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Abstract: Fundamentals of Laparoscopic Surgery (FLS) is a training module designed to provide 
basic surgical skills. During skill training of the FLS "suturing and intracorporeal knot-tying" task – 
the most difficult among the five psychomotor FLS tasks, learning from errors is one of the basic 
principles of motor skill acquisition where appropriate contextual switching of the brain state on 
error is postulated. This study investigated changes in the brain state following an error event based 
on the fusion of simultaneously acquired functional near-infrared spectroscopy (fNIRS) and 
electroencephalography (EEG) signals. Here, human error processing is postulated to differentiate 
experts from novices based on the differences in the error-related chain of mental processes. 
Thirteen right-handed novice medical students and nine expert surgeons participated in this study. 
Error-related microstate analysis was performed using 32-channel EEG data at a high temporal 
resolution. Six microstate prototypes were identified from combined EEG data from experts and 
novices during the FLS task. Analysis of variance (ANOVA) found that the proportion of the total 
time spent in different microstates during the 10 sec error epoch was significantly affected by the 
skill level (p<0.01), microstate type (p<0.01), and the interaction between the skill level and the 
microstate type (p<0.01). Then, the EEG band power (1-40Hz) related to slower oxyhemoglobin 
(HbO) changes were found using regularized temporally embedded Canonical Correlation Analysis 
of the fNIRS-EEG signals. The HbO signal from the fNIRS channel overlying ‘Frontal_Inf_Oper_L’, 
‘Frontal_Mid_Orb_L’, ‘Postcentral_L’, ‘Temporal_Sup_L’, ‘Frontal_Mid_Orb_R’ cortical areas from 
Automatic Anatomical Labelling showed significant (p<0.05) difference between experts and 
novices in the 10-sec error epoch. Here, the frontal/prefrontal cortical areas are postulated to be 
related to the perception and the activation of the primary somatosensory cortex at the postcentral 
cortical area is hypothesized to be related to the action underpinning perception-action coupling 
model for the error-related chain of mental processes. Therefore, our study highlighted the 
importance of error-related brain states from portable brain imaging when comparing complex 
surgical skill levels. 
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1. Introduction 
Laparoscopic surgery training following the Fundamentals of Laparoscopic Surgery 

(FLS) is a common education and training module designed for medical residents, fellows, 
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and the physician to provide them with a set of basic surgical skills necessary to 
successfully conduct laparoscopic surgery. The FLS training is a joint education program 
between the Society of American Gastrointestinal Endoscopic Surgeons and the American 
College of Surgeon to establish box trainers (physical simulators) in standard surgical 
training curricula (Birkmeyer et al., 2013). FLS certification in general surgery in the USA 
uses five psychomotor tasks with increasing task complexity: (i) pegboard transfers, (ii) 
pattern cutting, (iii) placement of a ligating loop, (iv) suturing with extracorporeal knot 
tying, and (v) suturing with intracorporal knot tying. It was introduced to systemize 
training and evaluation of cognitive and psychomotor skills required to perform 
minimally invasive surgery. FLS is being used to measure and document those skills for 
medical practitioners. Understanding the brain-behavior relationship during skill 
learning is necessary for informed training and assessment (Dehabadi et al., 2014). 

The FLS "suturing and intracorporeal knot-tying" task is the most difficult among the 
five psychomotor tasks that surgeons must pass as part of the board certification process. 
Laparoscopic suturing is a bimanual task that requires coordination of both hands. This 
skill enables surgeons to provide a wide range of advanced surgical procedures (Allen et 
al., 2003); however, acquiring this skill needs protracted training. The behavior can be 
characterized as a coordinated spatio-temporal 3D movement based on  2D camera 
feedback with the interaction between the body and the environment within a restricted 
surgical volume. Here, the FLS "suturing and intracorporeal knot-tying" is a complex 
bimanual motor task requiring high precision, hand-eye coordination, depth perception 
in the 2D view, and tool control for optimal performance (Hannah et al., 2022). Given the 
motor noise in tool control, error in-depth perception in the 2D view, and environmental 
changes in the hand-eye coordination, the task performance requires superior perception-
action coupling. Here, the surgeon needs to cope with the uncertainties with an excellent 
perceptual model of the feedback (i.e., perceptual memory) besides the executive memory 
of the actions. 

The perception, action, outcome, and prediction of the perception-action cycle occur 
iteratively in a cyclic manner throughout the task for the orderly descent from prefrontal 
to premotor to motor cortex in Fuster's perception-action processing stages (Fuster, 2004). 
Here, the information flow from perception to action and action to perception involves a 
cyclic flow of information between the environment and the organism, which can be used 
to learn a sensory-guided sequence of goal-directed actions. However, sensory feedback 
is noisy and delayed. At the same time, the motor actions are variable, so the solution to 
these challenges is an adaptive internal model of the body and the environment that needs 
to be continuously learned from sensory prediction errors (Shadmehr et al., 2010). Then, 
during sensorimotor adaptation, error correction carries an implicit cost for the brain 
(Sedaghat-Nejad and Shadmehr, 2021), so acquiring expert performance requires 
deliberate practice (Ericsson, 2006) despite the cost. Indeed, automaticity can be achieved 
despite residual error when there is an increased speed of action selection at the cost of 
cognitive flexibility (Poldrack et al., 2005; Toner et al., 2015). Therefore, it is postulated 
that cognitively controlled and automated processes must operate in parallel (Toner and 
Moran, 2021) during the task.   

Learning from errors due to perturbations in performance is one of the basic 
principles of motor skill acquisition (Diedrichsen et al., 2010), where appropriate 
contextual switching of brain state on error is postulated to be necessary under 
perception-action coupling (Benozzo et al., 2021). Here, the changing brain states can be 
captured by microstates (Michel and Koenig, 2018) that are global patterns of quasi-stable 
(60–120 ms) scalp potential topographies of the large-scale brain networks (Lehmann et 
al., 1987). For example, post-error slowing (PES) and post-error improvement of accuracy 
(PIA) following error commission (Perri et al., 2016) during the acquisition of expert 
performance can be considered as appropriate contextual switching of the brain state. The 
scalp topographies of post-correct and post-error trials reflect the role of prefrontal and 
premotor areas in post-error adjustments (Perri et al., 2016). Here, the medial 
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frontal/prefrontal/anterior cingulate cortex error processing mechanisms may be 
important in motor skill learning since their activity is known to scale with motor error 
(Seidler et al., 2013). It has been proposed that an error related negativity signal with a 
prominent fronto-central radial voltage distribution (Wessel, 2012) is generated due to the 
negative reinforcement signal to the anterior cingulate cortex via the mesencephalic 
dopamine system (Holroyd and Coles, 2002). Then, the anterior cingulate cortex uses this 
negative reinforcement signal for corrective action (Holroyd and Coles, 2002), where 
subjective error awareness or perception may be critical (Wessel, 2012), i.e., in the absence 
of error perception, the corrective action will be missing. Then, the corrective action will 
activate the premotor areas for post-error adjustments (Perri et al., 2016). This error 
perception-action coupling is postulated for appropriate contextual switching of brain 
states that may be captured by the EEG microstates (Michel and Koenig, 2018). 

Automatic corrective action will require learning the action semantics accompanied 
by implicit activation of motor representations (van Elk et al., 2009). The learned 
integration of the motor primitives can produce an appropriate effector's trajectory to 
reach the goal with high accuracy and precision. While there can be more than one 
trajectory of the body movement to perform a task (Vetter et al., 2002), there are only a 
few "efficient" trajectories. The efficient trajectory is learned while minimizing the task 
error over multiple trials of which only the experts have the 'executive memory.' Then, 
even with action semantic knowledge, lack of error perception, e.g., lack of medial frontal 
cortex activation on minor errors (Gehring and Fencsik, 2001), can disrupt skill learning. 
Therefore, this study aimed to evaluate a portable brain-behavior approach to capture the 
error-related scalp topographies or brain state changes subserving error processing and 
post-error adjustments during the FLS "suturing and intracorporeal knot-tying" task. 
Here, the change in the scalp topography during error processing and post-error 
adjustments immediately after the error even was analyzed as a “microstate” in the brain 
– defined as a short quasi-stable (60–120 ms) state – during which the scalp potential field 
from electroencephalogram (EEG) remains semi-stable (Michel and Koenig, 2018). 
Microstate analysis leverages the excellent temporal resolution of EEG (Michel and 
Koenig, 2018) and a meta-criterion on global field power (Skrandies, 1990), favoring the 
highest signal-to-noise ratio (Custo et al., 2017). Here, the proposed computational circuit 
mechanisms (Gu et al., 2021) have presented selective attention (Crick, 1984) or excitability 
alterations by the thalamus (Hughes et al., 2004) acting as a “spotlight” that can be 
postulated for error-related cognitive control (Ide and Li, 2011). The microstate approach 
for a correlate of motor control (Pirondini et al., 2017) has a crucial a priori assumption that 
only one spatial map entirely defines the relevant global state of the brain at each moment 
in time, and the residuals are considered noise.  

 Microstate analysis has been validated based on resting-state functional magnetic 
resonance imaging (fMRI), which has shown a close relationship in resting-state brain 
networks (Michel and Koenig, 2018) when combined with EEG source imaging. Since 
fMRI is challenging (Wanzel et al., 2007),(Leff et al., 2008a), during the FLS "suturing and 
intracorporeal knot-tying" task (henceforth, FLS complex task) so we combined EEG with 
functional near-infrared spectroscopy (fNIRS), which is a non-invasive optical imaging 
technique (Villringer et al., 1993) that exploits neurovascular coupling (like fMRI) to 
measure cortical activity. Combining fNIRS with EEG is beneficial since EEG can provide 
neural correlates of non-cortical brain regions at a high temporal resolution for microstate 
analysis, while fNIRS is limited to the cortical areas – a necessity to uncover cortical 
correlates of microstates to identify surgical expertise (Hannah et al., 2022). Here, EEG 
and fNIRS extract different physiological information about the brain activation – EEG 
measures the electromagnetic field generated by firing neurons while fNIRS measures the 
slower hemodynamic response. Therefore, microstate prototypes were selected from the 
excellent temporal resolution of EEG (Michel and Koenig, 2018) and the meta-criterion for 
global field power (GFP), favoring the highest signal-to-noise ratio (Custo et al., 2017). 
Then, the EEG band power changes corresponding to the oxyhemoglobin (HbO) 
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concentration changes from fNIRS data were found using regularized temporally 
embedded Canonical Correlation Analysis (tCCA) under the neurovascular coupling 
phenomenon (Sood et al., 2016),(Sirpal et al., 2021). This allowed analysis of the cortical 
activation based on HbO changes corresponding to the scalp topography of the EEG 
microstates following error events during the performance of the FLS complex task by 
experts and novices. While EEG detected fast changes under the limitations of volume 
conduction, fNIRS provided corresponding hemodynamic information over a longer 
timeframe with better localization of the cortical activity due to its limited spatial 
sensitivity. Given each modality's different characteristics and physiological information, 
the fusion of simultaneously acquired EEG and fNIRS signals is postulated to provide 
better mechanistic insights into the brain state changes during error perception and error 
correction. Moreover, human error processing (Holroyd and Coles, 2002) is postulated to 
differentiate experts from novices based on the differences in the error-related chain of 
mental processes captured with simultaneously acquired EEG-fNIRS based brain state 
analysis. 

2. Materials and Methods 
2.1. Subjects and task 

After written consent, right-handed thirteen healthy novice medical students and 
nine expert surgeons were recruited for the study. The study was approved by the 
Institutional Review Board of the University at Buffalo, NY. All study procedures were 
performed according to local human subjects' research regulations. The experts (attending 
surgeons and residents) had greater than 1-year experience with laparoscopic tasks, 
whereas the novices (medical students) had never experienced the laparoscopic task. All 
the subjects were instructed verbally with a standard set of instructions on how to 
complete the FLS "suturing and intracorporeal knot-tying" task to the best of their 
capacity. Participants were provided with two laparoscopic needle drivers, one suturing 
scissors, and a needle with a suture of 15 cm in length. In this task, a Penrose drain with 
marked targets is placed on the Velcro strip inside the FLS box trainer. The subject has to 
tie three throws of a knot intracorporeally using two needle drivers, where the last two 
knots are single throws followed by a double throw, which closes the slit in the Penrose 
drain (Ritter and Scott, 2007). The task involves inserting the suture through two marks 
in a Penrose drain and then tying a double-throw knot followed by two single-throw knots 
using two needle graspers operated by both hands. The FLS task starts when the subject 
picks up the suture and needle driver on the ‘start’ command and ends when the subject 
cuts both ends of the suture, where the task completion is limited to 10 min (600 sec). The 
task was repeated three times along with 2 min of the rest period, and the ‘start’ and ‘stop’ 
triggers for the FLS task were manually registered with the data acquisition software. The 
experimenter labeled using the FLS box camera view of the error events at the “needle 
drop” and “incorrect needle insertion,” as shown in Figures 1 and 2, respectively. The 
multimodal imaging system using simultaneously acquired EEG and fNIRS signals 
recorded concurrent electrophysiological and hemodynamic responses of the brain while 
the subject performed the FLS complex task.  
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Figure 1. Image sequence showing “needle drop” error event during task performance. 

 

 

Figure 2. Image sequence showing “incorrect needle insertion” error event during task performance. 

2.2. Synchronized multimodal portable brain imaging  
A customized montage consisting of EEG electrodes and fNIRS optodes was used to 

record synchronized multimodal brain activation signals. 32-channel EEG signals were 
recorded using a wireless LiveAmp system (Brain Vision, USA). EEG recordings were 
obtained at 500 Hz using active gel-electrodes. 32-channel fNIRS signals along with 8-
channel short-separation channels were recorded at a 5Hz sampling rate with 
NIRSPORT2 (NIRx, USA). A 1Hz hardware trigger signal implemented the fNIRS-EEG 
synchronization, and the multimodal data were aligned and epoched in 1-sec time 
windows. The optical probes and electrodes were located following standard 10-5 
montage (see Figure 3A), with fNIRS probe sensitivity (Aasted et al., 2015) shown in 
Figure 3B. The probes were carefully placed on the subject's head to avoid hair 
interference and to not hinder the subject's mobility during the mobile brain-behavior 
study (see Figure 3C).  Table 1 (from AtlasViewer software using its default head model) 
lists the labels of the fNIRS cortical region of interest (ROIs) that are based on the 
Automated Anatomical Labelling (AAL) atlas (Rolls et al., 2020, 3) and Montreal 
Neurological Institute (MNI) coordinate space (Aasted et al., 2015).  
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(B) 

 

(C) 

Figure 3. (A) Multi-modal (fNIRS-EEG) sensor montage including short-separation (labelled SS in light blue ellipeses) 
channels. The red filled circles are the fNIRS sources, the green filled circles are the fNIRS detectors, the grey filled 

circles are the EEG electrodes, the violet lines are the optode pairs for the fNIRS channels. (B)  The probe sensitivity 
values in the 0.01 to 1 range are displayed logarithmically as −2 to 0 in log10 units in the color bar. The projection of the 

fNIRS channels on the cortex are shown with black arrows. (C) Experimental setup in the laboratory with the subject 
performing the FLS complex task. 

Table 1. Automated anatomical labeling (AAL) and Montreal Neurological Institute (MNI) coordinates of the cortical 
areas underlying fNIRS channels (source # – detector # pair) when projected on the cortex in AtlasViewer using its default 
head model (Aasted et al., 2015). 

Source # Detector # Channel Coordinates (MNI) AAL label names 
1 1 -30 56 -7 Frontal_Inf_Orb_L 
1 15 -9 64 -8 Frontal_Sup_Orb_L 
1 16 -11 57 -5 Frontal_Sup_Orb_L 
2 2 -17 26 48 Frontal_Sup_L 
2 3 -21 34 28 Frontal_Mid_L 
2 17 -13 45 38 Frontal_Sup_L 
3 1 -35 45 -2 Frontal_Inf_Orb_L 
3 3 -30 33 20 Frontal_Mid_L 
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3 5 -36 8 13 Frontal_Inf_Oper_L 
4 1 -38 55 -2 Frontal_Mid_Orb_L 
4 3 -37 48 14 Frontal_Inf_Tri_L 
4 15 -16 61 0 Frontal_Sup_Orb_L 
5 2 -47 12 53 Frontal_Mid_L 
5 3 -47 24 31 Frontal_Mid_L 
5 4 -47 -9 41 Postcentral_L 
5 5 -58 11 28 Precentral_L 
6 4 -46 -23 34 Postcentral_L 
6 5 -57 -11 15 Temporal_Sup_L 
6 6 -37 -34 16 Rolandic_Oper_L 
6 18 -63 -19 18 SupraMarginal_L 
7 2 -27 -4 63 Frontal_Sup_L 
7 4 -50 -22 63 Postcentral_L 
7 7 -18 -34 57 Postcentral_L 
8 4 -46 -30 47 Postcentral_L 
8 6 -52 -49 34 SupraMarginal_L 
8 7 -32 -47 54 Parietal_Inf_L 
8 19 -29 -43 40 Parietal_Inf_L 
9 8 41 57 -8 Frontal_Mid_Orb_R 
9 15 15 67 -11 Frontal_Sup_Orb_R 
9 20 21 54 -1 Frontal_Sup_R 

10 8 47 47 -2 Frontal_Inf_Orb_R 
10 9 51 37 18 Frontal_Inf_Tri_R 
10 13 55 14 10 Frontal_Inf_Oper_R 
10 21 44 19 8 Frontal_Inf_Tri_R 
11 9 23 36 32 Frontal_Sup_R 
11 10 33 34 56 Frontal_Sup_R 
12 8 42 53 -1 Frontal_Mid_Orb_R 
12 9 49 56 16 Frontal_Mid_R 
12 15 18 62 -1 Frontal_Sup_Orb_R 
13 9 53 24 32 Frontal_Inf_Tri_R 
13 10 45 9 47 Precentral_R 
13 12 57 -7 46 Precentral_R 
13 13 58 9 26 Precentral_R 
13 22 48 6 38 Precentral_R 
14 12 63 -20 36 SupraMarginal_R 
14 13 43 -8 18 Insula_R 
14 14 46 -35 18 Temporal_Sup_R 
15 10 36 -7 64 Frontal_Sup_R 
15 11 39 -38 76 Postcentral_R 
15 12 41 -22 52 Precentral_R 
16 11 42 -49 57 Parietal_Sup_R 
16 12 51 -33 49 SupraMarginal_R 
16 14 45 -46 34 Angular_R 
16 23 35 -46 42 Angular_R 

 

2.3. fNIRS-EEG data preprocessing 
The simultaneously recorded EEG and fNIRS signals were preprocessed and 

analyzed offline. The EEG signals were preprocessed using the open-source EEGlab 
toolbox (https://sccn.ucsd.edu/eeglab/index.php) for the microstate analysis (Michel and 
Koenig, 2018). Specifically, the data were downsampled to 250Hz and high-pass filtered 
at 1Hz. Then, the line noise was removed using ‘cleanline’ function, followed by 
‘clean_rawdata’ function to reject bad channels. The bad channels were interpolated using 
spherical splines (Perrin et al., 1989) in ‘clean_rawdata’ followed by re-referencing to the 
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global average. Artifact subspace reconstruction (ASR) was performed using the default 
settings in EEGlab, followed by re-referencing to the global average. ASR is an automated 
method based on a user-specified parameter that can effectively remove transient EEG 
artifacts (Chang et al., 2020). We used the default ASR parameter value of 20, and the 
optimal value is between 20 and 30 to balance between removing non-brain signals and 
retaining brain activities (Chang et al., 2020). In this study's preprocessed EEG data used 
(13 novices and 8 experts) for microstate analysis, the maximum number of bad channels 
for any subject was less than five, where we rejected one expert subject. Then, Laplacian 
spatial filter was applied to remove the volume conduction from subcortical sources and 
keep the cortical sources that corresponded with cortical hemodynamic response 
measured with the fNIRS. Preprocessing of the fNIRS data was performed using the 
standard open-source HOMER3 package (https://github.com/BUNPC/Homer3). The 
fNIRS preprocessing pipeline is the following: first intensity was converted to optical 
density and then motion artifacts were detected and filtered with the help of the Savitzky-
Golay filtering method (Jahani et al., 2018) with default parameters in HOMER3. Then, 
the optical density was bandpass filtered in the neurovascular coupling band, 0.01-0.1Hz, 
and then converted to chromophore (HbO) concentration with unit partial pathlength 
factor.  

2.4. Error-related fNIRS-EEG microstates analysis 
Microstate analysis was performed using the EEGlab toolbox (Poulsen et al., 2018) 

after aggregating EEG data during the FLS complex task from all the experts and novices. 
First, we identified EEG microstate prototypes based on modified K-means clustering in 
the EEGlab.  The modified K-means clustering was based on goodness of fit of the 
microstate segmentation determined from the global explained variance (GEV) and the 
cross-validation criterion (CV). Here, the GEV criterion should theoretically become 
monotonically larger with the increasing number of clusters (Poulsen et al., 2018). The 
modified K-means clustering in EEGlab finds topographical maps of polarity invariant 
microstate prototypes (Poulsen et al., 2018) from the spontaneous EEG data during the 
FLS complex task (and rest periods in between the trials) . Here, global field power (GFP) 
peaks are used to segment the spontaneous EEG. The minimum peak distance was set at 
10ms (default) and 1000 randomly selected peaks (default) per subject were used for the 
segmentation. Then, we rejected the GFP peaks that exceeded one time the standard 
deviation of all the GFPs of all maps to segment the EEG data into a predefined number 
(2 to 8) of microstates. Here, the goal is to maximize the similarity between the EEG 
samples and the prototypes of the microstates they are assigned to using the modified K-
means algorithm (Poulsen et al., 2018). The modified K-means algorithm also sorts the 
microstate prototypes in decreasing GEV. We had set 100 random number of 
initializations and 1000 maximum number of iterations for the modified K-means 
algorithm with the 1e-6 (default) as the relative threshold of convergence (Poulsen et al., 
2018). These microstates provided the prototypes for the subsequent error-related 
microstate analysis. The error epochs were defined for the 10sec following the error event 
at needle drop or incorrect needle insertion. Here, a 10-sec epoch was chosen for the error 
evoked fNIRS-EEG data to capture the EEG band power (1-40Hz) changes corresponding 
to hemodynamic response function since the maximum fNIRS frequency is 0.1 Hz in the 
neurovascular coupling band (i.e., a time period of 10 sec). Also, prior work (Li et al., 2020) 
showed that the HbO concentration peaked in the time range of 3-9 seconds for complex 
motor action, so 10-sec duration was considered adequate. 

Microstate labels were applied to the EEG samples from the error epochs based on 
topographical similarity (called backfitting) using the EEGlab toolbox (Poulsen et al., 
2018). Since short periods of unstable EEG topographies can occur so, we applied 
temporal smoothing. Then, the statistical properties of the EEG microstates were 
computed and used to compare error-related cortical activation between the experts and 
the novices. To find the corresponding hemodynamic response under neurovascular 
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coupling, the correspondence between the fNIRS HbO changes and the EEG band power 
(1-40Hz) changes were found based on the General Linear Model (GLM) and regularized 
Canonical Correlation Analysis with temporal embedding in HOMER3 (von Lühmann et 
al., 2020). The evoked hemodynamic signal is typically reconstructed with a weighted set 
of temporal basis functions in HOMER3 (von Lühmann et al., 2020); however, we 
reconstructed the HbO response from multi-channel EEG band power (1-40Hz) signals. 
Here, the design matrix consists of all the regressors for GLM that are solved with a least-
squares approach for each regressor's contribution based on their coefficients (von 
Lühmann et al., 2020), so, the coefficients of the EEG band power (1-40Hz) regressors were 
used reconstruct the corresponding hemodynamic signal (HbO time series). The GLM 
approach also captures systemic artefacts with short-separation (SS) fNIRS channels as 
regressors and a 3rd order polynomials to model drift. So, the SS fNIRS channels served 
as the nuisance regressors for the systemic artefact in the design matrix (von Lühmann et 
al., 2020). However, identification of the EEG band power (1-40Hz) regressors from multi-
channel EEG data is a challenge and we used 'hmrR_tCCA' function in HOMER3 to find 
the neurovascular coupling in the latent space (Rezaee et al., 2021) between the HbO time 
series at all the long-separation (LS) fNIRS channels and the simultaneously acquired EEG 
band power (1-40Hz) signals from all the EEG electrodes. Here, we selected 15 regressors 
from simultaneously acquired EEG band power (1-40Hz) signals that have a canonical 
correlation greater than the threshold, 0.99 (=param.ct in the function, ‘rtcca’). Therefore, 
regularized Canonical Correlation Analysis with temporal embedding (tCCA) found 
fifteen regressors (shown in Supplementary Materials) from EEG band power (1-40Hz) 
signals to reconstruct the corresponding fNIRS signal from the LS channels while 
regressing out the SS fNIRS signal representing systemic artefacts using the GLM 
approach. The flowchart of the processing pipeline is shown in Figure 4. 

The hemodynamic (HbO) response (10sec) during the FLS complex task and the error 
epoch was subjected to t-tests to detect significant (p<0.05) differences between experts 
and novices (i.e., skill level) for each fNIRS channel after controlling for the false discovery 
rate (FDR). The Matlab function ‘hmrG_t_HRF_contrast2’ and ‘fdr_bh’ for t-test and FDR 
are presented in the Supplementary Materials. Then, the visualization of the 
hemodynamic (HbO) response was performed using the AtlasViewer (Aasted et al., 2015). 
Also, the temporal property of the backfitted microstates of each subject, i.e., the 
proportion of the total time spent in six microstates (Poulsen et al., 2018), was extracted 
during the FLS complex task and the error epoch for the two-way analysis of variance 
(ANOVA) with factors, skill level (expert, novice) and microstate types, after testing for 
normality with Shapiro Wilks Test. The significance level was set at α=0.05. 

3. Results 
We selected six EEG microstate prototypes based on the GEV and the CV criterion, 

as shown in Figure 5A. Here, the CV criterion, pointing to the best clustering solution at 
its smallest value, reached the minimum value for six microstates that are shown in Figure 
5B, sorted in decreasing GEV. As expected for a visuomotor task, the highest GEV is for 
the microstate 1, corresponding to the activation of the visual cortex (and visual imagery 
(Britz et al., 2010)). The six microstate prototypes were backfitted to the EEG for 10 sec at 
the start of the FLS complex task and during the error epoch shown in Figure 6 for an 
expert and a novice. There were five error epochs in the expert group (N=8), whereas there 
were ten error epochs in the novice group (N=13).  

Figure 6A and 6B show the GFP of the active states from 0 to 10000 ms at the start of 
the FLS complex task for a novice and expert, respectively, while Figure 6C and 6D show 
the GFP of the active states from 0 to 10000 ms during the error epoch of a novice and an 
expert respectively. In the illustrative examples shown in the Figure 6, the first 10 sec of 
error processing related brain states were captured in the expert (Figure 6D) by the 
microstate 1 (corresponding to the activation of the visual cortex (Britz et al., 2010)), 
microstate 3 (corresponding to the attention reorientation (Britz et al., 2010) and medial 
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frontal cortex activation related to error (Gehring and Fencsik, 2001)), the microstates 4 
and 5, while the novice had the activation of microstates 1, 2, 3, and 5 (Figure 6C) during 
10 sec of error processing. 

(A)  

(B)  

Figure 5. (A) Measures of fit plotted for the different microstate segmentations based on the global explained variance 
(GEV) and the cross-validation criterion (CV). (B) The selected six microstate prototypes based on the GEV and the CV 
criterion that are sorted in decreasing GEV. 

 

(A)   
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(B)  

(C)  

(D)  

Figure 6. Illustrative figure of the GFP of active microstates, (A) during 0 to 10000 ms at the start of the FLS complex task 
of the EEG of a novice, (B) during 0 to 10000 ms at the start of the FLS complex task of the EEG of an expert, (C) during 0 
to 10000 ms during the error epoch of the EEG of a novice, (D) during 0 to 10000 ms during the error epoch of the EEG of 
an expert. 
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Overall, novices had a more widespread cortical activation during the error epoch 
compared to the experts, which is evident from the image of the corresponding changes 
in the HbO absorption coefficient in the cortex (Aasted et al., 2015). Here, we computed 
the EEG band power (1-40Hz) related changes in the HbO signals using GLM and 
regularized temporally embedded Canonical Correlation Analysis (von Lühmann et al., 
2020) in HOMER3. Then, the image of the changes in the HbO absorption coefficient in 
the cortex (Aasted et al., 2015) of the experts and novices during the 10 sec at the start of 
the FLS complex task and during the error epoch are shown in Figure 7. 

(A)  

 

(B)  
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(C)  

 

(D)  
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Figure 7. Image of the changes in HbO absorption coefficient in the cortex, (A) during 0 to 10 sec at the start of the FLS 
complex task of the novices, (B) during 0 to 10 sec at the start of the FLS complex task of the experts, (C) during 0 to 10 sec 
during the error epoch of the novices, (D) during 0 to 10 sec during the error epoch of the experts. 

Table 2. Difference (p-value) in the hemodynamic (HbO) response across all fNIRS channels between the novices and the 
experts during 0 to 10 sec at the start of the FLS complex task and in the error epoch. Automated anatomical labelling 
(AAL) of the cortical areas underlying fNIRS channels (source # – detector # pair) are also listed based on AtlasViewer’s 
default head model (Aasted et al., 2015). 

Source # Detector # AAL label names FLS complex task – p value Error epoch – p value 
1 1 Frontal_Inf_Orb_L 0.78 0.35 
1 15 Frontal_Sup_Orb_L 0.95 0.69 
1 16 Frontal_Sup_Orb_L 0.64 0.79 
2 2 Frontal_Sup_L 0.35 0.77 
2 3 Frontal_Mid_L 0.59 0.78 
2 17 Frontal_Sup_L 0.45 0.17 
3 1 Frontal_Inf_Orb_L 0.45 0.27 
3 3 Frontal_Mid_L 0.17 0.67 
3 5 Frontal_Inf_Oper_L 0.14 0.03* 
4 1 Frontal_Mid_Orb_L 0.84 0.04* 
4 3 Frontal_Inf_Tri_L 0.19 0.56 
4 15 Frontal_Sup_Orb_L 0.71 0.29 
5 2 Frontal_Mid_L 0.59 0.54 
5 3 Frontal_Mid_L 0.80 0.08 
5 4 Postcentral_L 0.11 0.11 
5 5 Precentral_L 0.41 0.23 
6 4 Postcentral_L 0.04* 0.04* 
6 5 Temporal_Sup_L 0.37 0.01* 
6 6 Rolandic_Oper_L 0.77 0.44 
6 18 SupraMarginal_L 0.46 0.34 
7 2 Frontal_Sup_L 0.74 0.89 
7 4 Postcentral_L 0.04* 0.48 
7 7 Postcentral_L 0.18 0.42 
8 4 Postcentral_L 0.16 0.23 
8 6 SupraMarginal_L 0.23 0.73 
8 7 Parietal_Inf_L 0.14 0.44 
8 19 Parietal_Inf_L 0.59 0.51 
9 8 Frontal_Mid_Orb_R 0.33 0.04* 
9 15 Frontal_Sup_Orb_R 0.04* 0.44 
9 20 Frontal_Sup_R 0.88 0.23 

10 8 Frontal_Inf_Orb_R 0.34 0.11 
10 9 Frontal_Inf_Tri_R 0.23 0.14 
10 13 Frontal_Inf_Oper_R 0.80 0.09 
10 21 Frontal_Inf_Tri_R 0.79 0.78 
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11 9 Frontal_Sup_R 0.44 0.97 
11 10 Frontal_Sup_R 0.05 0.80 
12 8 Frontal_Mid_Orb_R 0.64 0.19 
12 9 Frontal_Mid_R 0.32 0.15 
12 15 Frontal_Sup_Orb_R 0.47 0.32 
13 9 Frontal_Inf_Tri_R 0.78 0.45 
13 10 Precentral_R 0.34 0.72 
13 12 Precentral_R 0.57 0.35 
13 13 Precentral_R 0.47 0.62 
13 22 Precentral_R 0.71 0.89 
14 12 SupraMarginal_R 0.34 0.59 
14 13 Insula_R 0.81 0.71 
14 14 Temporal_Sup_R 0.40 0.77 
15 10 Frontal_Sup_R 0.17 0.45 
15 11 Postcentral_R 0.05 0.54 
15 12 Precentral_R 0.85 0.14 
16 11 Parietal_Sup_R 0.18 0.69 
16 12 SupraMarginal_R 0.83 0.86 
16 14 Angular_R 0.59 0.82 
16 23 Angular_R 0.57 0.23 

 

The backfitting of the microstate prototypes (shown in Figure 5B) to all the data 
points during 10 sec at the start of the FLS complex task explained 64.29% GEV in novices 
and 73.64% GEV in the experts, while backfitting of the microstate prototypes to all the 
data points during 10 sec in the error epoch explained 58.98% GEV in novices and 65.96% 
GEV in the experts. Figure 8A shows the ANOVA table where the proportion of the total 
time spent in microstates during the 10 sec at the start of the FLS complex task was 
significantly affected by the skill level (experts, novices) and the interaction between the 
skill level and the microstate (MS1-MS6) at α=0.05. Then, Figure 8B shows the ANOVA 
table where the proportion of the total time spent in microstates during the 10-sec error 
epoch was significantly affected by the skill level (p<0.01), microstates (p<0.01), and the 
interaction between the skill level and the microstate (p<0.01).  

(A)  

(B)  

Figure 8. (A) The proportion of the total time spent in microstates (MS) during 10 sec at the start of the FLS complex task 
was significantly affected by the skill level (experts, novices) and the interaction between the skill level and the microstate 
(MS1-MS6) at α=0.05. (B) The proportion of the total time spent in microstates during the 10-sec error epoch was 
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significantly affected by the skill level (experts, novices), microstates (MS1-MS6), and the interaction between the skill 
level and the microstates at α=0.05. 

While microstate prototypes were computed from EEG data with a high temporal 
resolution, the corresponding fNIRS (HbO) activity is a low-pass filtered version (under 
neurovascular coupling) shown as changes in the HbO absorption coefficient in the cortex 
in Figure 7. Here, a significant difference (p<0.05) in the hemodynamic (HbO) response 
between the novices and the experts across fNIRS channels (listed in Table 1) during 0 to 
10 sec at the start of the FLS complex task and in error epoch is shown with ‘*’ in Table 2. 
During the FLS complex task, HbO signal from the fNIRS channel overlying 
‘Postcentral_L’ and ‘Frontal_Sup_Orb_R’ cortical areas from Automated anatomical 
labelling (AAL) showed a significant (p<0.05) difference whereas HbO signal from fNIRS 
channel overlying ‘Frontal_Inf_Oper_L’, ‘Frontal_Mid_Orb_L’, ‘Postcentral_L’, 
‘Temporal_Sup_L’, ‘Frontal_Mid_Orb_R’ cortical areas from AAL showed significant 
(p<0.05) difference in the error epoch.  

4. Discussion 
In this study, we aimed to show the fusion of simultaneously acquired EEG and 

fNIRS signals to provide better mechanistic insights into the changes in the brain state 
during error perception and correction. Indeed, EEG based microstate analysis provided 
insights based on the scalp topography of the microstates, as shown by illustrative 
examples of the GFP of the active microstates in Figure 6, where microstate 2 was only 
present in the novice while the microstate 4 was present in the expert during the first 10 
sec of the FLS complex task and the error epoch. Here, the scalp topography showed left 
lateralization in the right-handed subjects.  Then, the corresponding HbO response and 
the image of the changes in HbO absorption coefficient in the cortex are shown in Figure 
7. Here, we postulated that the simultaneously acquired EEG-fNIRS-based brain state 
analysis would be able to differentiate experts from novices. Indeed, statistical testing of 
the HbO hemodynamic response at the fNIRS channels identified underlying 
‘Postcentral_L’ and ‘Frontal_Sup_Orb_R’ AAL cortical areas as significantly different 
between the experts and novices during 10 sec at the start of the FLS complex task while 
HbO hemodynamic response at the underlying ‘Frontal_Inf_Oper_L’, 
‘Frontal_Mid_Orb_L’, ‘Postcentral_L’, ‘Temporal_Sup_L’, ‘Frontal_Mid_Orb_R’ AAL 
cortical areas were significantly different between experts and novices during the error 
epoch. Here, we postulate that the frontal/prefrontal cortical areas are related to the 
perception, and the primary somatosensory cortex at the postcentral cortical area is 
related to the action towards perception-action coupling model at the start of the FLS 
complex task as well as in the error epoch. 

Numerous functional magnetic resonance imaging (fMRI) and fNIRS studies have 
been published on skill learning (Roberts et al., 2006),(Ohuchida et al., 2009),(Leff et al., 
2008c),(Wanzel et al., 2007),(Leff et al., 2007),(Gao et al., 2021a),(Leff et al., 2008b),(Khoe et 
al., 2020),(Gao et al., 2021b). Although fMRI studies have shown that a large-scale brain 
network can encode the motor learning and transfer of learning from past experiences 
(Heitger et al., 2012),(Gerraty et al., 2014); however, fMRI is not suitable for mobile brain-
behavior studies. The prefrontal cortex (PFC) has been found to integrate the information 
necessary for action generation and action perception (Raos and Savaki, 2017). Future 
studies need to investigate error-related pupil dilation (Maier et al., 2019) in conjunction 
with EEG microstate, e.g., canonical subjective interoceptive-autonomic processing (Britz 
et al., 2010) may be a marker of error sensitivity. A future longitudinal study on FLS 
complex task learning can investigate the postulated error sensitivity to drive learning in 
novice – fast learners versus slow learners. Here, EEG microstate transitions can provide 
insights into the learning-related mental processes. In this study, the time spent in 
microstates during the 10 sec at the start of the FLS complex task was significantly affected 
by the skill level (experts, novices) and the interaction between the skill level and the 
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microstate types at α=0.05. Also, the proportion of the total time spent in microstates 
during the 10 sec error epoch was significantly affected by the skill level, microstates type, 
and the interaction between the skill level and the microstate type at α=0.01. Therefore, 
brain states underpinning human error processing (Holroyd and Coles, 2002) and the 
error-related chain of mental processes captured by the microstates could differentiate 
experts from novices better at α=0.01. We found microstates 3 and 5 to be present in both 
experts and novices that may be related to error evaluation mechanisms in the medial 
frontal cortex. Here, combining pupil dilation with EEG microstate analysis in the error 
epoch may elucidate the mechanisms underlying error-related pupil dilation during skill 
training – fast versus slow learners. This is important since FLS task performance is 
graded based on the speed and accuracy of psychomotor skills (Ritter and Scott, 2007); 
however, not everyone can achieve proficiency (Grantcharov and Funch-Jensen, 2009). 
Here, we postulate that successful skill acquisition leads to an internal forward model 
(Wolpert et al., 1998) that can simulate the perceptual consequences of the planned and 
executed motor commands. An intact action-perception coupling that is relevant for 
surgical skill acquisition has been shown to depend on the integrity of the cerebellum 
(Christensen et al., 2014) that underpins the internal model (Ebner, 2013). Then, the 
hierarchy of cognitive control during skill learning shows a rostrocaudal axis in the frontal 
lobe (Badre and D’Esposito, 2009a), where a shift from posterior to anterior is postulated 
to mediate progressively abstract, higher-order control expected in the experts. Here, the 
dorsolateral and ventrolateral PFC showed activation in Figure 7A,B during the FLS 
complex task that can be related to attention control, cognitive control, feature extraction, 
and formation of first-order relationships (Badre and D’Esposito, 2009b),(Badre, 
2008),(Koechlin and Summerfield, 2007),(Christoff and Gabrieli, 2000). Specifically, the 
dorsolateral PFC of the dorsal stream is more involved in the visual guidance of action in 
novices (Figure 7A). In contrast, the ventrolateral PFC of the ventral stream is more 
involved in the recognition and conscious perception (Milner, 2017) in experts (Figure 7B). 
Then, the supplementary motor area (SMA) and the premotor cortex are crucial for the 
coordination of bimanual movement (Tanji et al., 1988), where SMA is crucial for complex 
spatiotemporal sequencing of movements (Debaere et al., 2004),(Swinnen and Wenderoth, 
2004) necessary in bimanual FLS complex task (Figure 7B). Also, the cingulate and pre-
supplementary motor areas are the generator sites of error-related negativity. This event-
related potential component is time-locked to an erroneous response (Seidler et al., 2013). 
Then, SMA is involved in planning complex motor finger tasks (PE et al., 1980), critical in 
error correction (Seidler et al., 2013). 

Brain-behavior monitoring of the error-related cortical activation and corrective 
action can allow appropriate error feedback for operant conditioning in future work that 
has been shown feasible in our prior application for stroke rehabilitation (Kumar et al., 
2019). For example, some novices' lack of error perception (i.e., lack of medial frontal 
cortex activation on minor errors (Gehring and Fencsik, 2001)) can disrupt their skill 
learning, which can be improved with its non-invasive brain stimulation in conjunction 
with explicit error feedback in the medical simulator.  Here, microstate 3 can be related 
to the attention reorientation (Britz et al., 2010) and medial frontal cortex activation related 
to error (Gehring and Fencsik, 2001) in the novice, while the microstate 4 can be associated 
with the activation of the left inferior parietal lobe (Numssen et al., 2021) since experts 
have the action semantics knowledge (van Elk, 2014). Therefore, EEG topographies 
provide subject-specific correlates of motor control (Pirondini et al., 2017), and portable 
neuroimaging guided non-invasive brain stimulation may be feasible to facilitate skill 
training (Walia et al., 2021a). Here, perception and action together form a functional 
system that adapts novice behavior during motor learning. The two crucial attributes of 
the perception-action cycle are perceptual and executive memory (Fuster, 2004), where 
error sensitivity is postulated to depend on the memory of errors (the history of past 
consistent errors) (Albert et al., 2021) that drives skilled error correction (Seidler et al., 
2013). For example, early efferent error prediction can lead to immediate adjustments in 
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experts, e.g., skilled typists execute errors with lighter keystrokes than novices. Published 
studies have shown that the pre-supplementary motor area (pre-SMA) and the inferior 
frontal gyrus are involved in stop-signal task performance (Seidler et al., 2013). Then, in 
our prior work (Walia et al., 2021a) on portable neuroimaging during the FLS complex 
task, we found that the average cortical activation was primarily at the left pars 
opercularis of the inferior frontal gyrus involved in cognitive control (Levy and Wagner, 
2011). In contrast, the left frontopolar prefrontal area was more active in the experts 
(Figure 7B).  

This study used portable brain imaging with fNIRS that have limited spatial and 
depth sensitivity (Strangman et al., 2013). Published fNIRS studies showed the 
involvement of the inferior parietal cortex, PFC, occipital cortex, and the sensorimotor 
areas, including the premotor and primary motor cortex. In contrast, the fMRI studies 
showed additional activation of deeper brain structures, including the basal ganglia and 
cerebellum (Roberts et al., 2006). The limitation of our study includes a low-density fNIRS 
and EEG sensor montage that limited the spatial resolution.  It is known from skill 
learning studies that the hierarchy of cognitive control shows a rostrocaudal axis in the 
frontal lobe where a shift from posterior to anterior is postulated to mediate progressively 
abstract, higher-order control [30, p. 707], which requires a higher-density whole-head 
montage. Multimodal imaging limited the head cap space available for high-density 
portable imaging with our separate optodes and electrodes montage, where an integrated 
"co-located" optode+electrode (optrode) can be helpful (Keles et al., 2016) in future studies. 
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Supplementary Materials – code for statistical tests in Matlab 
% SYNTAX: 

% [hmrstatsG_cond] = hmrG_t_HRF_contrast2(yAvgSubjs1, yAvgSubjs2, tHRFrange) 

% 

% UI NAME: 

% t-test 

% 

% DESCRIPTION: 

% Performs a t-test between two mean HRF for a single condition across all subjects 

% 

% INPUTS: 

% yAvgSubjs: yAvgSubjs1 for group 1 and yAvgSubjs2 for group 2 

% tHRFrange: tHRF range for HRF averaging 

% 

% OUTPUTS: 

% hmrstatsG_cond: Statistical results from the MATLAB ttest (h,p,c,stats) and measurement 

list (ml) 

% 

% USAGE OPTIONS: 

% Stats_on_Concentration_Data: [hmrstatsG_base_cond] = hmrG_t_HRF_contrast2(dcAvgSubjs1, 

dcAvgSubjs2, tHRFrange) 

% 

% PARAMETERS: 

% tHRFrange: [0, 0] 

% 

function  [hmrstatsG_cond] = hmrG_t_HRF_contrast2(yAvgSubjs1, yAvgSubjs2, tHRFrange) 

hmrstatsG_base_cond = []; 

iBlk=1; 

  

nSubj = length(yAvgSubjs1); 

for iSubj = 1:nSubj 

     

    yAvg      = yAvgSubjs1{iSubj}(iBlk).GetDataTimeSeries('reshape'); 

    ncond = size(yAvg,4); 

     

    if iSubj == 1 

        tHRF      = yAvgSubjs1{iSubj}(iBlk).GetTime(); 

        fq = abs(1/(tHRF(1)-tHRF(2))); 

        ml    = yAvgSubjs1{iSubj}(iBlk).GetMeasListSrcDetPairs(); 

         

        % error check 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2022                   doi:10.20944/preprints202204.0175.v1

https://doi.org/10.20944/preprints202204.0175.v1


 26 of 34 
 

 

        if tHRFrange(1)>max(tHRF) || tHRFrange(2)>max(tHRF) || tHRFrange(1)>=tHRFrange(2) 

            warning('tHRF range should be between 0 and tHRF max'); 

            return 

        end 

    end 

     

    baseline_yAvg1(iSubj,:,:,:) = 

squeeze(mean(yAvg(1:round(fq*abs(min(tHRF))),:,:,:),1)); 

    mean_yAvg1(iSubj,:,:,:) = squeeze(mean(yAvg(round(fq*(tHRFrange(1) + 

abs(min(tHRF)))):round(fq*(tHRFrange(2) + abs(min(tHRF)))),:,:,:),1)); 

    mean_yAvg1(iSubj,:,:,:) = mean_yAvg1(iSubj,:,:,:) - baseline_yAvg1(iSubj,:,:,:); 

end 

  

nSubj = length(yAvgSubjs2); 

for iSubj = 1:nSubj 

     

    yAvg      = yAvgSubjs2{iSubj}(iBlk).GetDataTimeSeries('reshape'); 

    ncond = size(yAvg,4); 

     

    if iSubj == 1 

        tHRF      = yAvgSubjs2{iSubj}(iBlk).GetTime(); 

        fq = abs(1/(tHRF(1)-tHRF(2))); 

        ml    = yAvgSubjs2{iSubj}(iBlk).GetMeasListSrcDetPairs(); 

         

        % error check 

        if tHRFrange(1)>max(tHRF) || tHRFrange(2)>max(tHRF) || tHRFrange(1)>=tHRFrange(2) 

            warning('tHRF range should be between 0 and tHRF max'); 

            return 

        end 

    end 

     

    baseline_yAvg2(iSubj,:,:,:) = 

squeeze(mean(yAvg(1:round(fq*abs(min(tHRF))),:,:,:),1)); 

    mean_yAvg2(iSubj,:,:,:) = squeeze(mean(yAvg(round(fq*(tHRFrange(1) + 

abs(min(tHRF)))):round(fq*(tHRFrange(2) + abs(min(tHRF)))),:,:,:),1)); 

    mean_yAvg2(iSubj,:,:,:) = mean_yAvg2(iSubj,:,:,:) - baseline_yAvg2(iSubj,:,:,:); 

end 

  

% get t-stats 

for iCond = 1:ncond 

    for i = 1:size(yAvg, 2)  % HbO/R/T 

        for j = 1:size(yAvg,3) % Channels 
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            [h,p,c,stats] = ttest2(mean_yAvg1(:,i,j,iCond),mean_yAvg2(:,i,j,iCond)); 

            pval(i,j,iCond) = p; 

            hval(i,j,iCond) = h; 

            cval(i,j,iCond,:) = c; 

            tstats{i,j,iCond} = stats; 

             

        end 

    end 

end 

  

% output 

hmrstatsG_cond.pval = pval; 

hmrstatsG_cond.hval = hval; 

hmrstatsG_cond.cval = cval; 

hmrstatsG_cond.tstats = tstats; 

hmrstatsG_cond.ml = ml; 

hmrstatsG_cond.mean_yAvg1 = mean_yAvg1; 

hmrstatsG_cond.mean_yAvg2 = mean_yAvg2; 

 
 

% fdr_bh() - Executes the Benjamini & Hochberg (1995) and the Benjamini & 

%            Yekutieli (2001) procedure for controlling the false discovery  

%            rate (FDR) of a family of hypothesis tests. FDR is the expected 

%            proportion of rejected hypotheses that are mistakenly rejected  

%            (i.e., the null hypothesis is actually true for those tests).  

%            FDR is a somewhat less conservative/more powerful method for  

%            correcting for multiple comparisons than procedures like Bonferroni 

%            correction that provide strong control of the family-wise 

%            error rate (i.e., the probability that one or more null 

%            hypotheses are mistakenly rejected). 

% 

%            This function also returns the false coverage-statement rate  

%            (FCR)-adjusted selected confidence interval coverage (i.e., 

%            the coverage needed to construct multiple comparison corrected 

%            confidence intervals that correspond to the FDR-adjusted p-values). 

% 

% 

% Usage: 

%  >> [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(pvals,q,method,report); 

% 

% Required Input: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2022                   doi:10.20944/preprints202204.0175.v1

https://doi.org/10.20944/preprints202204.0175.v1


 28 of 34 
 

 

%   pvals - A vector or matrix (two dimensions or more) containing the 

%           p-value of each individual test in a family of tests. 

% 

% Optional Inputs: 

%   q       - The desired false discovery rate. {default: 0.05} 

%   method  - ['pdep' or 'dep'] If 'pdep,' the original Bejnamini & Hochberg 

%             FDR procedure is used, which is guaranteed to be accurate if 

%             the individual tests are independent or positively dependent 

%             (e.g., Gaussian variables that are positively correlated or 

%             independent).  If 'dep,' the FDR procedure 

%             described in Benjamini & Yekutieli (2001) that is guaranteed 

%             to be accurate for any test dependency structure (e.g., 

%             Gaussian variables with any covariance matrix) is used. 'dep' 

%             is always appropriate to use but is less powerful than 'pdep.' 

%             {default: 'pdep'} 

%   report  - ['yes' or 'no'] If 'yes', a brief summary of FDR results are 

%             output to the MATLAB command line {default: 'no'} 

% 

% 

% Outputs: 

%   h       - A binary vector or matrix of the same size as the input "pvals." 

%             If the ith element of h is 1, then the test that produced the  

%             ith p-value in pvals is significant (i.e., the null hypothesis 

%             of the test is rejected). 

%   crit_p  - All uncorrected p-values less than or equal to crit_p are  

%             significant (i.e., their null hypotheses are rejected).  If  

%             no p-values are significant, crit_p=0. 

%   adj_ci_cvrg - The FCR-adjusted BH- or BY-selected  

%             confidence interval coverage. For any p-values that  

%             are significant after FDR adjustment, this gives you the 

%             proportion of coverage (e.g., 0.99) you should use when generating 

%             confidence intervals for those parameters. In other words, 

%             this allows you to correct your confidence intervals for 

%             multiple comparisons. You can NOT obtain confidence intervals  

%             for non-significant p-values. The adjusted confidence intervals 

%             guarantee that the expected FCR is less than or equal to q 

%             if using the appropriate FDR control algorithm for the   

%             dependency structure of your data (Benjamini & Yekutieli, 2005). 

%             FCR (i.e., false coverage-statement rate) is the proportion  

%             of confidence intervals you construct 

%             that miss the true value of the parameter. adj_ci=NaN if no 

%             p-values are significant after adjustment. 
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%   adj_p   - All adjusted p-values less than or equal to q are significant 

%             (i.e., their null hypotheses are rejected). Note, adjusted  

%             p-values can be greater than 1. 

% 

% 

% References: 

%   Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery 

%     rate: A practical and powerful approach to multiple testing. Journal 

%     of the Royal Statistical Society, Series B (Methodological). 57(1), 

%     289-300. 

% 

%   Benjamini, Y. & Yekutieli, D. (2001) The control of the false discovery 

%     rate in multiple testing under dependency. The Annals of Statistics. 

%     29(4), 1165-1188. 

% 

%   Benjamini, Y., & Yekutieli, D. (2005). False discovery rate?adjusted  

%     multiple confidence intervals for selected parameters. Journal of the  

%     American Statistical Association, 100(469), 71?81. doi:10.1198/016214504000001907 

% 

% 

% Example: 

%  nullVars=randn(12,15); 

%  [~, p_null]=ttest(nullVars); %15 tests where the null hypothesis 

%  %is true 

%  effectVars=randn(12,5)+1; 

%  [~, p_effect]=ttest(effectVars); %5 tests where the null 

%  %hypothesis is false 

%  [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh([p_null p_effect],.05,'pdep','yes'); 

%  data=[nullVars effectVars]; 

%  fcr_adj_cis=NaN*zeros(2,20); %initialize confidence interval bounds to NaN 

%  if ~isnan(adj_ci_cvrg), 

%     sigIds=find(h); 

%     fcr_adj_cis(:,sigIds)=tCIs(data(:,sigIds),adj_ci_cvrg); % tCIs.m is available on 

the 

%     %Mathworks File Exchagne 

%  end 

% 

% 

% For a review of false discovery rate control and other contemporary 

% techniques for correcting for multiple comparisons see: 

% 

%   Groppe, D.M., Urbach, T.P., & Kutas, M. (2011) Mass univariate analysis  
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% of event-related brain potentials/fields I: A critical tutorial review.  

% Psychophysiology, 48(12) pp. 1711-1725, DOI: 10.1111/j.1469-8986.2011.01273.x  

% http://www.cogsci.ucsd.edu/~dgroppe/PUBLICATIONS/mass_uni_preprint1.pdf 

% 

% 

% For a review of FCR-adjusted confidence intervals (CIs) and other techniques  

% for adjusting CIs for multiple comparisons see: 

% 

%   Groppe, D.M. (in press) Combating the scientific decline effect with  

% confidence (intervals). Psychophysiology. 

% http://biorxiv.org/content/biorxiv/early/2015/12/10/034074.full.pdf 

% 

% 

% Author: 

% David M. Groppe 

% Kutaslab 

% Dept. of Cognitive Science 

% University of California, San Diego 

% March 24, 2010 

  

%%%%%%%%%%%%%%%% REVISION LOG %%%%%%%%%%%%%%%%% 

% 

% 5/7/2010-Added FDR adjusted p-values 

% 5/14/2013- D.H.J. Poot, Erasmus MC, improved run-time complexity 

% 10/2015- Now returns FCR adjusted confidence intervals 

  

function [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(pvals,q,method,report) 

  

if nargin<1, 

    error('You need to provide a vector or matrix of p-values.'); 

else 

    if ~isempty(find(pvals<0,1)), 

        error('Some p-values are less than 0.'); 

    elseif ~isempty(find(pvals>1,1)), 

        error('Some p-values are greater than 1.'); 

    end 

end 

  

if nargin<2, 

    q=.05; 

end 
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if nargin<3, 

    method='pdep'; 

end 

  

if nargin<4, 

    report='no'; 

end 

  

s=size(pvals); 

if (length(s)>2) || s(1)>1, 

    [p_sorted, sort_ids]=sort(reshape(pvals,1,prod(s))); 

else 

    %p-values are already a row vector 

    [p_sorted, sort_ids]=sort(pvals); 

end 

[dummy, unsort_ids]=sort(sort_ids); %indexes to return p_sorted to pvals order 

m=length(p_sorted); %number of tests 

  

if strcmpi(method,'pdep'), 

    %BH procedure for independence or positive dependence 

    thresh=(1:m)*q/m; 

    wtd_p=m*p_sorted./(1:m); 

     

elseif strcmpi(method,'dep') 

    %BH procedure for any dependency structure 

    denom=m*sum(1./(1:m)); 

    thresh=(1:m)*q/denom; 

    wtd_p=denom*p_sorted./[1:m]; 

    %Note, it can produce adjusted p-values greater than 1! 

    %compute adjusted p-values 

else 

    error('Argument ''method'' needs to be ''pdep'' or ''dep''.'); 

end 

  

if nargout>3, 

    %compute adjusted p-values; This can be a bit computationally intensive 

    adj_p=zeros(1,m)*NaN; 

    [wtd_p_sorted, wtd_p_sindex] = sort( wtd_p ); 

    nextfill = 1; 

    for k = 1 : m 

        if wtd_p_sindex(k)>=nextfill 

            adj_p(nextfill:wtd_p_sindex(k)) = wtd_p_sorted(k); 
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            nextfill = wtd_p_sindex(k)+1; 

            if nextfill>m 

                break; 

            end; 

        end; 

    end; 

    adj_p=reshape(adj_p(unsort_ids),s); 

end 

  

rej=p_sorted<=thresh; 

max_id=find(rej,1,'last'); %find greatest significant pvalue 

if isempty(max_id), 

    crit_p=0; 

    h=pvals*0; 

    adj_ci_cvrg=NaN; 

else 

    crit_p=p_sorted(max_id); 

    h=pvals<=crit_p; 

    adj_ci_cvrg=1-thresh(max_id); 

end 

  

if strcmpi(report,'yes'), 

    n_sig=sum(p_sorted<=crit_p); 

    if n_sig==1, 

        fprintf('Out of %d tests, %d is significant using a false discovery rate 

of %f.\n',m,n_sig,q); 

    else 

        fprintf('Out of %d tests, %d are significant using a false discovery rate 

of %f.\n',m,n_sig,q); 

    end 

    if strcmpi(method,'pdep'), 

        fprintf('FDR/FCR procedure used is guaranteed valid for independent or positively 

dependent tests.\n'); 

    else 

        fprintf('FDR/FCR procedure used is guaranteed valid for independent or dependent 

tests.\n'); 

    end 

end 

  
  
  
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2022                   doi:10.20944/preprints202204.0175.v1

https://doi.org/10.20944/preprints202204.0175.v1


 33 of 34 
 

 

 
 

 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2022                   doi:10.20944/preprints202204.0175.v1

https://doi.org/10.20944/preprints202204.0175.v1


 34 of 34 
 

 

Supplementary Materials – components in the tCCA latent space 

 
Figure S1: An illustrative plot of the 15 components or sources (greater than the correlation threshold, 0.99) in the tCCA 
latent space where red are the EEG bandpower (1-40Hz) sources and the black lines are the corresponding HbO sources. 
The 15 EEG sources were used as the regressors alongwith short-separation nuisance regressors in the GLM to 
reconstruct the HbO signal. 
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