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Abstract: Detector-based spectral CT offers the possibility of obtaining spectral information from 1

which discrete acquisitions at different energy levels can be derived, yielding so-called virtual 2

monoenergetic images (VMI). In this study, we aimed to develop a jointly optimized deep learning 3

framework based on dual-energy CT pulmonary angiography (DE-CTPA) data to generate synthetic 4

monoenergetic images (SMI) for improving automatic pulmonary embolism (PE) detection in single- 5

energy CTPA scans. For this purpose, we used two data sets: our institutional DE-CTPA data 6

set D1 comprising polyenergetic arterial series and the corresponding VMI at low-energy levels 7

(40 keV) with 7,892 image pairs, and a 10% subset of the 2020 RSNA Pulmonary Embolism Detection 8

Challenge data set D2, which consisted of 161,253 polyenergetic images with dichotomous slice-wise 9

annotations (PE/no PE). We trained a fully convolutional encoder-decoder on D1 to generate SMI 10

from single-energy CTPA scans of D2, which were then fed into a ResNet50 network for training of 11

the downstream PE classification task. The quantitative results on the reconstruction ability of our 12

framework revealed high-quality visual SMI predictions with reconstruction results of 0.984 ± 0.002 13

(structural similarity) and 41.706 ± 0.547 dB (peak-signal-to-noise ratio). PE classification resulted 14

in an AUC of 0.84 for our model, which achieved improved performance compared to other naive 15

approaches with AUCs up to 0.81. Our study stresses the role of using joint optimization strategies 16

for deep learning algorithms to improve automatic PE detection. The proposed pipeline may prove 17

to be beneficial for computer-aided detection systems and could help rescue CTPA studies with 18

suboptimal opacification of the pulmonary arteries from single-energy CT scanners. 19

Keywords: artificial intelligence; deep learning; image-to-image translation; dual-energy computed 20

tomography; pulmonary embolism; emergency radiology 21

1. Introduction 22

Pulmonary embolism (PE) is a potentially life-threatening condition and represents the 23

third most frequent cardiovascular disease after acute coronary syndrome and stroke [1,2]. 24

Early and accurate diagnosis of PE helps in appropriate risk stratification and could sub- 25

stantially improve treatment outcomes [3]. Because of fast image acquisition protocols 26

and high sensitivity in clot detection, computed tomography pulmonary angiography 27

(CTPA) has become the first-line imaging modality in the diagnostic workup for patients 28

with suspected PE [4–6]. However, individual patient-related parameters such as cardiac 29
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function, circulation time, and an increased pulmonary inflow of unopacified blood known 30

as transient interruption of contrast can compromise image quality of the CTPA study, 31

sometimes rendering the examination useless for an adequate diagnostic evaluation [7,8]. 32

Detector-based spectral dual-energy CT (DECT) has gained increasing importance in clini- 33

cal routine because of various post-processing algorithms which allow the reconstruction 34

of energy- and material-selective images from spectral data. DECT enables the creation of 35

discrete acquisitions at different energy levels, resulting in virtual monoenergetic images 36

(VMI) that can mimic low (at high keV) to high (at low keV) iodine-based contrast-enhanced 37

studies. It was shown that an improved iodine attenuation by VMI at lower keV levels en- 38

ables better delineation and diagnostic accuracy in PE detection and may help rescue CTPA 39

studies with suboptimal opacification of the pulmonary arteries [6]. Since most existing CT 40

datasets consist of conventional single-energy CT scanners, they do not provide spectral 41

information to calculate VMI. Recent studies have proposed deep-learning models to pro- 42

duce high-quality approximations of DECT-derived VMI to overcome these issues [9,10]. 43

However, while existing image translation methods can generate visually appealing results, 44

they do not necessarily enforce features that enable the correct identification of certain 45

classes. 46

In this study, we aimed to develop a jointly optimized end-to-end learnable framework 47

that combines the training of two convolutional neural networks (CNN) for image transla- 48

tion and downstream PE classification. For this task, we investigated several state-of-the-art 49

image translation methods to predict synthetic monoenergetic images (SMI) for subsequent 50

training of the classification network. We evaluated the proposed pipeline on an indepen- 51

dent external test set comprising single-energy CT data with slice-wise annotations for PE 52

presence by domain medical experts and compared it against other naïve classification 53

approaches. 54

2. Materials and Methods 55

2.1. Study Design 56

We considered the scenario where we are given two distinct data sets D1 and D2. D1 57

consists of unannotated images with DECT polyenergetic and low-kiloelectronvolt (40 keV) 58

monoenergetic depictions but no information on the occurrence of PE. D2 describes a set of 59

conventional single-energy CTPA (SE-CTPA) images with slice-wise binary PE annotations 60

(PE/no PE) without corresponding monoenergetic representations. To take advantage of 61

the DECT technology, we aimed to design a unified model that jointly optimizes disease 62

identification and domain adaption most fitting for the task. We have formulated these 63

two tasks in the same framework so that (a) it trains these tasks end-to-end and (b) the two 64

tasks can be mutually beneficial. A general overview of the proposed image translation 65

and classification network is shown in Figure 1. 66

SE-CTPA

Input
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Figure 1. Flowchart of the proposed approach. Single-energy CT pulmonary angiography (SE-CTPA)
arterial series are translated into synthetic monoenergetic images (SMI) using a fully convolutional
neural network. The SMI is then processed slice-wise for pulmonary embolism (PE) classification
using a ResNet50 convolutional neural network.
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2.2. Methodology 67

The proposed framework jointly optimizes two tasks in an end-to-end manner. As one
task, we considered the problem of translating between the domain of polyenergetic x ∈ X
and VMI images y ∈ Y as a paired image-translation problem. Here, a generator aims to
learn a mapping G : x → y, which minimizes the difference between the two paired images.
The generator consists of a fully convolutional neural network which allows a pixel-wise
regression towards VMI images. This objective can be expressed as

LL1 = Ex,y[||G(x)− y||1]. (1)

We used the mean absolute error as it has been found to lead to less blurry images [11].
Consecutively, the output of the generator was fed into a classification network C, which
attempts to predict the occurrence of a disease label z, C : G(x) → z of the annotated data
set. The classification network consists of a deep convolutional network that takes an image
as input and outputs a scalar value. We used a sigmoid activation σ for making output
predictions while we dealt with the binary classification task (PE/no PE).

Lcls =Ex,z[−z log σ(C(G(x)))

− (1 − z) log(1 − σ(C(G(x)))]
(2)

To optimize both objectives during the training process, we constructed our data set as a 68

combination of the two data sets (Figure 2). 69
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Figure 2. Jointly optimized training pipeline of both deep-learning networks comprising the two
datasets D1 and D2. Data set D1 contained 7,892 institutional dual-energy CT pulmonary angiography
(DE-CTPA) image pairs of polyenergetic arterial images and corresponding virtual monoenergetic
images (VMI) at low-energy levels (40 keV) but no annotations on pulmonary embolism occur-
rence. Data set D2 consisted of 161,253 single-energy (SE) CTPA images with dichotomous slice-wise
annotations of PE occurrence (PE/no PE) but without monoenergetic representations. The fully
convolutional encoder-decoder network (Generator Network) was trained on D1 to predict syn-
thetic monoenergetic images (SMI). Using the trained generator network, the annotated SE-CTPA
images were translated into SMI, which were then fed into a ResNet50 convolutional network (PE
Classification Network) for training PE classification. The generator network was updated using a
reconstruction loss, whereas the classification network used a classification loss.
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During the networks’ optimization process, we sampled the batch in a way such that
on average it consisted of 50% of either dataset. Therefore, target disease labels appeared
for half of the batch and monoenergetic target images for the other half. To accommodate
this circumstance into the optimization function we introduce a marker variable m that
switches between [0, 1] depending on whether we were presented a target image y or a
target label z. In this manner, the final loss can be formulated as

L = m · Lcls + (1 − m) · LL1. (3)

This batch constellation led to a balanced optimization scheme allowing neither ob- 70

jective to dominate the training. For backpropagation of the resulting gradients, we kept 71

one of the networks frozen while updating the other depending on the respective objective. 72

This process behaved similarly to adversarial training. During inference, one passes a 73

SE-CTPA to the generator network, thus, producing a SMI. Using the SMI as input, the 74

classification network then predicts the likelihood of a PE within a range of 0-1. 75

2.3. Implementation Details 76

We trained our networks jointly in an end-to-end manner by sequentially passing 77

data through the generator and classification network. For our classification network, 78

we used the common ResNet50 architecture [12]. Our generator network utilized a fully 79

convolutional 9-block ResNet encoder-decoder network [11]. However, similar to our 80

classifier, the model can easily be replaced by more advanced architectures. We used Adam 81

for optimization with a learning rate of 0.0002, β1 = 0.9 and β2 = 0.99 with a weight decay 82

of 0.00001. After training for 5 epochs on the joint data set, we decayed our learning rate to 83

0 over the following 5 epochs. For our purposes, we split each scan slice-wise and used 84

the individual slices for further processing. Each slice image was used as one channel 85

image normalized using the datasets mean and standard deviation. We used an image- 86

size of 512 × 512 with a batch size of 5 for all our experiments. We utilized the Pytorch 87

framework [13] and the programming language Python (Python Software Foundation) and 88

performed all our experiments using an NVIDIA GeForce2080. 89

2.4. Experimental Setup 90

We used two data sets for our experiments. Institutional anonymized DE-CTPA 91

data D1 were retrospectively included from 27 consecutive adult patients suspected of 92

having PE, referred from July 15 to August 15, 2020, during routine clinical workup at our 93

radiology department at University Hospital Heidelberg. The CT scans were performed on 94

a dual-layer detector CT (IQon Spectral CT, Philips Healthcare). Standard arterial series 95

and the corresponding VMI at low-energy levels (40 keV) were reconstructed, yielding a 96

final data set of 7,892 image pairs. The second data set D2 was a subset of the 2020 RSNA 97

Pulmonary Embolism Detection Challenge, the largest publicly available expert-annotated 98

dataset of CTPA studies to date [14]. Out of 7,279 annotated CTPA studies from D2, we 99

sampled 10% of the training data. The sampled data set D2 consisted of a total of 161,253 100

PE-annotated slices with roughly the same label distribution as present in the open training 101

set. We further split the data patient-wise 50%/25%/25% into train-, val- and test-sets, 102

respectively. 103

For our experiments on our institutional DE-CTPA, we performed a 5-fold cross 104

validation and averaged our reconstruction results in terms of Peak-Signal-to-Noise-Ratio 105

(PSNR) and Structural Similarity Index Measure (SSIM) [15]. Both metrics compare the 106

projected image to its ground truth target. PSNR is commonly defined via the mean squared 107

error between the two images while SSIM highlights their differences in luminance, contrast 108

and structure. For PE identification, we performed a binary classification on slice level for 109

each presented image domain and reported the AUC on the test split of the model which 110

performed best on the validation set. We validated our model after each epoch. 111

We compared our jointly optimized framework with a two-stage approach: first, an 112

image translation model was trained using the images of D1, afterwards a classification 113
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network was trained on D2 using the image translation model’s outputs as the classification 114

networks inputs. As general baseline which we denote by SE-CTPA, we considered working 115

strictly on the conventional CT imagery for either the computation of PSNR/SSIM or 116

as input into a classification network. We compared our model against various image- 117

translation algorithms using the same network architecture unless further specified. The 118

L1-loss-based generator describes disjoint training of our generator and classification model. 119

Pix2Pix refers to Isola et al.’s conditional Generative Adversarial Network (GAN), which is 120

optimized using an adversarial and L1 loss [11]. Cascaded Refinement Networks (CRN) 121

make use of feature matching losses using an external pre-trained network [16]. For the 122

feature-matching loss, we applied a Visual Geometry Group (VGG)-network and used the 123

architecture as described by Chen and Koltun [16]. Wang et al.’s Pix2PixHD consists of 124

a multi-scale encoder-decoder architecture optimized using multi-scale adversarial and 125

feature matching losses [17]. The Spatial Profile Loss (SPL) describes an alternative to the 126

L1-loss as its formulation incorporates the images profile structure [18]. We further added 127

L1-losses to feature-loss based methods (CRN, Pix2PixHD), denoted by (*) since we have 128

found the training of these methods to be unstable otherwise. To evaluate classification 129

performance for different image translation methods, we trained all methods on the same 130

split in the cross validation setting of our internal data set. 131

3. Results 132

The qualitative results on the reconstruction ability of our proposed method and 133

the compared baselines are shown in Figure 3. All tested methods managed to translate 134

the polyenergetic DE-CTPA images into SMI with a higher iodine opacification of the 135

pulmonary arteries, yielding a similar visual appearance compared to the VMI target 136

domain. The DE-CTPA arterial phase, the predicted SMI of our proposed framework, and 137

the VMI target are outlined in Figure 4. 138
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Figure 3. Qualitative comparison of the different image translation methods on our institutional
DE-CTPA dataset. The respective Structural Similarity Index Measure (SSIM) and Peak-Signal-to-
Noise-Ratio (PSNR) values are given in each image.

Both SMI predictions and VMI reconstructions present higher attenuated pulmonary 139

arteries compared to the polychromatic arterial phase, with a better delineation of clots in 140

the segmental arteries of both lower lobe arteries (Figure 4, arrows). 141
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Input Prediction Target

SSIM:0.934 PSNR:28.16 SSIM:0.988 PSNR:43.46 SSIM:1.000 PSNR:-

DE-CTPA art. phase SMI 40 keV VMI 40 keV

Figure 4. Qualitative samples of our image translation network. Dual-energy CT pulmonary an-
giography (DE-CTPA) arterial series (input) were translated into synthetic monoenergetic images
(SMI, prediction), yielding high quality visual representations compared to the virtual monoenergetic
images (VMI at 40 keV, target) reconstructed from spectral information of the DE-CTPA scans. Areas
around PEs are highlighted and zoomed in the row below. Arrows indicate clot locations in the
pulmonary arteries.

The quantitative reconstruction results of the investigated image translation models 142

and the performances of the downstream PE classification task using the ResNet50 network 143

trained on these various input image domains are outlined in Table 1. 144

Table 1. Quantitative reconstruction results and pulmonary embolism classification performance of
various image translation methods.

Domain SSIM PSNR AUC

SE-CTPA 0.945 ± 0.007 30.189 ± 0.690 0.8142

L1 0.984 ± 0.002 42.365 ± 0.642 0.8102
SPL 0.983 ± 0.002 40.888 ± 0.216 0.8061
Pix2Pix 0.978 ± 0.003 40.897 ± 0.697 0.8051
Pix2PixHD 0.971 ± 0.004 38.739 ± 0.624 –
CRN 0.371 ± 0.551 19.482 ± 16.033 –
Pix2PixHD* 0.971 ± 0.004 38.415 ± 1.278 0.8019
CRN* 0.976 ± 0.005 37.582 ± 1.574 0.8038

Ours 0.984 ± 0.002 41.706 ± 0.547 0.8420

Reconstruction quality of the investigated image translation methods for creating synthetic monoenergetic
images. The area under the the receiver operating characteristic curve (AUC) values represent the performance of
pulmonary embolism classification using the downstream ResNet50 network trained on the input image domains.
Best results in bold. SE-CTPA = Single-energy CT pulmonary angiography, SSIM = Structural Similarity Index
Measure, PSNR = Peak-Signal-to-Noise-Ratio.

With exception of the feature loss-based CRN model, all methods succeed in producing 145

high-quality SMI predictions. Our method achieves VMI predictions with an SSIM of 0.984 146
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± 0.002 and a PSNR of 41.706 ± 0.547, revealing a better quantitative image quality than 147

the original arterial SE-CTPA phase and similar visual predictions to the best-performing 148

L1-based generator. Our framework optimized on the image-based comparison and out- 149

performs the feature-loss and adversarial methods for the evaluated PE classification task. 150

Despite similar SSIM and PSNR results, the L1 loss-based model generates images that 151

slightly compromise the PE classification performance of the ResNet50 network, while 152

the other compared models degrade the performance. Our proposed method generated 153

visually fitting SMI and achieved improved classification results with an AUC of 0.84 154

compared to the SE-CTPA baseline and other classification approaches with AUCs up to 155

0.81. 156

4. Discussion 157

In this study, we have assessed several state-of-the-art image translation methods for 158

generating synthetic monoenergetic images from single-energy CT scans. We found that 159

while these dual-energy mapping networks create visually similar predictions to the mo- 160

noenergetic reconstruction targets, PE classification on these SMI predictions was inferior 161

to that on the original SE-CTPA scans. We extended these methods using a multitask opti- 162

mization approach, wherein both combined networks achieved better image reconstruction 163

and classification results. External validation of our proposed framework on expert-curated 164

single-energy CTPA scans resulted in an increase in AUC for PE classification from 0.81 to 165

0.84 compared with other straight forward classification approaches. 166

We consider this setting relevant since DECT imaging is still not readily available in clinical 167

practice due to complex practical implementations, proprietary patents held by major CT 168

vendors, and the high acquisition costs of the DECT technique compared to conventional 169

SECT scanners, especially in remote healthcare facilities. As part of our clinical routine 170

protocol, we use VMI at the lowest spectrum of monoenergetic reconstructions of 40 keV as 171

it has been shown to achieve best results in terms of contrast-to-noise and signal-to-noise 172

ratios [19]. VMI reconstructions at 40 keV have been found to improve quantitative im- 173

age quality of DE-CTPA studies with suboptimal contrast attenuation of the pulmonary 174

arteries, leading to an increased diagnostic accuracy and confidence in PE detection by 175

radiologists [19,20]. The beneficial effect of using low-keV VMI reconstructions also applies 176

to computer-aided detection (CAD) systems. Recent work has shown that the diagnostic 177

accuracy of a commercially available CAD application had a better performance in PE 178

detection on VMI than on the corresponding dual-energy polyenergetic images, resulting 179

in a significantly lower rate of false-positive PE findings, which argues for the implementa- 180

tion of VMI as the basis for CAD analysis in clinical practice [21,22]. Moreover, previous 181

studies demonstrate that radiologists’ diagnostic accuracy in detecting PE on CTPA can 182

be improved by CAD systems, although a relatively large number of false-positive results 183

are generated on conventional polyenergetic images [23]. This circumstance still limits the 184

use of automatic detection models in clinical practice and may also be improved by using 185

synthetic monoenergetic data. 186

To the best of our knowledge, there are no studies evaluating single-energy CT-derived SMI 187

on the performance of CAD systems or its impact on the diagnostic accuracy and confidence 188

of radiologists, especially in SE-CTPA studies with suboptimal contrast attenuation of the 189

pulmonary arteries. This would have practical implications at institutions without DECT 190

scanners, as mapping SE-CTPA series to VMI may allow using these capabilities of DECT 191

technology to rescue diagnostically insufficient or even non-diagnostic PE examinations. 192

However, the implementation of CAD algorithms and the impact of the proposed frame- 193

work on diagnostic readings by domain medical experts deserve further exploration in 194

future studies and are beyond the scope of this study. 195

Our study had limitations. For training the image translation networks, we used only a 196

small number of CTPA studies, each acquired on one type of dual-energy CT scanner with 197

standardized scanning parameters and a defined iodine administration protocol. Although 198

the reconstruction results were of high quality, this approach has potential implications 199
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for PE classification performance on external datasets, and the use of an inhomogeneous 200

training set from different dual-energy CT scanners and keV levels could lead to further 201

improvements in PE classification. However, we assume good generalizability of the 202

trained model because the CTPA studies in our test set were collected from institutions 203

in five different countries, providing diversity in patient populations, imaging devices, 204

and protocols [14]. Furthermore, we implemented a ResNet50 network for automated PE 205

classification instead of anatomical PE detection on SMI as proof-of-principle to improve 206

the diagnostic performance of our joint optimization approach. Due to the slice-wise 207

dichotomous annotations on PE presence and the absence of bounding boxes, regions of 208

interest, or centroid markers of intraluminal clots in our test set, we were unable to test our 209

model for PE detection performance. 210

5. Conclusions 211

Our proposed joint optimization strategy allows training of translating polyenergetic 212

into monoenergetic images without losing features necessary for automatic PE classifica- 213

tion. Our model hereby improves noticeably over straight forward classification, while 214

outperforming existing methods. This may be prove beneficial in performing high-quality 215

DECT imaging without the conventional hardware-based DECT solutions and may also 216

help rescuing single-energy CTPA studies with low contrast attenuation of the pulmonary 217

arteries for patients with pulmonary embolism. 218
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The following abbreviations are used in this manuscript: 239
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AUC Area under receiver operating characteristic curve
CRN Cascaded Refinement Network
CTPA CT pulmonary angiography
DECT Dual-energy CT
DE-CTPA Dual-energy CT pulmonary angiography
keV Kiloelectronvolt
PE Pulmonary embolism
PSNR Peak signal to noise ratio
SE-CTPA Single-energy CT pulmonary angiography
SMI Synthetic monoenergetic image
SPL Spatial Profile Loss
SSIM Structural similarity index measure
VGG Visual Geometry Group
VMI Virtual monoenergetic image

241
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