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Abstract: Thin-walled structures inspection and damage detection often employs elastic waves,1

and demands accurate estimation of material properties. They require efficient automated tech-2

niques for data extraction and processing, which is still a challenging task. A advanced automated3

technique for material properties identification of an elastic waveguide is proposed in this investi-4

gation. The developed technique rely on the information on dispersion characteristics of guided5

waves, which are extracted applying the matrix pencil method to the measurements obtained via6

laser Doppler vibrometry. Two objective functions have been successfully tested, and advantages7

of both approaches are discussed (accuracy vs computational costs). The numerical analysis8

employing the synthetic data generated via the mathematical model as well as experimental data9

shows that both approaches are stable and accurate. The influence of the presence of certain mode10

in the extracted data is investigated. One can conclude that the influence of the corruptions related11

to the extraction of dispersion curves is not critical if the majority of guided waves propagating in12

the considered frequency range are presented. Possible extensions of the proposed technique for13

damaged and multi-layered structures are also discussed.14

Keywords: laminate; material properties; identification; guided waves;15

1. Introduction16

Understanding of the behaviour of engineering structures is important equally at17

the stage of its manufacturing and design (e.g. for novel materials and for quality control)18

as well as at the operation stage (damage detection). Besides, accurate identification19

of material properties are critical for numerical models, where discrepancies between20

assumed and actual values of parameters may cause large errors in the prediction and21

may, therefore, lead to catastrophic failures. Various static or dynamic methods are used22

to determine the elastic constants of materials [1–3]. The static experiments include23

tensile, compression and bending tests, whereas dynamic methods include various24

low-frequency and high-frequency approaches. In general, dynamic tests are superior25

over static tests in determining the elastic constants since the dynamic tests are far below26

the elastic limit [4].27

The advancement of experimental facilities and devices last decades caused the28

intensive development of non-destructive dynamic approaches for material characteriza-29

tion. Non-destructive dynamic identification techniques have evident advantages, they30

are usually cheaper, more rapid and accurate compared to static approaches. Detailed31

reviews of the non-destructive vibrational evaluation methods, where low frequencies32

are employed, can be found in [3,5]. Guided waves based material properties identifica-33

tion techniques rely on wave propagation characteristics, which carry on information34

on the material properties in a wider frequency range compared with vibrational eval-35

uation methods. Therefore, they require multi-modal high-resolution signals, where36
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data extraction and extraction for multiple propagating modes is necessary, which is still37

a challenging task [6]. Scanning of the certain area of specimen is necessary to obtain38

dispersion properties, and, therefore, various experimental techniques are used. Chen39

et al. [6], Okumura et al. [7,8], Bochud et al. [9] and many others used linear array probe40

attached at the surface of a specimen for dispersion data extraction. Since attachment of41

an ultrasonic probe changes guiding properties of the waveguide in the area of contact,42

non-contact techniques are preferable. The waveguide characteristics are also often43

measured by a laser ultrasonics technique: waves are excited by a laser source through44

thermoelastic conversion [] [AAE] or by a piezoelectric transducer [10–12] and surface45

displacement/velocity is detected by laser interferometry. , A scanning procedure can46

be also performed by an air-coupled transducer, e.g. Takahashi et al. [13] varied angle of47

incidence, in order to estimate properties of a bi-layered structure. Also, the non-contact48

technique based on the transient grating method was employed for identification of49

elastic properties of a composite consisting of GaN nanowires embedded into a dielectric50

matrix [14].51

Waveguide characteristics are obtained via the minimization of the discrepancy52

between the measured and calculated wave characteristics. Therefore, an optimization53

problem is to be solved, where an objective function providing a stable numerical54

procedure fitting a waveguide model to the experimental data should be constructed.55

In vibrational material identification, the objective function can generally be defined56

in various forms involving natural frequencies and mode shapes [5]. For instance,57

Pagnotta and Stigliano [15] investigated the feasibility of vibration based approach using58

natural frequencies of thin isotropic plates of any shape to determine their Young’s59

modulus, Poisson ratio, mass density and thickness, and showed the robustness of60

the identification process with respect to measurement noise was also assessed. As61

soon as measurements are made, the characteristic features (wavenumbers, velocities or62

slownesses) are to be accurately extracted from the experimental data. For this purpose,63

the two-dimensional Fourier transform [9,10,14,16], the dynamic mode decomposition64

[17] or the matrix pencil method (MPM) [18–20].65

The characteristic features of guided waves (GWs) obtained from the experiment are66

further used for the inverse problem solution, which also involve intensive computations67

using mathematical models [9,14,20,21]. In GW-based identification methods, various68

objective functions are constructed employing dispersion characteristics. A popular69

approach is to consider discrepancy between experimental and theoretical wavenumbers70

or phase velocities of GWs [13]. The latter demands calculation of dispersion curves of a71

waveguide, but the latter is reduced to root-finding procedures, which are cumbersome72

for multi-layered waveguides. Besides, mode separation and reconstruction method to73

extract individual modes from dispersive multi-modal GWs is needed [22]. Fairuschin74

et al. [23] used a different method, in which the dispersion properties are calculated75

solving the underlying differential equations using the spectral collocation method. The76

latter provides a good trade-off between precision, implementation effort, and compu-77

tation, but it is not always robust [24]. It should be mentioned that additional features78

of GWs such as zero group velocities can be combined with waveguide modelling for79

material properties identification. [25].80

Alternative approaches avoiding root-finding procedures, which are time-consuming,81

rely also on dispersion characteristics. Thelen et al. [21] proposed a thorough assessment82

of the effective mechanical behaviour of pSi using dispersion maps, where the maps are83

obtained by converting the modelled guided modes into a binary image. The objective84

function is defined as the mean value of the element-wise product between experimental85

and modelled dispersion maps. Chen et al. [6] and Bochud et al. [9] defined the objec-86

tive function as the ratio of the number of experimental pairs wavenumber-frequency87

estimates satisfying the dispersion equation to the number of the total estimates for an88

isotropic layer. In this case, roots of the dispersion equation are not necessary, since89

the experimental wavenumber-frequency are substituted into the dispersion equation,90
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and the objective function is defined using signum function showing sign changes near91

certain wavenumber at a given frequency, for more details see [6,9]. Also, Green’s matri-92

ces can be employed instead of the dispersion equation [14,26], which demands more93

computational time (2-3 times), but provides a smoother objective function.94

In this paper, a novel automated technique for material properties identification95

of an elastic waveguide is proposed, validated and verified using synthetic and ex-96

perimental data. The approach rely on the information on dispersion characteristics97

of guided waves, which are extracted here applying the matrix pencil method to the98

measurements obtained via laser Doppler vibrometry. Two objective functions have99

been composed: the first functional uses information on slownesses, while the second100

one employs the Fourier transform of Green’s matrix [14]. The numerical analysis em-101

ploying the synthetic data generated via the mathematical model (the algorithm of data102

synthesis is described in Section 5) shows that both approaches are stable and accurate.103

It demonstrated that the approach using slownesses is more accurate, but it is more104

time consuming. The influence of the presence of certain mode in the extracted data105

is investigated. One can conclude that the influence of the corruptions related to the106

extraction of dispersion curves extraction is not critical if the majority of guided waves107

propagating in the considered frequency range are presented. Discussions of the possible108

extensions of the proposed technique for damaged and multi-layered structures are also109

given.110

2. Experimental data extraction using the matrix pencil method111

Transducers

LDV

Specimen

Scan points

x

z

y

Figure 1. Experimental setup

Ultrasonic GWs are excited in the rectangular plate by a circular piezoelectric112

actuator of 5 mm radius and 0.5 mm thickness manufactured from PZT PIC 151 (PI Ce-113

ramic GmbH, Germany). Out-of-plane velocities of propagating wave packages are114

measured at the surface of the specimen by PSV-500-V laser Doppler vibrometer (LDV)115

(Polytec GmbH, Germany), which head is placed about 1100 mm above the sample116

minimizing the oblique angle laser beam measurement errors [? ]. Since the specimen117

surfaces remained intact with no special treatment for their reflectivity improvement118

applied, at least 200 times averaging are performed for each measurement point to119

improve the signal-to-noise ratio. The experimental setup is schematically shown in120

Figure 1. The actuator was driven by broadband 0.5 µs rectangular pulse tone burst121

voltage, which spectrum is non-zero for the frequencies up to 3 MHz.122

For the sake of convenience, let us introduce the Cartesian coordinates so that123

the scan line goes along the Ox-axis, and the transducer is situated at the origin of124

coordinates. The LDV allows measuring out-of-plane velocities v(x, 0, 0, t) at the surface125

z = 0 of the specimen.126

The out-of-plane velocities v(xi, tk) = vik measured at points (xi, 0, 0) at moments127

of time tk can be evaluated using the matrix pencil method (MPM). According to the128

MPM, the Fourier transform is applied to v(xi, tk) with respect to time-variable for a129
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certain set of frequencies f j, which gives V(xi, f j) = V j
i . The MPM, where the singular130

value decomposition is applied to V(xi, f j) for computing the discrete relation between131

the wavenumber k and the frequency f following Schöpfer et al. [18]. Thus, a set of132

slownesses sij of some guided waves propagating at frequency f j are determined after133

the application of the processing procedure, which deletes noise and the results of the134

MPM, which do not correspond to a propagating guided wave. Therefore, some guided135

waves are not included in the final set and vice versa, some sij do not match the actual136

guided wave.137

3. Theoretical determination of guided waves characteristics138

HV

x

z

Figure 2. Geometry of the problem

Let us consider steady-state motion of an elastic layer V = {|x| < ∞,−H ≤ z ≤ 0}
of thickness H characterized by the mass density ρ, Young’s modulus E and Poisson’s
ratio ν as shown in Figure 2, so that parameter of the model θ = θ = {E, ν, H} is
introduced. For the time-harmonic wave motion with the angular frequency ω = 2π f ,
the displacement vector u obeys the Lame equation

1 − ν

1 − 2ν
∇ · ∇u − 1

2
∇× (∇× u) +

(1 + ν) ρ

E
ω2u = 0. (1)

The Hooke’s law relates the components of the stress tensor σik and the displacement
vector u. The upper and lower surfaces of the layer are assumed to be stress-free

σi2(x, 0) = σi2(x,−H) = 0, ∀x. (2)

Since the solution corresponding to a guided wave propagating in a positive direc-
tion with the wavenumber ζ at the angular frequency ω = 2π f ( f is the dimensional
frequency) has the form:

u(x, z, ω) = U(z) exp(iζx − iωt).

The latter form is substituted into governing equations (1), which leads to the following
system of ordinary differential equations:

B2(ζ)
d2U(z)

dz2 + B1(ζ)
dU(z)

dz
+ ω2B0(ζ)U(z) = 0. (3)

Differential equations (3) can be rewritten in the following form

d2Y
dz2 = P(ζ, f )Y , (4)

Y =

{
U1, U2,

∂U1

∂z
,

∂U2

∂z

}
.

The solution of (4) can be written in terms of the matrix M(ζ, f ) composed of eigenvectors
and E(ζ, f , z) = diag{exp(γ1z), . . . , exp(γ4z)}, where γ1( f ) are eigenvalues of P(ζ, f ):

Y(ζ, f , z) = M(ζ, f ) · E(ζ, f , z) · t. (5)
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Replacement of (5) into stress-free boundary conditions (2) gives

T(ζ) · M(ζ, f ) · E(ζ, f , 0) · t = 0,
T(ζ) · M(ζ, f ) · E(ζ, f ,−H) · t = 0,

which can be rewritten in terms of four-by-four matrix D

D(ζ, f ) · t = 0 (6)

and differential operator T(ζ) corresponding to the Hooke’s law. Therefore, the solution
ζk( f ) of the dispersion relation

∆( f , ζk) = det D(ζk, f ) = 0 (7)

gives wavenumbers of guided waves propagating in the elastic layer. In order to
construct components of the Fourier transform of Green’s matrix Kij(ζ, f ), the right-
hand side of the system (6) is substituted by g j (g1 = {1, 0, 0, 0}T, g2 = {0, 1, 0, 0}T)
assuming that the load is applied at the lower boundary z = 0. The latter leads to the
following system:

D(ζ, f ) · t j = g j. (8)

The solution of (8) is then substituted into (5), and the Fourier transform of Green’s
matrix can be represented as follows

K( f , ζ/ f , z, θ) = M(ζ, f ) · E(ζ, f , z) · {t1(ζ, f ), t2(ζ, f )} (9)

in terms of slowness value s(θ) = ζ(θ)/ f , which is employed further.139

4. Objective functions for material properties characterization140

As soon as slownesses s̆k at frequencies fn (n = 1, N f ) are extracted from the141

experimental data, an inverse problem for material properties’ identification is to be142

formulated and solved. With a certain model parameter vector θ including Young’s143

modulus, Poisson’s ratio and plate thickness, the mathematical model presented in144

Section 3 can be applied for computing slownesses as roots of dispersion equation145

(7) (for instance, using the method of interval bisection) or the Fourier transform of146

Green’s matrix (9). Numerical routines for calculating slownesses s and the Fourier147

transform of Green’s matrix (9) at a given frequency f have been implemented in the148

FORTRAN programming language. Therefore, an inverse problem is settled matching149

the experimental and theoretical results via a specially composed objective function. Two150

main approaches for the objective function composition are considered here, and the151

effectiveness of several kinds of objective functions for material properties identification152

are compared in subsequent sections.153

For both approaches and all the objective functions, the following optimization
problem is formulated

θ̂ = arg min
θ∈Θ

g(θ, θ̆).

Here Θ denotes the bounds of the model parameters of a certain objective function154

g(θ, θ̆), where the unknown parameter θ̆ incorporates information on the actual value of155

the parameter, and θ̂ is an estimate determined as a result of solving the optimization156

problem. The solution of the optimization problem has been implemented in the Python157

programming language using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.158

4.1. Objective function using residual of slownesses159

In the first approach, the multi-parameter criterion is the minimization of the160

residual between measured slownesses s̆k and slownesses sk caclulated employing math-161

ematical model with parameters θ. Therefore, an iterative correction of simulation162
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results is to be performed varying material properties θ until the optimal match between163

slowness-frequency pairs (sk(θ, fn), fn) calculated using a theoretical model with param-164

eters θ and the experiment (s̆k(θ̆, fn), fn), which contain information about the unknown165

parameter vector θ̆, as well as other factors affecting the experiment. Experimentally de-166

termined slownesses are denoted as s̆k(θ̆, fn) to show straightforwardly that information167

about actual material properties θ̆ is included into the data.168

Formally, the optimal model parameters θ̂ are obtained from the minimization of
the objective function

F(θ, θ̆) =
1
N

N f

∑
n=1

∑
k∈Pn

|s̆k(θ̆, fn)− sk(θ, fn)| (10)

is composed assuming the modal decomposition of the data. Here, k is the index of169

experimentally found out data for some frequency fn, i.e. Pn = {k| ∃s̆k(θ̆, fn), n = 1, N f },170

N f is the number of all frequencies, and N is the total number of pairs. Weights can171

also be used to take into account the sensitivity of the modes to the material properties172

changes, while such investigation is out of the scope of the present study and the173

weights are assumed to be equal. The disadvantage of the employment of this objective174

function is the necessity of the numerical search of the roots of dispersion equation175

(7) for all dissimilar frequencies s̆k(θ̆, fn) and the determination of slownesses sk(θ, fn)176

corresponding to experimental ones.177

4.2. Objective function based on the Fourier transform of Green’s matrix178

Figure 3. Surfaces of dispersion maps for |K−1
22 ( f , s, 0, θ)| (a) and log10 |K

−1
22 ( f , s, 0, θ)| (b) at θ = {70 GPa, 0.33, 1.9 mm}.

The second approach avoids time-consuming root search procedure. Moreover,
instead of direct insertion of the experimentally determined slowness-frequency pairs
(s̆k(θ̆, fn), fn) into dispersion equation (7), they are substituted into the inversion of
the Fourier transform of Green’s matrix K−1

22 ( f , s, 0, θ) as proposed in [26]. The latter
provides a smoother surface compared with ∆( f , s), an example of dispersion map
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|K−1
22 ( f , s, 0, θ)| is demonstrated in Figure 3a for typical aluminium parameters θ =

{70 GPa, 0.33, 1.9 mm} (here all values |K−1
22 ( f , s, 0, θ)| > 100 are substituted by 100). In

this case, the following objective function is employed:

Gβ(θ, θ̆) =
1
N

N f

∑
n=1

∑
k∈Pn

min
(
|K−1

22 ( fn, s̆k(θ̆, fn), 0, θ)|, β
)

. (11)

Here, an additional parameter β is introduced in order to avoid large values of objec-
tive function (11), which improves the effectiveness of the inversion procedure, since
extremely large values (they are visible in Figure 3b) could strongly influence on the
objective function, if, for instance, some points related to noise are included. Another
alternative for avoiding too large values of the objective function is the employment of a
logarithm procedure so that objective functions

Hβ(θ, θ̆) =
1
N

N f

∑
n=1

∑
k∈Pn

ln min
(
|K−1

22 ( fn, s̆k(θ̆, fn), 0, θ)|, β
)

and

Jβ(θ, θ̆) =
1
N

N f

∑
n=1

∑
k∈Pn

log10 min
(∣∣∣K−1

22 ( fn, s̆k(θ̆, fn), 0, θ)
∣∣∣, β

)
,

which are also considered in this study. An example of dispersion map log10 |K
−1
22 ( f , s, 0, θ)|179

is shown in Figure 3b for the same parameters θ as used for Figure 3a.180

5. Generation of test data sets181

In the case of the data obtained from a physical experiment, slownesses can be
represented as a sum of the slownesses depending on the material parameters and the
random component ϵ included the actions of random factors during the experiment,
which can be represented as follows for a given discrete data set

s̆k(θ̆, fn) = sk(θ̆, fn) + εnk.

To obtain statistics proving the effectiveness of the identification procedure, the method182

must be validated in numerous tests, where the material properties θ̆ ∈ Θ are known,183

but the data have to simulate experimental data. For this purpose, test data sets, i.e.184

slowness-frequency pairs, are to be prepared at first.185

At the first stage of the test data preparation, theoretical slownesses are calculated
for a known parameter θ̆ = θ∗ at the set of frequencies { f ′n}

N′

n=1. Since the number of
propagating guided waves varies with frequency, slowness-frequency pairs are split
into sets sk(θ

∗, f ′n) of various numbers of elements M′
k in the general case, and each set

corresponds to a kth non-attenuating guided wave. Next, white noise ϵ̆ ∼ N(0, σ) with
the standard deviation σ is added so that

s′k(θ
∗, f ′n) = sk(θ

∗, f ′n)(1 + ϵ̆)

is generated independently, and corrupted data sets (s′k(θ
∗, f ′n), f ′n}) are prepared for186

each guided wave.187

At the next stage, the noisy slownesses s′k(θ
∗, f ′n) are damaged for getting a given188

percentage δ of gaps in the dispersion curves. To this end, the parameter δ1 ∈ (0, 1] de-189

scribing the percentage of sole points to be removed from initial data and the parameter190

δ2 ∈ (0, 1] describing percentage of points belonging to chains of lengths from 2 to 7 to191

be deleted from s′k(θ
∗, f ′n) are introduced so that δ = δ1 + δ2 < 1.192
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Figure 4. Examples of artificially generated corrupted slowness-frequency pairs (s̆k(θ
∗, fn), fn) for

θ∗ = {70 GPa, 0.33, 1.9 mm}.

For simplicity, let us introduce one-dimensional arrays of frequencies related to kth
guided wave as follows:

{ f ′nk} = { f ′n | Im s′k(θ
∗, f ′n) = 0}.

and denote their lengths as M′
k = |{ f ′nk}n|. Next, the number of slowness-frequency

pairs for each guided wave, which are expected at the final stage, are defined by the
relation Mk = M′

k − M1
k − M2

k , where M1
k =]M′

kδ1[ is the number of individual points to
be excluded from initial set at random positions, while M2

k =]M′
kδ2[ is the number of

points in the chains or the sets of adjacent points of lengths from 2 to 7 to be deleted also
at random positions. To obtain

s̆k(θ
∗, fn) =

⋃{
s′k(θ

∗, f ′n′k)|n
′ /∈ Ik, n′ ∈ 1, M′

k

}
,

the auxiliary set

Ik =

M1
k⋃

j=1

{
Akj

} ∪

⋃
j

{
Bkj

}
is composed of indices of slowness-frequency pairs to be deleted from the initially
generated set sk(θ

∗, f ′n) employing temporary sets

Akj = random(1, M′
k)
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and
Bkj =

{
bkj, . . . , bkj + lkj

}
,

where
bkj = random(1, M′

k),

lkj = random(2, 7),

∑
j
|lkj| = M2

k

Akj
⋂

Akj′ = Bkj
⋂

Bkj′ = Akj
⋂

Bkj′ = ∅, ∀j ̸= j′.

The latter allows us to simulate data gaps and white noise that are usually observed in193

experimental data [11,20].194

The sets (s̆k(θ
∗, fn), fn) generated according to the procedure described above are195

employed further to analyse the behaviour of the proposed objective functions. Figure 4196

shows four corrupted data sets (s̆k(θ
∗, fn), fn) for two values of the standard deviation197

(σ = 0.0025 and σ = 0.01) and two levels of corruption (δ = 20% and δ = 40%) for198

θ∗ = {70 GPa, 0.33, 1.9 mm}.199

6. Numerical analysis200

6.1. Analysis of the properties of objective functions201

Figure 5. Surfaces of objective functions F(θ̃) (a–d) and G1(θ̃) (e–h) at θ̃ = (E, ν = 0.33, H) and for different degrees of
corruptness σ (δ = 0.4).

For all the data samples depicted in Figure 4, the two-dimensional surfaces f (E, 0.33, H),202

f (E, ν, 1.9 mm) and f (70 GPa, ν, H) are depicted in Figures 6–5 as contour plots of three203

slices (ν = 0.33, H = 1.9 mm and E = 70 GPa) calculated for two objective functions204

(F and G1 are calculated for the corrupted data s̆k(θ
∗, fn) at σ = 0.0075 and δ = 20%).205

These figures demonstrate that the both objective functions are smooth, and the global206

minimum, which is clearly visible for both objective functions in Figures 6–5, could be207
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Figure 6. Surfaces of objective functions F(θ̃) (a–d) and G1(θ̃) (e–h) at θ̃ = (70 GPa, ν, H) for different degrees of corruptness
(δ = 0.4).

Figure 7. Surfaces of objective functions F(θ̃) (a–d) and G1(θ̃) (e–h) at θ̃ = (E, ν, 1.9 mm) for different degrees of corruptness
σ (δ = 0.4).

determined at the next stage, where the minimization problem is solved. One can also208

note that objective function F is usually smoother than G1.209
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6.2. Inverse problem solution using synthesized data210
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Figure 8. The length of confidence intervals (a,c,e,g) and the relative error ϵ̂1 (b,d,f,h) for Young’s modulus E identification
obtained using five objective functions F, G1, G100, H1, J150 for different levels of noise σ at δ = 40%.

Foremost, the material properties identification procedure has been validated using
synthesized data s̆k(θ

∗, fn) calculated for θ∗ = {70 GPa, 0.33, 1.9 mm} with different
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Figure 9. The length of confidence intervals (a,c,e,g) and the relative error ϵ̂2 (b,d,f,h) for Poisson’s ratio ν identification
obtained using five objective functions F, G1, G100, H1, J150 for different levels of noise σ at δ = 40%.

levels of noise σ and corruption δ = 40%. The statistics have been estimated for Young’s
modulus E, Poisson’s ratio ν and plate thickness H using five different objective functions
F, G1, G100, H1, J150 and the employing 1000 tests for synthesized data. Figures 8–10
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obtained using five objective functions F, G1, G100, H1, J150 for different levels of noise σ at δ = 40%.

depicts the lengths of confidence intervals in subplots (a, c, e, g), whereas the relative
error

ϵ̂ =
E(θ̂)− θ∗

θ∗
.
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is illustrated in subplots (b, d, f, h). Here the mean of the parameter estimates θ̂ is211

employed as an estimate for the expectation E(θ̂). The length of the confidence interval212

for the mean indirectly indicates the efficiency of the estimates, which characterizes the213

accuracy of the obtained parameter estimates and allows us to compare the objective214

functions from this point of view. The relative error vector ϵ̂ can be used to consider a215

property such as biased or unbiased parameter estimates. To investigate the influence of216

the presence of guided waves, various combinations of guided waves has been consid-217

ered (markers in the bottom of Figures 8–10 show which modes have been included in218

the data set).219

According to Figures 8–10, one can conclude that the estimates of all parameters220

determined using the objective function F, which summarizes residuals in slownesses,221

are unbiased and the most efficient for all the considered combinations of guided waves222

except for GW 1. However, it should be noted that all estimates for the only first guided223

wave GW 1, which is the fundamental antisymmetric mode, are biased. The objective224

function Gβ gives the more efficiency and less biased estimates for β = 1 than β = 100225

for the majority of the considered synthesized data sets. Compared to the objective226

functions H1 and J150, the functional G1 provides also more accurate estimates.227

In general, it should be mentioned that the majority of the estimates calculated using228

the approach based on the Fourier transform of Green’s matrix give an underestimated229

value of Young’s modulus up to 9% (see Figure 8) and an overestimated value of the230

Poisson’s ratio (more than 10%), see Figure 9. Thickness estimates are also more inclined231

to be underestimated, but the error varies in the 3% range (Figures 10). It is also232

noteworthy that the most efficient and less biased estimates for Young’s modulus and233

Poisson’s ratio are determined for GW 2 and GW 2–GW 3. This regularity can not be234

reported for the sample’s thickness, however, the estimation error is small for all the235

considered combinations of GW modes. It should be also noted that the computational236

time for the approach based on the slowness residuals is ???? times smaller than for the237

approach based on the Fourier transform of Green’s matrix.238

6.3. Inverse problem solution using LDV experimental data239

GW modes Statistics

2.5% 97.5% 50% mean
Young’s modulus

70.48489 71.08083 70.58092 70.61958
71.91615 72.00113 71.95661 71.93506
71.63346 72.06074 72.01541 71.93475

Poison’s ratio
0.2814911 0.3088387 0.2851565 0.2868929
0.3426350 0.345837 0.3443798 0.345837
0.3498317 0.352299 0.3513940 0.3512925

Thickness
2.038286 2.045689 2.044301 2.043785
2.019506 2.022150 2.020586 2.020512
2.001522 2.014291 2.013035 2.010527

Table 1: The cumulative percentages and the mean for the results calculated using
objective function F based on the slowness residuals.

At the final stage the proposed approaches have tested and validated using240

experimental data obtained using the LDV setup for an aluminium plate with known241

parameters ν = 0.35, H = 2.0 mm and E = 72 GPa. Figure 11 depicts slownesses242

(s̆k(θ̆, fn), fn) obtained applying the MPM to the experimental data as circles. The243
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GW modes Statistics

2.5% 97.5% 50% mean
Young’s modulus

71.57257 71.61732 71.59928 71.60707
69.31747 71.97177 71.95452 71.77478
69.98659 72.75823 72.47230 72.20928

Poison’s ratio
0.3130311 0.3199611 0.3156035 0.3164631
0.2584863 0.3394943 0.3394111 0.3352184
0.2730250 0.3862568 0.3508503 0.3454789

Thickness
2.050283 2.058020 2.056627 2.055417
1.985751 2.081555 2.029845 2.029940
2.008208 2.090551 2.030139 2.034077

Table 2: The cumulative percentages and the mean for the results calculated using
objective function G1 based on Green’s matrix.

optimization procedure has been run 1000 times using for the BFGS method with various244

starting points uniformly distributed in 10 × 10 × 10 grid in the parameter θ space using245

both objective functions. The statistics obtained for the estimates θ̂ calculated using246

objective function F based on the slowness residuals are given in Table 1, while the247

statistic estimations related to the objective function G1 based on the Fourier transform248

of Green’s matrix are presented in Table 2. In these tables, the boundaries of the intervals,249

where 95% of all calculated parameters are located, as well as the medians and means250

are given. The results presented in these tables have been computed for the following251

sets of modes: GW 1–GW 2, GW 2–GW 3 and GW 1–GW 5. The conclusions that can252

be drawn from the analysis of Tables 1–2 are consistent with the results obtained for253

synthesized data provided in Subsection 6.2. The parameter estimates found for the254

approach using slowness residuals are more accurate, since the lengths of confidence255

intervals are narrower. At the same time, the obtained values are slightly underestimated256

for Young’s modulus and Poisson’s ratio and slightly overestimated for the thickness257

for the mode set GW 1–GW 2. As the final estimate of the faithful parameters, both258

the median and the mean values can be taken, since their values are very close. For259

calculations by means of the approach based on Green’s matrix, only the results obtained260

for the set of modes GW 1–GW 5 can be considered acceptable.261

Figure 11 depicts the slownesses calculated as a solution of dispersion equation (7)262

for parameters estimated using the developed numerical routines (solid, dashed, dash-263

dotted lines), which are given in Tables 1–2. Four sets of slowness curves corresponding264

to θ̂ determined using experimental data (s̆k(θ̆, fn), fn) and two approaches employing265

data for modes GW 1–GW 2 (dashed and thick solid lines) and GW 1–GW 5 (dash-266

dotted and thin solid lines) are demonstrated in Figure 11. A sufficient discrepancy267

between theoretical curves and the experimental data is clearly visible by eye for modes268

GW 1–GW 2. For the full data set including information on modes GW 1–GW 5,269

both approaches have more or less similar difference with experimentally obtained270

slownesses, though the objective function F based on the slowness residuals provide271

material properties more close to the actual ones.272

7. Discussions273

The proposed automated procedure is an attempt to summarize and extend the274

results of the researchers mentioned in the introduction as well as many others, who275

used guided waves for material properties characterization. The comparison of two276
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Figure 11. Experimentally observed (circles) and theoretically predicted slownesses (lines) calculated at θ̂ estimated using
objective function F based on the slowness residuals (solid lines) and G1 based on Green’s matrix (dash-dotted and dashed
lines) for GW 1–GW 2 (dashed and thick solid lines) and GW 1–GW 5 (dash-dotted and thin solid lines).

different approaches for objective function composition for the proposed procedure277

has shown that both approaches have some advantages as well as disadvantages. The278

approach using the Fourier transform of Green’s matrix is much faster compared with279

the approach using discrepancy between slownesses. The authors believe that the280

advantages of the two approaches might be combined into an improved algorithm with281

low computational costs and accuracy close to the approach using slownesses. In this282

study, it was shown a sufficient influence of the number of propagating modes on the283

accuracy of the identification, which might be useful for improved algorithms based on284

both approaches considered in this paper.285
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Though the proposed procedure for material properties identification has been286

validated and verified for an elastic isotropic waveguide, it can be naturally extended287

for multi-layered structures and damaged laminates, e.g. considering the data from288

the previous authors’ studies [11,20]. Another possible extension of the algorithm is289

the properties characterization of piezoelectric and anisotropic layered structures using290

information about the properties of guided waves propagating there. Besides, it is not291

limited by the matrix pencil method and laser Doppler vibrometry. The most important292

basis of the developed procedure is careful extraction of the information about dispersion293

characteristics of the layered waveguide and fast computational algorithms for Green’s294

matrices, which have been recently advanced by the authors [27,28] and can be employed295

in near future.296
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