)

POWER DISSIPATION BY FRICTION FORCES

In order to take into account the contribution of the
interlayers friction, we need to investigate the energy dis-
sipation caused by the friction. Without loss generality,
we assume the dynamical process is quasi-static.

The interlayer energy dissipation between the two
rollers is

P1 =

∫ L

−L
µ(Σ)|δ̇|ds̃ = µ

∫ L

−L
|δ̇|(Σ)(1 + yκ)ds (49)

From Eq.38, h∂[(1+yκ)Σ]
∂y = p̃n(1 + yκ), we have h(1 +

yκ)Σ =
∫
p̃n(1 + yκ)dy for a plate with thickness h. Av-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2022                   doi:10.20944/preprints202204.0178.v1

https://doi.org/10.20944/preprints202204.0178.v1


8

eraging along the y, we have

P1 =

∫ L

−L
µ(Σ)|δ̇|ds̃ = µ

∫ L

−L
|δ̇| 1
h

(∫
p̃n(1 + yκ)dy

)
ds

= µ

∫ L

−L
c|θ̇|1

c

(∫ −nh/2
−nh/2−c

p̃n(1 + yκ)dy

)
ds

+ µ

∫ L

−L
h|θ̇| 1

h

(∫ nh/2

−nh/2
p̃n(1 + yκ)dy

)
ds

+ µ

∫ L

−L
c|θ̇|1

c

(∫ nh/2

nh/2−c
p̃n(1 + yκ)dy

)
ds

= µ

∫ L

−L
|θ̇|(JBottom + JCore + JTop)ds

(50)

Taking into account symmetry and θ = 0 if s ∈ [`,L], we
have

P1 = 2

∫ `

0

µ|θ̇(s)|R(s)ds (51)

where R(s) = JBottom + JCore + JTop and

JBottom =

∫ −nh/2
−nh/2−c

(p̃n(s, ξ)(1 + ξκ))Bottom dξ,

JCore =

∫ nh/2

−nh/2
(p̃n(s, ξ)(1 + ξκ))Core dξ,

JTop =

∫ nh/2+c

nh/2

(p̃n(s, ξ)(1 + ξκ))Top dξ,
(52)

We can complete the above integrations and give us

JBottom = −Bc(c11κ
′′ − c12κ

′2 + c13κ
3),

JCore = −B(c21κ
′′ − c22κ

′2 + c23κ
3),

JTop = −Bc(c31κ
′′ − c32κ

′2 + c33κ
3), (53)

where the coefficients c11 = − 1
2κ (−hκn2 + 1)−2 +

1
2κ [(−nh2 − c)κ+ 1]−2, c12 = 1

2κ2 ( 3hκn
2 − 1)(−hκn2 +

1)−3 + 1
2κ2 [3(nh2 + c)κ + 1][(−nh2 − c)κ + 1]−3,

c13 = − 1
κ (−hκn2 + 1)−1 + 1

κ ((−nh2 − c)κ+ 1)−1,
c21 = − 1

2κ (hκn2 + 1)−2 + 1
2κ (−hκn2 + 1)−2,

c22 = − 1
2κ2 ( 3hκn

2 + 1)(hκn2 + 1)−3 −
1

2κ2 ( 3hκn
2 − 1)(−hκn2 + 1)−3, c23 =

− 1
2κ2 ( 3hκn

2 + 1)(hκn2 + 1)−3 −
1

2κ2 ( 3hκn
2 − 1)(−hκn2 + 1)−3, c31 =

− 1
2κ ((nh2 + c)κ+ 1)−2 + 1

2κ (−hκn2 + 1)−2,
c32 = − 1

2κ2 (3(nh2 + c)κ+ 1)((nh2 + c)κ+ 1)−3 −
1

2κ2 ( 3hκn
2 − 1)(−hκn2 + 1)−3, c33 =

− 1
κ ((nh2 + c)κ+ 1)−1 + 1

κ (−hκn2 + 1)−1.
Collecting the above results, we can rewrite R(s) as

R(s) = [(c11 +B31)Bc + c21B]θ′′′

− [(c12 +B32)Bc + c22B]θ′′

+ [(c13 +B3)Bc + c23B]θ′ (54)

The power P2 dissipated by friction caused by the
Dirac-like contribution at s = ` gives

P2 = µΣD|δ̇| = µ|F ||δ̇|(1

2
− y

nh+ 2c
)

≈ µ|F |[ 1
c

∫ −nh/2
−nh/2−c

c|θ̇|(1

2
− y

nh+ 2c
)dy

+
1

h

∫ nh/2

−nh/2
h|θ̇|(1

2
− y

nh+ 2c
)dy

+
1

c

∫ nh/2+c

nh/2

c|θ̇|(1

2
− y

nh+ 2c
)dy]

= µ|F ||θ̇|
∫ nh/2+c

−nh/2−c
(
1

2
− y

nh+ 2c
)dy

= µ(
nh

2
+ c)|F ||θ̇ (55)

Finally, the power dissipated by friction in the entire s-
tack is

Pµ = P1 + 2P2

= µ(nh+ 2c)|F |θ̇ + 2

∫ `

0

µ|θ̇(s)|R(s)ds, (56)

where the factor 2 is because there are two rollers.
The first term in Eq.56 represents the dissipation in

the stack by the pointlike contact force at the supports,
while the second term is the dissipation everywhere elase
in the stack. By symmetry, there is no sliding hence no
dissipation at the poking point at s = 0. The poking
force is then derived by a globe balance of power as

F2ẇ0 = −Ė + Pµ, (57)

hence F2 = (−Ė + Pµ)/ẇ0. Whereas ẇ0 and Ė change
sign between loading and unloading, Pµ does not change,
implying that F2 is different during the loading and un-
loading phases.

THE SMALL DEFLECTION AND ITS
GENERALIZATION

For small deflection w0/a � 1 and slender stack
nh/a� 1. In this case, we have approximations cos θ ≈
1, sin θ ≈ θ and ` = a. The linearized equilibrium equa-
tion and boundary conditions can be obtained as follows

(nB + 2Bc)θ
′′ +

F2

2
= 0,

dx2

ds
= θ, (58)

x2(0) = −w0, x2(a) = 0, θ(0) = 0,
dθ

ds
(a) = 0. (59)

The solutions are

θ(s) =
F2a

2

2

1

nB + 2Bc

[
s

a
− 1

2
(
s

a
)2

]
,

x2(s) =
F2a

3

4

1

nB + 2Bc

[
−[1− (

s

a
)2] +

1

3
[1− (

s

a
)3]

]
.

(60)
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Notice x2(0) = −w0, we get a linear indentation relation
F2 = 6

a3 (nb + 2Bc)w0. This linear law gives the elastic
energy of the stack, namely E = 1

2

∫ w0

0
F2dw0 = 3

a3 (nB+

2Bc)w
2
0, and its power Ė = 6

a3 (nB + 2Bc)w0ẇ0.
Similar to the point of view Poincloux [1], for linear

case, one finds p̃n = 0 and each layer is in equilibrium
and gives normal stress Σ(s, y) = 0. Therefore, the power
dissipation of interlayeres is zero, namely P1 = 0. The
only power dissipation is from rollers, reads Pµ = µ(nB+

2Bc)
F2

2 θ(a), notice θ(a) = F2a
2

4(nb+2Bc) = 3
2aw0, hence the

total power dissipation is

Pµ = 2P2 =
9

2
µ
nh+ 2c

a4
(nB + 2Bc)w0|ẇ0| (61)

From power energy balance, F2ẇ0 = −Ė + Pµ, we have
the indentation force at rollers in loading (+) and un-
loading (-) as

F2 =
6

a2
KLin

w0

a
. (62)

where the incremental stiffness with internal friction is

KLin = (nB + 2Bc)

(
1± 3

4
µ
nh+ 2c

a

)
. (63)

This indicates the stiffness caused by the internal friction
is stiffening upon loading and softening upon unloading.

If we denote the bending stiffness of the backbone with-
out friction as

Km,bb = nB + 2Bc, (64)

then we have the bending stiffness ratio influenced by the
internal friction as follows

KLin

Km,bb
− 1 = ±3

4
µ
nh+ 2c

a
. (65)

The energy dissipation during one cycle of loading and
unloading is given by

DLin =

∫ wmax
0

0

F+
2 dw0 −

∫ wmax
0

0

F−2 dw0

=
9

2
µ

(
wmax

0

a

)2(
nh+ 2c

a

)
(nB + 2Bc). (66)

If the book covers are layout in symmetric to the cen-
terline of the stack, i.e., [c1|c2...|ck|h...h︸︷︷︸

n

|ck|...|c2|c1], the

above results in small deflection can be approximately
generalized, because the balance equation in this case is

(nB + 2

k∑
i=1

ci)θ
′′ +

F2

2
= 0,

dx2

ds
= θ, (67)

x2(0) = −w0, x2(a) = 0, θ(0) = 0,
dθ

ds
(a) = 0. (68)

hence

F2 =
6

a2
KLin

w0

a
. (69)

where the incremental stiffness with internal friction is

KLin =

(
nB + 2

k∑
i=1

Bi

)(
1± 3

4
µ
nh+ 2

∑k
i=1 ci

a

)
.

(70)
This indicates the stiffness caused by the internal friction
is stiffening upon loading and softening upon unloading.

The energy dissipation during one cycle of loading and
unloading is given by

DLin =

∫ wmax
0

0

F+
2 dw0 −

∫ wmax
0

0

F−2 dw0

=
9

2
µ

(
wmax

0

a

)2
(
nh+ 2

∑k
i=1 ci

a

)
(nB + 2

k∑
i=1

Bi).

(71)

where Bi =
Ec3iW

12(1−ν2
i )
.

NUMERICAL SIMULATIONS

For numerical validation, we take the same data from
Poincloux et al. [1] and carry out some comparisons stud-
ies for different combination of parameters. Data for all
numerical calculations are: length L = 110 [mm], width
W = 30 [mm], thickness h = 0.286 [mm], the Young
modulus E = 2.4 GPa, the Passion ratio ν = 0.44 and
friction coefficient µ = 0.52.

Our formulations are numerically calculated by our
own Matlab code, which uses the function ode45 to com-
pute the solution of Eq.27. The FEM results are simu-
lated by ABAQUS.

Case 1 as shown in Fig.4: When assuming that the
total thickness of the structure of the book is unchanged,
as shown in Fig.4, in the case of c/h = 10 and n = 15,
our results are compared with Poincloux et al. [1] who
set n = 35, and it is found that the angle of θ of two s-
tudies are almost overlap on each other. This means that
the relationship between its angles of θ will be consistent
with the arc length s̃, when the total thickness of the
book structure is equal. The geometric reason behind
this consistent is coming from the Kirchhoff assumption
on the normal vector.

Case study 2 as shown in Fig.5: Finite element mod-
eling of a book with c/h = 15 and n = 10 is performed
and comparison with the results calculated by formula-
tion in this paper. The FEM results and our results were
obtained by ABAQUS and our own Matlab code, respec-
tively. The figure shows that the results are in excellent
agreement with each other.
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FIG. 4: Schematic diagram of the geometric quantities used in
Eq. 7. Tangent angle θ(s versus arc length s̃ along the upper-
and lowermost plates (green and red symbols, respectively).
The predictions (dashed lines) were obtained by integrating
Eq.27.

FIG. 5: Validation by FEM

Case study 3 as shown in Fig.6: Assume total thick-
ness of the book is unchange as n+ 2c/h = 35, from the
Fig. 6, we see that, as the thickness of the cover increas-
es, although the total thickness has not changed and the
number of layers decreases, its energy consumption ca-
pacity still increases, that is, the area of the parcel of
its loading-unloading curve increases with the increase of
the thickness of the cover.

CONCLUSIONS

We clearly summarized the method proposed by
Poincloux et al.[1] and clarified the process of deriving
governing equations, in particular, we revealed that the
key points to the success of their method were the av-
eraging calculations. In the light of the breakthrough
work by Poincloux et al.[1], we successfully generalized
the formulations from books without covers to the books
with hardcover and obtained the exact solution of smal-

FIG. 6: Fixed total book thickness, the thickness of both
covers and core vary.

l deflection of the hardcover book. Numerical analysis
found that the hardcover of the books had a great im-
pact on their bending ability as well as energy dissipa-
tion. Our investigations shown that the hardcover are
more essential than the core layers in terms of bending
response as well as energy absorption. When consider-
ing internal friction, the energy dissipation within per
loading-unloading cycle can be made to vary by a con-
siderable amount. The study here helps to understand
the mechanical interactions behavior in between of ge-
ometry, friction and elasticity. Our research shows that
Poincloux’s method is a fair general and worth apply-
ing to other similar studies where the friction must be
considered [18, 19].
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