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Abstract: Fundamentals of Laparoscopic Surgery (FLS) is a training module designed to provide
basic surgical skills. During skill training of the FLS "suturing and intracorporeal knot-tying" task —
the most difficult among the five psychomotor FLS tasks, learning from errors is one of the basic
principles of motor skill acquisition where appropriate contextual switching of the brain state on
error is postulated. This study investigated changes in the brain state following an error event based
on the fusion of simultaneously acquired functional near-infrared spectroscopy (fNIRS) and
electroencephalography (EEG) signals. Here, human error processing is postulated to differentiate
experts from novices based on the differences in the error-related chain of mental processes.
Thirteen right-handed novice medical students and nine expert surgeons participated in this study.
Error-related microstate analysis was performed using 32-channel EEG data at a high temporal
resolution. Six microstate prototypes were identified from combined EEG data from experts and
novices during the FLS task. Analysis of variance (ANOVA) found that the proportion of the total
time spent in different microstates during the 10 sec error epoch was significantly affected by the
skill level (p<0.01), microstate type (p<0.01), and the interaction between the skill level and the
microstate type (p<0.01). Then, the EEG band power (1-40Hz) related to slower oxyhemoglobin
(HbO) changes were found using regularized temporally embedded Canonical Correlation Analysis
of the fNIRS-EEG signals. The HbO signal from the {NIRS channel overlying ‘Frontal_Inf_Oper_L’,
‘Frontal_Mid_Orb_L’, ‘Postcentral_L’, “Temporal_Sup_L’, “Frontal_Mid_Orb_R’ cortical areas from
Automatic Anatomical Labelling showed significant (p<0.05) difference between experts and
novices in the 10-sec error epoch. Here, the frontal/prefrontal cortical areas are postulated to be
related to the perception and the activation of the primary somatosensory cortex at the postcentral
cortical area is hypothesized to be related to the action underpinning perception-action coupling
model for the error-related chain of mental processes. Therefore, our study highlighted the
importance of error-related brain states from portable brain imaging when comparing complex
surgical skill levels.
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1. Introduction

Laparoscopic surgery training following the Fundamentals of Laparoscopic Surgery
(FLS) is a common education and training module designed for medical residents, fellows,
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and the physician to provide them with a set of basic surgical skills necessary to
successfully conduct laparoscopic surgery. The FLS training is a joint education program
between the Society of American Gastrointestinal Endoscopic Surgeons and the American
College of Surgeon to establish box trainers (physical simulators) in standard surgical
training curricula (Birkmeyer et al., 2013). FLS certification in general surgery in the USA
uses five psychomotor tasks with increasing task complexity: (i) pegboard transfers, (ii)
pattern cutting, (iii) placement of a ligating loop, (iv) suturing with extracorporeal knot
tying, and (v) suturing with intracorporal knot tying. It was introduced to systemize
training and evaluation of cognitive and psychomotor skills required to perform
minimally invasive surgery. FLS is being used to measure and document those skills for
medical practitioners. Understanding the brain-behavior relationship during skill
learning is necessary for informed training and assessment (Dehabadi et al., 2014).

The FLS "suturing and intracorporeal knot-tying" task is the most difficult among the
five psychomotor tasks that surgeons must pass as part of the board certification process.
Laparoscopic suturing is a bimanual task that requires coordination of both hands. This
skill enables surgeons to provide a wide range of advanced surgical procedures (Allen et
al., 2003); however, acquiring this skill needs protracted training. The behavior can be
characterized as a coordinated spatio-temporal 3D movement based on 2D camera
feedback with the interaction between the body and the environment within a restricted
surgical volume. Here, the FLS "suturing and intracorporeal knot-tying" is a complex
bimanual motor task requiring high precision, hand-eye coordination, depth perception
in the 2D view, and tool control for optimal performance (Hannah et al., 2022). Given the
motor noise in tool control, error in-depth perception in the 2D view, and environmental
changes in the hand-eye coordination, the task performance requires superior perception-
action coupling. Here, the surgeon needs to cope with the uncertainties with an excellent
perceptual model of the feedback (i.e., perceptual memory) besides the executive memory
of the actions.

The perception, action, outcome, and prediction of the perception-action cycle occur
iteratively in a cyclic manner throughout the task for the orderly descent from prefrontal
to premotor to motor cortex in Fuster's perception-action processing stages (Fuster, 2004).
Here, the information flow from perception to action and action to perception involves a
cyclic flow of information between the environment and the organism, which can be used
to learn a sensory-guided sequence of goal-directed actions. However, sensory feedback
is noisy and delayed. At the same time, the motor actions are variable, so the solution to
these challenges is an adaptive internal model of the body and the environment that needs
to be continuously learned from sensory prediction errors (Shadmehr et al., 2010). Then,
during sensorimotor adaptation, error correction carries an implicit cost for the brain
(Sedaghat-Nejad and Shadmehr, 2021), so acquiring expert performance requires
deliberate practice (Ericsson, 2006) despite the cost. Indeed, automaticity can be achieved
despite residual error when there is an increased speed of action selection at the cost of
cognitive flexibility (Poldrack et al., 2005; Toner et al., 2015). Therefore, it is postulated
that cognitively controlled and automated processes must operate in parallel (Toner and
Moran, 2021) during the task.

Learning from errors due to perturbations in performance is one of the basic
principles of motor skill acquisition (Diedrichsen et al., 2010), where appropriate
contextual switching of brain state on error is postulated to be necessary under
perception-action coupling (Benozzo et al., 2021). Here, the changing brain states can be
captured by microstates (Michel and Koenig, 2018) that are global patterns of quasi-stable
(60-120 ms) scalp potential topographies of the large-scale brain networks (Lehmann et
al., 1987). For example, post-error slowing (PES) and post-error improvement of accuracy
(PIA) following error commission (Perri et al., 2016) during the acquisition of expert
performance can be considered as appropriate contextual switching of the brain state. The
scalp topographies of post-correct and post-error trials reflect the role of prefrontal and
premotor areas in post-error adjustments (Perri et al., 2016). Here, the medial
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frontal/prefrontal/anterior cingulate cortex error processing mechanisms may be
important in motor skill learning since their activity is known to scale with motor error
(Seidler et al., 2013). It has been proposed that an error related negativity signal with a
prominent fronto-central radial voltage distribution (Wessel, 2012) is generated due to the
negative reinforcement signal to the anterior cingulate cortex via the mesencephalic
dopamine system (Holroyd and Coles, 2002). Then, the anterior cingulate cortex uses this
negative reinforcement signal for corrective action (Holroyd and Coles, 2002), where
subjective error awareness or perception may be critical (Wessel, 2012), i.e., in the absence
of error perception, the corrective action will be missing. Then, the corrective action will
activate the premotor areas for post-error adjustments (Perri et al., 2016). This error
perception-action coupling is postulated for appropriate contextual switching of brain
states that may be captured by the EEG microstates (Michel and Koenig, 2018).

Automatic corrective action will require learning the action semantics accompanied
by implicit activation of motor representations (van Elk et al., 2009). The learned
integration of the motor primitives can produce an appropriate effector's trajectory to
reach the goal with high accuracy and precision. While there can be more than one
trajectory of the body movement to perform a task (Vetter et al., 2002), there are only a
few "efficient" trajectories. The efficient trajectory is learned while minimizing the task
error over multiple trials of which only the experts have the 'executive memory.' Then,
even with action semantic knowledge, lack of error perception, e.g., lack of medial frontal
cortex activation on minor errors (Gehring and Fencsik, 2001), can disrupt skill learning.
Therefore, this study aimed to evaluate a portable brain-behavior approach to capture the
error-related scalp topographies or brain state changes subserving error processing and
post-error adjustments during the FLS "suturing and intracorporeal knot-tying" task.
Here, the change in the scalp topography during error processing and post-error
adjustments immediately after the error even was analyzed as a “microstate” in the brain
— defined as a short quasi-stable (60-120 ms) state — during which the scalp potential field
from electroencephalogram (EEG) remains semi-stable (Michel and Koenig, 2018).
Microstate analysis leverages the excellent temporal resolution of EEG (Michel and
Koenig, 2018) and a meta-criterion on global field power (Skrandies, 1990), favoring the
highest signal-to-noise ratio (Custo et al., 2017). Here, the proposed computational circuit
mechanisms (Gu et al., 2021) have presented selective attention (Crick, 1984) or excitability
alterations by the thalamus (Hughes et al., 2004) acting as a “spotlight” that can be
postulated for error-related cognitive control (Ide and Li, 2011). The microstate approach
for a correlate of motor control (Pirondini et al., 2017) has a crucial a priori assumption that
only one spatial map entirely defines the relevant global state of the brain at each moment
in time, and the residuals are considered noise.

Microstate analysis has been validated based on resting-state functional magnetic
resonance imaging (fMRI), which has shown a close relationship in resting-state brain
networks (Michel and Koenig, 2018) when combined with EEG source imaging. Since
fMRI is challenging (Wanzel et al., 2007),(Leff et al., 2008a), during the FLS "suturing and
intracorporeal knot-tying" task (henceforth, FLS complex task) so we combined EEG with
functional near-infrared spectroscopy (fNIRS), which is a non-invasive optical imaging
technique (Villringer et al.,, 1993) that exploits neurovascular coupling (like fMRI) to
measure cortical activity. Combining fNIRS with EEG is beneficial since EEG can provide
neural correlates of non-cortical brain regions at a high temporal resolution for microstate
analysis, while fNIRS is limited to the cortical areas — a necessity to uncover cortical
correlates of microstates to identify surgical expertise (Hannah et al., 2022). Here, EEG
and fNIRS extract different physiological information about the brain activation - EEG
measures the electromagnetic field generated by firing neurons while fNIRS measures the
slower hemodynamic response. Therefore, microstate prototypes were selected from the
excellent temporal resolution of EEG (Michel and Koenig, 2018) and the meta-criterion for
global field power (GFP), favoring the highest signal-to-noise ratio (Custo et al., 2017).
Then, the EEG band power changes corresponding to the oxyhemoglobin (HbO)
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concentration changes from fNIRS data were found using regularized temporally
embedded Canonical Correlation Analysis (tCCA) under the neurovascular coupling
phenomenon (Sood et al., 2016),(Sirpal et al., 2021). This allowed analysis of the cortical
activation based on HbO changes corresponding to the scalp topography of the EEG
microstates following error events during the performance of the FLS complex task by
experts and novices. While EEG detected fast changes under the limitations of volume
conduction, fNIRS provided corresponding hemodynamic information over a longer
timeframe with better localization of the cortical activity due to its limited spatial
sensitivity. Given each modality's different characteristics and physiological information,
the fusion of simultaneously acquired EEG and fNIRS signals is postulated to provide
better mechanistic insights into the brain state changes during error perception and error
correction. Moreover, human error processing (Holroyd and Coles, 2002) is postulated to
differentiate experts from novices based on the differences in the error-related chain of
mental processes captured with simultaneously acquired EEG-fNIRS based brain state
analysis.

2. Materials and Methods
2.1. Subjects and task

After written consent, right-handed thirteen healthy novice medical students and
nine expert surgeons were recruited for the study. The study was approved by the
Institutional Review Board of the University at Buffalo, NY. All study procedures were
performed according to local human subjects' research regulations. The experts (attending
surgeons and residents) had greater than 1-year experience with laparoscopic tasks,
whereas the novices (medical students) had never experienced the laparoscopic task. All
the subjects were instructed verbally with a standard set of instructions on how to
complete the FLS "suturing and intracorporeal knot-tying" task to the best of their
capacity. Participants were provided with two laparoscopic needle drivers, one suturing
scissors, and a needle with a suture of 15 cm in length. In this task, a Penrose drain with
marked targets is placed on the Velcro strip inside the FLS box trainer. The subject has to
tie three throws of a knot intracorporeally using two needle drivers, where the last two
knots are single throws followed by a double throw, which closes the slit in the Penrose
drain (Ritter and Scott, 2007). The task involves inserting the suture through two marks
in a Penrose drain and then tying a double-throw knot followed by two single-throw knots
using two needle graspers operated by both hands. The FLS task starts when the subject
picks up the suture and needle driver on the ‘start’ command and ends when the subject
cuts both ends of the suture, where the task completion is limited to 10 min (600 sec). The
task was repeated three times along with 2 min of the rest period, and the ‘start’ and ‘stop’
triggers for the FLS task were manually registered with the data acquisition software. The
experimenter labeled using the FLS box camera view of the error events at the “needle
drop” and “incorrect needle insertion,” as shown in Figures 1 and 2, respectively. The
multimodal imaging system using simultaneously acquired EEG and fNIRS signals
recorded concurrent electrophysiological and hemodynamic responses of the brain while
the subject performed the FLS complex task.
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Figure 1. Image sequence showing “needle drop” error event during task performance.

Figure 2. Image sequence showing “incorrect needle insertion” error event during task performance.

2.2. Synchronized multimodal portable brain imaging

A customized montage consisting of EEG electrodes and fNIRS optodes was used to
record synchronized multimodal brain activation signals. 32-channel EEG signals were
recorded using a wireless LiveAmp system (Brain Vision, USA). EEG recordings were
obtained at 500 Hz using active gel-electrodes. 32-channel fNIRS signals along with 8-
channel short-separation channels were recorded at a 5Hz sampling rate with
NIRSPORT?2 (NIRx, USA). A 1Hz hardware trigger signal implemented the fNIRS-EEG
synchronization, and the multimodal data were aligned and epoched in 1-sec time
windows. The optical probes and electrodes were located following standard 10-5
montage (see Figure 3A), with fNIRS probe sensitivity (Aasted et al., 2015) shown in
Figure 3B. The probes were carefully placed on the subject's head to avoid hair
interference and to not hinder the subject's mobility during the mobile brain-behavior
study (see Figure 3C). Table 1 (from AtlasViewer software using its default head model)
lists the labels of the fNIRS cortical region of interest (ROIs) that are based on the
Automated Anatomical Labelling (AAL) atlas (Rolls et al., 2020, 3) and Montreal
Neurological Institute (MNI) coordinate space (Aasted et al., 2015).
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Figure 3. (A) Multi-modal (fNIRS-EEG) sensor montage including short-separation (labelled SS in light blue ellipeses)
channels. The red filled circles are the fNIRS sources, the green filled circles are the fNIRS detectors, the grey filled
circles are the EEG electrodes, the violet lines are the optode pairs for the fNIRS channels. (B) The probe sensitivity
values in the 0.01 to 1 range are displayed logarithmically as -2 to 0 in log10 units in the color bar. The projection of the
fNIRS channels on the cortex are shown with black arrows. (C) Experimental setup in the laboratory with the subject
performing the FLS complex task.

Table 1. Automated anatomical labeling (AAL) and Montreal Neurological Institute (MNI) coordinates of the cortical
areas underlying fNIRS channels (source # — detector # pair) when projected on the cortex in AtlasViewer using its default
head model (Aasted et al., 2015).

Source # Detector # Channel Coordinates (MNI) AAL label names
1 1 -3056 -7 Frontal_Inf Orb_L
1 15 964 -8 Frontal_Sup_Orb_L
1 16 -1157-5 Frontal_Sup_Orb_L
2 2 -17 26 48 Frontal_Sup_L
2 3 -21 34 28 Frontal_Mid_L
2 17 -13 45 38 Frontal_Sup_L
3 1 -3545 -2 Frontal_Inf Orb_L
3 -30 33 20 Frontal_Mid_L
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3 5 -36 813 Frontal_Inf_Oper_L
4 1 -3855-2 Frontal_Mid_Orb_L
4 3 -3748 14 Frontal_Inf_Tri_L
4 15 -16 610 Frontal_Sup_Orb_L
5 2 -47 12 53 Frontal_Mid_L

5 3 -47 24 31 Frontal_Mid_L

5 4 -47 -9 41 Postcentral _L

5 5 -58 11 28 Precentral_L

6 4 -46 -23 34 Postcentral _L

6 5 -57-1115 Temporal_Sup_L
6 6 -37-34 16 Rolandic_Oper_L
6 18 -63-1918 SupraMarginal L
7 2 -27 -4 63 Frontal_Sup_L

7 4 -50 -22 63 Postcentral _L

7 7 -18 -34 57 Postcentral _L

8 4 -46 -30 47 Postcentral _L

8 6 -52-49 34 SupraMarginal L
8 7 -32 -47 54 Parietal_Inf L

8 19 -29 -43 40 Parietal_Inf_L

9 8 4157 -8 Frontal_Mid_Orb_R
9 15 1567 -11 Frontal_Sup_Orb_R
9 20 2154 -1 Frontal_Sup_R
10 8 47 47 -2 Frontal_Inf_Orb_R
10 9 513718 Frontal_Inf_Tri_R
10 13 551410 Frontal_Inf_Oper_R
10 21 44198 Frontal_Inf_Tri_R
11 9 2336 32 Frontal_Sup_R
11 10 3334 56 Frontal_Sup_R
12 8 4253 -1 Frontal_Mid_Orb_R
12 9 495616 Frontal_Mid_R
12 15 1862 -1 Frontal_Sup_Orb_R
13 9 532432 Frontal_Inf _Tri_R
13 10 459 47 Precentral_R

13 12 57 -7 46 Precentral_R

13 13 589 26 Precentral_R

13 22 48 6 38 Precentral_R

14 12 63 -20 36 SupraMarginal_R
14 13 43-818 Insula_R

14 14 46 -3518 Temporal_Sup_R
15 10 36 -7 64 Frontal_Sup_R
15 11 39 -3876 Postcentral_R

15 12 41 -22 52 Precentral_R

16 11 42 -49 57 Parietal_Sup_R
16 12 51-3349 SupraMarginal_R
16 14 45 -46 34 Angular_R

16 23 35 -46 42 Angular_R

2.3. fNIRS-EEG data preprocessing

The simultaneously recorded EEG and fNIRS signals were preprocessed and
analyzed offline. The EEG signals were preprocessed using the open-source EEGlab
toolbox (https://scen.ucsd.edu/eeglab/index.php) for the microstate analysis (Michel and
Koenig, 2018). Specifically, the data were downsampled to 250Hz and high-pass filtered
at 1Hz. Then, the line noise was removed using ‘cleanline’ function, followed by
‘clean_rawdata’ function to reject bad channels. The bad channels were interpolated using
spherical splines (Perrin et al., 1989) in “clean_rawdata’ followed by re-referencing to the
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global average. Artifact subspace reconstruction (ASR) was performed using the default
settings in EEGlab, followed by re-referencing to the global average. ASR is an automated
method based on a user-specified parameter that can effectively remove transient EEG
artifacts (Chang et al., 2020). We used the default ASR parameter value of 20, and the
optimal value is between 20 and 30 to balance between removing non-brain signals and
retaining brain activities (Chang et al., 2020). In this study's preprocessed EEG data used
(13 novices and 8 experts) for microstate analysis, the maximum number of bad channels
for any subject was less than five, where we rejected one expert subject. Then, Laplacian
spatial filter was applied to remove the volume conduction from subcortical sources and
keep the cortical sources that corresponded with cortical hemodynamic response
measured with the fNIRS. Preprocessing of the fNIRS data was performed using the
standard open-source HOMER3 package (https://github.com/BUNPC/Homer3). The
fNIRS preprocessing pipeline is the following: first intensity was converted to optical
density and then motion artifacts were detected and filtered with the help of the Savitzky-
Golay filtering method (Jahani et al., 2018) with default parameters in HOMER3. Then,
the optical density was bandpass filtered in the neurovascular coupling band, 0.01-0.1Hz,
and then converted to chromophore (HbO) concentration with unit partial pathlength
factor.

2.4. Error-related fNIRS-EEG microstates analysis

Microstate analysis was performed using the EEGlab toolbox (Poulsen et al., 2018)
after aggregating EEG data during the FLS complex task from all the experts and novices.
First, we identified EEG microstate prototypes based on modified K-means clustering in
the EEGlab. The modified K-means clustering was based on goodness of fit of the
microstate segmentation determined from the global explained variance (GEV) and the
cross-validation criterion (CV). Here, the GEV criterion should theoretically become
monotonically larger with the increasing number of clusters (Poulsen et al., 2018). The
modified K-means clustering in EEGlab finds topographical maps of polarity invariant
microstate prototypes (Poulsen et al., 2018) from the spontaneous EEG data during the
FLS complex task (and rest periods in between the trials) . Here, global field power (GFP)
peaks are used to segment the spontaneous EEG. The minimum peak distance was set at
10ms (default) and 1000 randomly selected peaks (default) per subject were used for the
segmentation. Then, we rejected the GFP peaks that exceeded one time the standard
deviation of all the GFPs of all maps to segment the EEG data into a predefined number
(2 to 8) of microstates. Here, the goal is to maximize the similarity between the EEG
samples and the prototypes of the microstates they are assigned to using the modified K-
means algorithm (Poulsen et al., 2018). The modified K-means algorithm also sorts the
microstate prototypes in decreasing GEV. We had set 100 random number of
initializations and 1000 maximum number of iterations for the modified K-means
algorithm with the le-6 (default) as the relative threshold of convergence (Poulsen et al.,
2018). These microstates provided the prototypes for the subsequent error-related
microstate analysis. The error epochs were defined for the 10sec following the error event
at needle drop or incorrect needle insertion. Here, a 10-sec epoch was chosen for the error
evoked fNIRS-EEG data to capture the EEG band power (1-40Hz) changes corresponding
to hemodynamic response function since the maximum fNIRS frequency is 0.1 Hz in the
neurovascular coupling band (i.e., a time period of 10 sec). Also, prior work (Li et al., 2020)
showed that the HbO concentration peaked in the time range of 3-9 seconds for complex
motor action, so 10-sec duration was considered adequate.

Microstate labels were applied to the EEG samples from the error epochs based on
topographical similarity (called backfitting) using the EEGlab toolbox (Poulsen et al.,
2018). Since short periods of unstable EEG topographies can occur so, we applied
temporal smoothing. Then, the statistical properties of the EEG microstates were
computed and used to compare error-related cortical activation between the experts and
the novices. To find the corresponding hemodynamic response under neurovascular
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coupling, the correspondence between the fNIRS HbO changes and the EEG band power
(1-40Hz) changes were found based on the General Linear Model (GLM) and regularized
Canonical Correlation Analysis with temporal embedding in HOMER3 (von Lithmann et
al., 2020). The evoked hemodynamic signal is typically reconstructed with a weighted set
of temporal basis functions in HOMER3 (von Lithmann et al, 2020); however, we
reconstructed the HbO response from multi-channel EEG band power (1-40Hz) signals.
Here, the design matrix consists of all the regressors for GLM that are solved with a least-
squares approach for each regressor's contribution based on their coefficients (von
Lithmann et al., 2020), so, the coefficients of the EEG band power (1-40Hz) regressors were
used reconstruct the corresponding hemodynamic signal (HbO time series). The GLM
approach also captures systemic artefacts with short-separation (SS) f{NIRS channels as
regressors and a 3rd order polynomials to model drift. So, the SS fNIRS channels served
as the nuisance regressors for the systemic artefact in the design matrix (von Lithmann et
al., 2020). However, identification of the EEG band power (1-40Hz) regressors from multi-
channel EEG data is a challenge and we used 'hmrR_tCCA' function in HOMERS to find
the neurovascular coupling in the latent space (Rezaee et al., 2021) between the HbO time
series at all the long-separation (LS) {NIRS channels and the simultaneously acquired EEG
band power (1-40Hz) signals from all the EEG electrodes. Here, we selected 15 regressors
from simultaneously acquired EEG band power (1-40Hz) signals that have a canonical
correlation greater than the threshold, 0.99 (=param.ct in the function, ‘rtcca’). Therefore,
regularized Canonical Correlation Analysis with temporal embedding (tCCA) found
fifteen regressors (shown in Supplementary Materials) from EEG band power (1-40Hz)
signals to reconstruct the corresponding fNIRS signal from the LS channels while
regressing out the SS fNIRS signal representing systemic artefacts using the GLM
approach. The flowchart of the processing pipeline is shown in Figure 4.

The hemodynamic (HbO) response (10sec) during the FLS complex task and the error
epoch was subjected to t-tests to detect significant (p<0.05) differences between experts
and novices (i.e., skill level) for each fNIRS channel after controlling for the false discovery
rate (FDR). The Matlab function ‘hmrG_t_HRF_contrast2” and ‘fdr_bh’ for t-test and FDR
are presented in the Supplementary Materials. Then, the visualization of the
hemodynamic (HbO) response was performed using the AtlasViewer (Aasted et al., 2015).
Also, the temporal property of the backfitted microstates of each subject, i.e., the
proportion of the total time spent in six microstates (Poulsen et al., 2018), was extracted
during the FLS complex task and the error epoch for the two-way analysis of variance
(ANOVA) with factors, skill level (expert, novice) and microstate types, after testing for
normality with Shapiro Wilks Test. The significance level was set at 0=0.05.

3. Results

We selected six EEG microstate prototypes based on the GEV and the CV criterion,
as shown in Figure 5A. Here, the CV criterion, pointing to the best clustering solution at
its smallest value, reached the minimum value for six microstates that are shown in Figure
5B, sorted in decreasing GEV. As expected for a visuomotor task, the highest GEV is for
the microstate 1, corresponding to the activation of the visual cortex (and visual imagery
(Britz et al., 2010)). The six microstate prototypes were backfitted to the EEG for 10 sec at
the start of the FLS complex task and during the error epoch shown in Figure 6 for an
expert and a novice. There were five error epochs in the expert group (N=8), whereas there
were ten error epochs in the novice group (N=13).

Figure 6A and 6B show the GFP of the active states from 0 to 10000 ms at the start of
the FLS complex task for a novice and expert, respectively, while Figure 6C and 6D show
the GFP of the active states from 0 to 10000 ms during the error epoch of a novice and an
expert respectively. In the illustrative examples shown in the Figure 6, the first 10 sec of
error processing related brain states were captured in the expert (Figure 6D) by the
microstate 1 (corresponding to the activation of the visual cortex (Britz et al., 2010)),
microstate 3 (corresponding to the attention reorientation (Britz et al., 2010) and medial
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frontal cortex activation related to error (Gehring and Fencsik, 2001)), the microstates 4
and 5, while the novice had the activation of microstates 1, 2, 3, and 5 (Figure 6C) during
10 sec of error processing.
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Figure 5. (A) Measures of fit plotted for the different microstate segmentations based on the global explained variance
(GEV) and the cross-validation criterion (CV). (B) The selected six microstate prototypes based on the GEV and the CV
criterion that are sorted in decreasing GEV.
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Figure 6. Illustrative figure of the GFP of active microstates, (A) during 0 to 10000 ms at the start of the FLS complex task
of the EEG of a novice, (B) during 0 to 10000 ms at the start of the FLS complex task of the EEG of an expert, (C) during 0
to 10000 ms during the error epoch of the EEG of a novice, (D) during 0 to 10000 ms during the error epoch of the EEG of

an expert.
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Overall, novices had a more widespread cortical activation during the error epoch
compared to the experts, which is evident from the image of the corresponding changes
in the HbO absorption coefficient in the cortex (Aasted et al., 2015). Here, we computed
the EEG band power (1-40Hz) related changes in the HbO signals using GLM and
regularized temporally embedded Canonical Correlation Analysis (von Lithmann et al.,
2020) in HOMERS. Then, the image of the changes in the HbO absorption coefficient in
the cortex (Aasted et al., 2015) of the experts and novices during the 10 sec at the start of
the FLS complex task and during the error epoch are shown in Figure 7.
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Figure 7. Image of the changes in HbO absorption coefficient in the cortex, (A) during 0 to 10 sec at the start of the FLS
complex task of the novices, (B) during 0 to 10 sec at the start of the FLS complex task of the experts, (C) during 0 to 10 sec
during the error epoch of the novices, (D) during 0 to 10 sec during the error epoch of the experts.

Table 2. Difference (p-value) in the hemodynamic (HbO) response across all {NIRS channels between the novices and the
experts during 0 to 10 sec at the start of the FLS complex task and in the error epoch. Automated anatomical labelling
(AAL) of the cortical areas underlying fNIRS channels (source # — detector # pair) are also listed based on AtlasViewer’s
default head model (Aasted et al., 2015).

Source # Detector # AAL label names FLS complex task — p value Error epoch — p value
1 1 Frontal_Inf Orb_L 0.78 0.35
1 15 Frontal_Sup_Orb_L 0.95 0.69
1 16 Frontal_Sup_Orb_L 0.64 0.79
2 2 Frontal_Sup_L 0.35 0.77
2 3 Frontal_Mid_L 0.59 0.78
2 17 Frontal_Sup_L 0.45 0.17
3 1 Frontal_Inf_Orb_L 0.45 0.27
3 3 Frontal_Mid_L 0.17 0.67
3 5 Frontal_Inf_Oper_L 0.14 0.03*
4 1 Frontal_Mid_Orb_L 0.84 0.04*
4 3 Frontal_Inf_Tri_L 0.19 0.56
4 15 Frontal_Sup_Orb_L 0.71 0.29
5 2 Frontal_Mid_L 0.59 0.54
5 3 Frontal_Mid_L 0.80 0.08
5 4 Postcentral_L 0.11 0.11
5 5 Precentral_L 0.41 0.23
6 4 Postcentral_L 0.04* 0.04*
6 5 Temporal_Sup_L 0.37 0.01*
6 6 Rolandic_Oper_L 0.77 0.44
6 18 SupraMarginal L 0.46 0.34
7 2 Frontal_Sup_L 0.74 0.89
7 4 Postcentral _L 0.04* 0.48
7 7 Postcentral _L 0.18 0.42
8 4 Postcentral_L 0.16 0.23
8 6 SupraMarginal L 0.23 0.73
8 7 Parietal_Inf L 0.14 0.44
8 19 Parietal_Inf L 0.59 0.51
9 8 Frontal_Mid_Orb_R 0.33 0.04*
9 15 Frontal_Sup_Orb_R 0.04* 0.44
9 20 Frontal_Sup_R 0.88 0.23
10 8 Frontal_Inf_Orb_R 0.34 0.11
10 9 Frontal_Inf_Tri_R 0.23 0.14
10 13 Frontal_Inf_Oper_R 0.80 0.09

=
(e}
N
[t

Frontal_Inf_Tri_R 0.79 0.78
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11 9 Frontal_Sup_R 0.44 0.97
11 10 Frontal_Sup_R 0.05 0.80
12 8 Frontal_Mid_Orb_R 0.64 0.19
12 9 Frontal_Mid_R 0.32 0.15
12 15 Frontal_Sup_Orb_R 0.47 0.32
13 9 Frontal_Inf_Tri_R 0.78 0.45
13 10 Precentral_R 0.34 0.72
13 12 Precentral_R 0.57 0.35
13 13 Precentral_R 0.47 0.62
13 22 Precentral_R 0.71 0.89
14 12 SupraMarginal_R 0.34 0.59
14 13 Insula_R 0.81 0.71
14 14 Temporal_Sup_R 0.40 0.77
15 10 Frontal_Sup_R 0.17 0.45
15 11 Postcentral_R 0.05 0.54
15 12 Precentral_R 0.85 0.14
16 11 Parietal_Sup_R 0.18 0.69
16 12 SupraMarginal_R 0.83 0.86
16 14 Angular_R 0.59 0.82
16 23 Angular_R 0.57 0.23

The backfitting of the microstate prototypes (shown in Figure 5B) to all the data
points during 10 sec at the start of the FLS complex task explained 64.29% GEV in novices
and 73.64% GEV in the experts, while backfitting of the microstate prototypes to all the
data points during 10 sec in the error epoch explained 58.98% GEV in novices and 65.96%
GEV in the experts. Figure 8A shows the ANOVA table where the proportion of the total
time spent in microstates during the 10 sec at the start of the FLS complex task was
significantly affected by the skill level (experts, novices) and the interaction between the
skill level and the microstate (MS1-MS6) at a=0.05. Then, Figure 8B shows the ANOVA
table where the proportion of the total time spent in microstates during the 10-sec error
epoch was significantly affected by the skill level (p<0.01), microstates (p<0.01), and the
interaction between the skill level and the microstate (p<0.01).

Analysis of Variance

Source Sum Sd. d. f. Mean Sd. F Prok>F
skill level 0.05061 1 0.0506el1 7.58 0.0068
microstate 0.04827 5 0.00965 1.45 0.z2127
skill level*microstate 0.08372 5 0.01674 2.51 0.0338
Error 0.80113 120 0.00668
(A) Total 0.95137 131

Analysis of Variance

Source Sum Sqg. d. Z. Mean Sdq. F FProb>F

ak:11 level O.0DFEI4 1 D.0EE34 22.209 A.f10eRe-08
milcroslale O, 11as4 5 D2.023321 158,33 1.73055e-13
sk211l leve *microcscate 0.194494 =) J.03888 0. BG H,d495Ee-20
Error O.18Z258 170 [TV R ey
o t E"":"; _'-. .:
(B)T-’.-.tl.l 0, 520615 131

Figure 8. (A) The proportion of the total time spent in microstates (MS) during 10 sec at the start of the FLS complex task
was significantly affected by the skill level (experts, novices) and the interaction between the skill level and the microstate
(MS1-MS6) at a=0.05. (B) The proportion of the total time spent in microstates during the 10-sec error epoch was
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significantly affected by the skill level (experts, novices), microstates (MS1-MS6), and the interaction between the skill
level and the microstates at a=0.05.

While microstate prototypes were computed from EEG data with a high temporal
resolution, the corresponding fNIRS (HbO) activity is a low-pass filtered version (under
neurovascular coupling) shown as changes in the HbO absorption coefficient in the cortex
in Figure 7. Here, a significant difference (p<0.05) in the hemodynamic (HbO) response
between the novices and the experts across f{NIRS channels (listed in Table 1) during 0 to
10 sec at the start of the FLS complex task and in error epoch is shown with **" in Table 2.
During the FLS complex task, HbO signal from the fNIRS channel overlying
‘Postcentral_L” and ‘Frontal Sup_Orb_R’ cortical areas from Automated anatomical
labelling (AAL) showed a significant (p<0.05) difference whereas HbO signal from fNIRS
channel overlying ‘Frontal Inf Oper_L’, ‘Frontal Mid_Orb_L’, ‘Postcentral_L’,
‘Temporal_Sup_L’, ‘Frontal Mid_Orb_R’ cortical areas from AAL showed significant
(p<0.05) difference in the error epoch.

4. Discussion

In this study, we aimed to show the fusion of simultaneously acquired EEG and
fNIRS signals to provide better mechanistic insights into the changes in the brain state
during error perception and correction. Indeed, EEG based microstate analysis provided
insights based on the scalp topography of the microstates, as shown by illustrative
examples of the GFP of the active microstates in Figure 6, where microstate 2 was only
present in the novice while the microstate 4 was present in the expert during the first 10
sec of the FLS complex task and the error epoch. Here, the scalp topography showed left
lateralization in the right-handed subjects. Then, the corresponding HbO response and
the image of the changes in HbO absorption coefficient in the cortex are shown in Figure
7. Here, we postulated that the simultaneously acquired EEG-fNIRS-based brain state
analysis would be able to differentiate experts from novices. Indeed, statistical testing of
the HbO hemodynamic response at the fNIRS channels identified underlying
‘Postcentral_L’ and ‘Frontal_Sup_Orb_R’ AAL cortical areas as significantly different
between the experts and novices during 10 sec at the start of the FLS complex task while
HbO  hemodynamic response at the wunderlying ‘Frontal_Inf Oper_L’,
‘Frontal_Mid_Orb_L’, ‘Postcentral_L’, ‘“Temporal_Sup_L’, ‘Frontal Mid_Orb_R’" AAL
cortical areas were significantly different between experts and novices during the error
epoch. Here, we postulate that the frontal/prefrontal cortical areas are related to the
perception, and the primary somatosensory cortex at the postcentral cortical area is
related to the action towards perception-action coupling model at the start of the FLS
complex task as well as in the error epoch.

Numerous functional magnetic resonance imaging (fMRI) and fNIRS studies have
been published on skill learning (Roberts et al., 2006)(Ohuchida et al., 2009)(Leff et al.,
2008c)(Wanzel et al., 2007)(Leff et al., 2007)(Gao et al., 2021a)(Leff et al., 2008b)(Khoe et
al.,, 2020)(Gao et al., 2021b). Although fMRI studies have shown that a large-scale brain
network can encode the motor learning and transfer of learning from past experiences
(Heitger et al., 2012)(Gerraty et al., 2014); however, fMRI is not suitable for mobile brain-
behavior studies. The prefrontal cortex (PFC) has been found to integrate the information
necessary for action generation and action perception (Raos and Savaki, 2017). Future
studies need to investigate error-related pupil dilation (Maier et al., 2019) in conjunction
with EEG microstate, e.g., canonical subjective interoceptive-autonomic processing (Britz
et al., 2010) may be a marker of error sensitivity. A future longitudinal study on FLS
complex task learning can investigate the postulated error sensitivity to drive learning in
novice — fast learners versus slow learners. Here, EEG microstate transitions can provide
insights into the learning-related mental processes. In this study, the time spent in
microstates during the 10 sec at the start of the FLS complex task was significantly affected
by the skill level (experts, novices) and the interaction between the skill level and the


https://doi.org/10.20944/preprints202204.0175.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2022 d0i:10.20944/preprints202204.0175.v1

18 of 34

microstate types at a=0.05. Also, the proportion of the total time spent in microstates
during the 10 sec error epoch was significantly affected by the skill level, microstates type,
and the interaction between the skill level and the microstate type at a=0.01. Therefore,
brain states underpinning human error processing (Holroyd and Coles, 2002) and the
error-related chain of mental processes captured by the microstates could differentiate
experts from novices better at a=0.01. We found microstates 3 and 5 to be present in both
experts and novices that may be related to error evaluation mechanisms in the medial
frontal cortex. Here, combining pupil dilation with EEG microstate analysis in the error
epoch may elucidate the mechanisms underlying error-related pupil dilation during skill
training — fast versus slow learners. This is important since FLS task performance is
graded based on the speed and accuracy of psychomotor skills (Ritter and Scott, 2007);
however, not everyone can achieve proficiency (Grantcharov and Funch-Jensen, 2009).
Here, we postulate that successful skill acquisition leads to an internal forward model
(Wolpert et al., 1998) that can simulate the perceptual consequences of the planned and
executed motor commands. An intact action-perception coupling that is relevant for
surgical skill acquisition has been shown to depend on the integrity of the cerebellum
(Christensen et al., 2014) that underpins the internal model (Ebner, 2013). Then, the
hierarchy of cognitive control during skill learning shows a rostrocaudal axis in the frontal
lobe (Badre and D’Esposito, 2009a), where a shift from posterior to anterior is postulated
to mediate progressively abstract, higher-order control expected in the experts. Here, the
dorsolateral and ventrolateral PFC showed activation in Figure 7A,B during the FLS
complex task that can be related to attention control, cognitive control, feature extraction,
and formation of first-order relationships (Badre and D’Esposito, 2009b),(Badre,
2008),(Koechlin and Summerfield, 2007),(Christoff and Gabrieli, 2000). Specifically, the
dorsolateral PFC of the dorsal stream is more involved in the visual guidance of action in
novices (Figure 7A). In contrast, the ventrolateral PFC of the ventral stream is more
involved in the recognition and conscious perception (Milner, 2017) in experts (Figure 7B).
Then, the supplementary motor area (SMA) and the premotor cortex are crucial for the
coordination of bimanual movement (Tanji et al., 1988), where SMA is crucial for complex
spatiotemporal sequencing of movements (Debaere et al., 2004) (Swinnen and Wenderoth,
2004) necessary in bimanual FLS complex task (Figure 7B). Also, the cingulate and pre-
supplementary motor areas are the generator sites of error-related negativity. This event-
related potential component is time-locked to an erroneous response (Seidler et al., 2013).
Then, SMA is involved in planning complex motor finger tasks (PE et al., 1980), critical in
error correction (Seidler et al., 2013).

Brain-behavior monitoring of the error-related cortical activation and corrective
action can allow appropriate error feedback for operant conditioning in future work that
has been shown feasible in our prior application for stroke rehabilitation (Kumar et al.,
2019). For example, some novices' lack of error perception (i.e., lack of medial frontal
cortex activation on minor errors (Gehring and Fencsik, 2001)) can disrupt their skill
learning, which can be improved with its non-invasive brain stimulation in conjunction
with explicit error feedback in the medical simulator. Here, microstate 3 can be related
to the attention reorientation (Britz et al., 2010) and medial frontal cortex activation related
to error (Gehring and Fencsik, 2001) in the novice, while the microstate 4 can be associated
with the activation of the left inferior parietal lobe (Numssen et al., 2021) since experts
have the action semantics knowledge (van Elk, 2014). Therefore, EEG topographies
provide subject-specific correlates of motor control (Pirondini et al., 2017), and portable
neuroimaging guided non-invasive brain stimulation may be feasible to facilitate skill
training (Walia et al.,, 2021a). Here, perception and action together form a functional
system that adapts novice behavior during motor learning. The two crucial attributes of
the perception-action cycle are perceptual and executive memory (Fuster, 2004), where
error sensitivity is postulated to depend on the memory of errors (the history of past
consistent errors) (Albert et al., 2021) that drives skilled error correction (Seidler et al.,
2013). For example, early efferent error prediction can lead to immediate adjustments in
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experts, e.g., skilled typists execute errors with lighter keystrokes than novices. Published
studies have shown that the pre-supplementary motor area (pre-SMA) and the inferior
frontal gyrus are involved in stop-signal task performance (Seidler et al., 2013). Then, in
our prior work (Walia et al., 2021a) on portable neuroimaging during the FLS complex
task, we found that the average cortical activation was primarily at the left pars
opercularis of the inferior frontal gyrus involved in cognitive control (Levy and Wagner,
2011). In contrast, the left frontopolar prefrontal area was more active in the experts
(Figure 7B).

This study used portable brain imaging with fNIRS that have limited spatial and
depth sensitivity (Strangman et al.,, 2013). Published fNIRS studies showed the
involvement of the inferior parietal cortex, PFC, occipital cortex, and the sensorimotor
areas, including the premotor and primary motor cortex. In contrast, the fMRI studies
showed additional activation of deeper brain structures, including the basal ganglia and
cerebellum (Roberts et al., 2006). The limitation of our study includes a low-density {NIRS
and EEG sensor montage that limited the spatial resolution. It is known from skill
learning studies that the hierarchy of cognitive control shows a rostrocaudal axis in the
frontal lobe where a shift from posterior to anterior is postulated to mediate progressively
abstract, higher-order control [30, p. 707], which requires a higher-density whole-head
montage. Multimodal imaging limited the head cap space available for high-density
portable imaging with our separate optodes and electrodes montage, where an integrated
"co-located" optode+electrode (optrode) can be helpful (Keles et al., 2016) in future studies.
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Supplementary Materials — code for statistical tests in Matlab

% SYNTAX:

% [hmrstatsG_cond] = hmrG_t_HRF _contrast2(yAvgSubjsl, yAvgSubjs2, tHRFrange)

%

% Ul NAME:

% t-test

%

% DESCRIPTION:

% Performs a t-test between two mean HRF for a single condition across all subjects
%

% INPUTS:

% yAvgSubjs: yAvgSubjsl for group 1 and yAvgSubjs2 for group 2

% tHRFrange: tHRF range for HRF averaging

%

% OUTPUTS:

% hmrstatsG_cond: Statistical results from the MATLAB ttest (h,p,c,stats) and measurement
list (ml)

%

% USAGE OPTIONS:

% Stats_on_Concentration_Data: [hmrstatsG_base_cond] = hmrG_t_HRF_contrast2(dcAvgSubjsl,
dcAvgSubjs2, tHRFrange)

%

% PARAMETERS:

% tHRFrange: [0, O]

%

function [hmrstatsG_cond] = hmrG_t HRF contrast2(yAvgSubjsl, yAvgSubjs2, tHRFrange)
hmrstatsG_base cond = [];

iBlk=1;

nSubj = length(yAvgSubjsl);
for iSubj = 1:nSubj

yAvg = yAvgSubjsi{iSubj}(iBIk) .GetDataTimeSeries("reshape”);
ncond = size(yAvg,4);

if iSubj == 1

tHRF = yAvgSubjsi{iSubj}(iBIk) .GetTime();
fq = abs(1/(tHRF(1)-tHRF(2)));
ml = yAvgSubjs1{iSubj}(iBIk) .GetMeasListSrcDetPairs();

% error check


https://doi.org/10.20944/preprints202204.0175.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2022 d0i:10.20944/preprints202204.0175.v1

26 of 34

ifT tHRFrange(l)>max(tHRF) || tHRFrange(2)>max(tHRF) |] tHRFrange(1)>=tHRFrange(2)
warning("tHRF range should be between 0 and tHRF max®);
return
end
end

baseline_yAvgl(iSubj,:,:,:) =
squeeze(mean(yAvg(1:round(fg*abs(min(tHRF))),:,:,:),1));

mean_yAvgl(iSubj,:,:,:) = squeeze(mean(yAvg(round(fg*(tHRFrange(1) +
abs(min(tHRF)))): round(fg*(tHRFrange(2) + abs(min(tHRF)))),:,:,:),1));

mean_yAvgl(iSubj,:,:,:) = mean_yAvgl(iSubj,:,:,:) - baseline_yAvgl(iSubj,:,:,:);
end

nSubj = length(yAvgSubjs2);
for iSubj = 1:nSubj

yAvg = yAvgSubjs2{iSubj}(iBlk).GetDataTimeSeries("reshape®);
ncond = size(yAvg,4);

if iSubj ==
tHRF = yAvgSubjs2{iSubj}(iBIk) .GetTime();
fq = abs(1/(tHRF(1)-tHRF(2)));
ml = yAvgSubjs2{iSubj}(iBIk) .GetMeasListSrcDetPairs();

% error check
if tHRFrange(l)>max(tHRF) || tHRFrange(2)>max(tHRF) |] tHRFrange(1)>=tHRFrange(2)
warning("tHRF range should be between 0 and tHRF max®);
return
end
end

baseline_yAvg2(iSubj,:,:,:) =
squeeze(mean(yAvg(1:round(fg*abs(min(tHRF))),:,:,:),1));

mean_yAvg2(iSubj,:,:,:) = squeeze(mean(yAvg(round(fg*(tHRFrange(1) +
abs(min(tHRF)))) :round(fg*(tHRFrange(2) + abs(min(tHRF)))),:,:,:),1));

mean_yAvg2(iSubj,:,:,:) = mean_yAvg2(iSubj,:,:,:) - baseline_yAvg2(iSubj,:,:,:);
end

% get t-stats
for iCond = 1:ncond
for i1 = 1l:size(yAvg, 2) % HbO/R/T
for j = 1l:size(yAvg,3) % Channels
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[h,p,c,stats] = ttest2(mean_yAvgl(:,i,j,iCond),mean_yAvg2(:,i,j,iCond));
pval(i,j,iCond) = p;

hval(i,j,iCond) = h;

cval(i,j,iCond,:) = c;

tstats{i,j,iCond}

stats;

end
end
end

% output
hmrstatsG_cond.pval = pval;

hmrstatsG_cond.hval hval ;

hmrstatsG_cond.cval cval;
hmrstatsG_cond.tstats = tstats;

hmrstatsG_cond.ml = ml;

hmrstatsG_cond.mean_yAvgl mean_yAvgl;

hmrstatsG_cond.mean_yAvg2 = mean_yAvg2;

% fdr_bh() - Executes the Benjamini & Hochberg (1995) and the Benjamini &

% Yekutieli (2001) procedure for controlling the false discovery

% rate (FDR) of a family of hypothesis tests. FDR is the expected

% proportion of rejected hypotheses that are mistakenly rejected

% (i.e., the null hypothesis is actually true for those tests).

% FDR is a somewhat less conservative/more powerful method for

% correcting for multiple comparisons than procedures like Bonferroni
% correction that provide strong control of the family-wise

% error rate (i.e., the probability that one or more null

% hypotheses are mistakenly rejected).

%

% This function also returns the false coverage-statement rate

% (FCR)-adjusted selected confidence interval coverage (i.e.,

% the coverage needed to construct multiple comparison corrected

% confidence intervals that correspond to the FDR-adjusted p-values).
%

%

% Usage:

% >> [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(pvals,q,method, report);
%
% Required Input:
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% pvals - A vector or matrix (two dimensions or more) containing the
% p-value of each individual test in a family of tests.

% Optional Inputs:

% g - The desired false discovery rate. {default: 0.05}

% method - ["pdep® or "dep”] IFf "pdep,” the original Bejnamini & Hochberg
% FDR procedure is used, which is guaranteed to be accurate if
% the individual tests are independent or positively dependent
% (e.g., Gaussian variables that are positively correlated or

% independent). If “"dep,” the FDR procedure

% described in Benjamini & Yekutieli (2001) that is guaranteed
% to be accurate for any test dependency structure (e.g-,

% Gaussian variables with any covariance matrix) is used. “dep”
% is always appropriate to use but is less powerful than “pdep.-
% {default: "pdep"}

% report - [“"yes® or "no"] If "yes", a brief summary of FDR results are
% output to the MATLAB command line {default: "no"}

% Outputs:

% h - A binary vector or matrix of the same size as the input "pvals.”
% IT the ith element of h is 1, then the test that produced the

% ith p-value in pvals is significant (i.e., the null hypothesis

% of the test is rejected).

% crit_p - All uncorrected p-values less than or equal to crit_p are

% significant (i.e., their null hypotheses are rejected). |IT

% no p-values are significant, crit p=0.

% adj _ci_cvrg - The FCR-adjusted BH- or BY-selected

% confidence interval coverage. For any p-values that

% are significant after FDR adjustment, this gives you the

% proportion of coverage (e.g-, 0-99) you should use when generating
% confidence intervals for those parameters. In other words,

% this allows you to correct your confidence intervals for

% multiple comparisons. You can NOT obtain confidence intervals

% for non-significant p-values. The adjusted confidence intervals
% guarantee that the expected FCR is less than or equal to q

% if using the appropriate FDR control algorithm for the

% dependency structure of your data (Benjamini & Yekutieli, 2005).
% FCR (i.e., false coverage-statement rate) is the proportion

% of confidence intervals you construct

% that miss the true value of the parameter. adj ci=NaN if no

% p-values are significant after adjustment.


https://doi.org/10.20944/preprints202204.0175.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2022 d0i:10.20944/preprints202204.0175.v1

29 of 34

% adj _p - All adjusted p-values less than or equal to q are significant
% (i.e., their null hypotheses are rejected). Note, adjusted
% p-values can be greater than 1.

% References:

% Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery

% rate: A practical and powerful approach to multiple testing. Journal
% of the Royal Statistical Society, Series B (Methodological). 57(1),

% 289-300.

%

% Benjamini, Y. & Yekutieli, D. (2001) The control of the false discovery
% rate in multiple testing under dependency. The Annals of Statistics.
% 29(4), 1165-1188.

% Benjamini, Y., & Yekutieli, D. (2005). False discovery rate?adjusted

% mulltiple confidence intervals for selected parameters. Journal of the
% American Statistical Association, 100(469), 71?81. doi:10.1198/016214504000001907
%

%

4 Example:

% nullVars=randn(12,15);

% [~, p_null]=ttest(nullVars); %15 tests where the null hypothesis

% %is true

% effectVars=randn(12,5)+1;

% [~, p_effect]=ttest(effectVars); %5 tests where the null

% %hypothesis is false

=

% [h, crit p, adj ci_cvrg, adj p]=fdr_bh([p_null p_effect], .05, "pdep”, “"yes");
% data=[nullVars effectVars];

% Ffcr_adj cis=NaN*zeros(2,20); %initialize confidence interval bounds to NaN
% 1f ~isnan(adj_ci_cvrg),

% siglds=find(h);

% fcr_adj_cis(:,siglds)=tCls(data(:,siglds),adj_ci_cvrg); % tCls.m is available on
the

% %Mathworks Fille Exchagne

% end

%
%
% For a review of false discovery rate control and other contemporary

X

% techniques for correcting for multiple comparisons see:
%
4 Groppe, D.M., Urbach, T.P., & Kutas, M. (2011) Mass univariate analysis

X
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

of event-related brain potentials/fields 1: A critical tutorial review.
Psychophysiology, 48(12) pp. 1711-1725, DOI: 10.1111/j.1469-8986.2011.01273.x
http://www.cogsci .ucsd.edu/~dgroppe/PUBLICATIONS/mass_uni_preprintl.pdf

For a review of FCR-adjusted confidence intervals (Cls) and other techniques
for adjusting Cls for multiple comparisons see:

Groppe, D.M. (in press) Combating the scientific decline effect with
confidence (intervals). Psychophysiology.
http://biorxiv.org/content/biorxiv/early/2015/12/10/034074_.full .pdf

Author:

David M. Groppe

Kutaslab

Dept. of Cognitive Science
University of California, San Diego
March 24, 2010

%%%%%%%%%%%%%%%% REVISION LOG %%%%%%%%%%%%%%%%%

%
%
%
%

5/7/2010-Added FDR adjusted p-values
5/14/2013- D.H.J. Poot, Erasmus MC, improved run-time complexity
10/2015- Now returns FCR adjusted confidence intervals

function [h, crit_p, adj ci_cvrg, adj p]=fdr_bh(pvals,q,method, report)

it nargin<i,

error("You need to provide a vector or matrix of p-values.");

else

it ~isempty(find(pvals<0,1)),

error("Some p-values are less than 0.7);
elseif ~isempty(find(pvals>1,1)),

error("Some p-values are greater than 1.7);
end

end

if nargin<2,

g=-05;

end
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if nargin<s,
method="pdep*”;
end

if nargin<4,
report="no";
end

s=size(pvals);
it (length(s)>2) || s(1)>1,
[p_sorted, sort_ids]=sort(reshape(pvals,l1,prod(s)));
else
%p-values are already a row vector
[p_sorted, sort_ids]=sort(pvals);
end
[dummy, unsort_ids]=sort(sort_ids); %indexes to return p_sorted to pvals order
m=length(p_sorted); %number of tests

if strcmpi(method, “pdep*),
%BH procedure for independence or positive dependence
thresh=(1:m)*q/m;
wtd_p=m*p_sorted./(1:m);

elseif strcmpi(method, "dep*”)
%BH procedure for any dependency structure
denom=m*sum(1./(1:m));
thresh=(1:m)*qg/denom;
wtd_p=denom*p_sorted./[1:m];
%Note, it can produce adjusted p-values greater than 1!
%compute adjusted p-values
else
error("Argument ""method"" needs to be ""pdep"" or ""dep"".");
end

if nargout>3,
%compute adjusted p-values; This can be a bit computationally intensive
adj p=zeros(l,m)*NaN;
[wtd_p_sorted, wtd_p_ sindex] = sort( wtd_p );
nextfill = 1;
for k =1 :m
ifT wtd_p_sindex(k)>=nextfill
adj p(nextfill:wtd_p_sindex(k)) = wtd_p_sorted(k);
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nextfill = wtd_p_sindex(k)+1;
if nextfill>m
break;
end;
end;
end;

adj p=reshape(adj_p(unsort_ids),s);
end

rej=p_sorted<=thresh;
max_id=Find(rej,1, " last"); %find greatest significant pvalue
if isempty(max_id),
crit_p=0;
h=pvals*0;
adj _ci_cvrg=NaN;
else
crit_p=p_sorted(max_id);
h=pvals<=crit_p;
adj_ci_cvrg=1-thresh(max_id);
end

if strcmpi(report,“yes®),
n_sig=sum(p_sorted<=crit_p);
if n_sig==1,
fprintf("Out of %d tests, %d
of %fF.\n",m,n_sig,q);
else

fprintf("Out of %d tests,
of %f.\n",m,n_sig,q);

is significant using a false discovery rate

%d are significant using a Talse discovery rate

end
it strcmpi(method, "pdep™),
fprintF("FDR/FCR procedure used is guaranteed valid for independent or positively
dependent tests.\n");
else
fprintF("FDR/FCR procedure used is guaranteed valid for independent or dependent
tests.\n");
end
end
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Supplementary Materials — components in the tCCA latent space
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Figure S1: An illustrative plot of the 15 components or sources (greater than the correlation threshold, 0.99) in the tCCA
latent space where red are the EEG bandpower (1-40Hz) sources and the black lines are the corresponding HbO sources.
The 15 EEG sources were used as the regressors alongwith short-separation nuisance regressors in the GLM to

reconstruct the HbO signal.
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