Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

Article

Data Preprocessing Method and API for Mining Processes from
Cloud-Based Application Event Logs

Najah Mary El-Gharib and Daniel Amyot

University of Ottawa, Ottawa, Canada
* Correspondence: nelghO31@uottawa.ca

Abstract: Background: Process mining (PM) exploits event logs to obtain meaningful information
about the processes that produced them. As the number of applications developed on cloud
infrastructures is increasing, it becomes important to study and discover their underlying processes.
However, many current PM technologies face challenges in dealing with complex and large event
logs from cloud applications, especially when they have little structure (e.g., clickstreams).
Methods: Using Design Science Research, this paper introduces a new method, called Cloud Pattern
API — Process Mining (CPA-PM), that enables discovering and analyzing cloud-based application
processes using PM in a way that addresses many of these challenges. CPA-PM exploits a new
application programming interface (API), with an R implementation, for creating repeatable scripts
that preprocess event logs collected from such applications. Results: Applying CPA-PM to a case
with real and evolving event logs related to the trial process of a Software-as-a-Service cloud
application led to useful analyses and insights, with reusable scripts. Conclusion: CPA-PM helps
producing executable scripts for filtering event logs from clickstream and cloud-based applications,
where the scripts can be used in pipelines while minimizing the need for error-prone and time-
consuming manual filtering.

Keywords: APL clickstream; cloud applications; process mining; scripting

1. Introduction

Organizations use information systems to support an increasing number of business
processes, where a process is a set of related activities that happen over time in order to
achieve a goal [15]. Many such systems record what happens in running processes as event
logs that contain information such as process instances, activities, timestamps, and
resources. Event logs form a large amount of data ready to be exploited through process
mining (PM), which aims to discover processes to improve process understanding,
compliance, and quality aspects based on evidence. PM is often needed because concrete
processes are often more complex than their idealized process definitions or models.

The interest in information systems exploiting cloud computing is also rapidly
growing in the industry and research communities. The number of applications
developed in a cloud environment is increasing because of benefits that a cloud
infrastructure offers, especially regarding scalability, availability, and maintainability.

Clickstream data is used to represent the electronic record of a user’s behavior on Web-
based information systems and cloud applications. This data shows the path a user takes
while navigating the website or application. This path reflects the different choices that
the user takes while navigating. Given that clickstream event logs might include a record
of every page visited by the user, they usually form large amounts of behavioral data.
Such logs provide opportunities for a detailed look at the decision-making process of
users. When applying process mining techniques on such data, process maps can be
generated that represent the user actions on web/cloud applications. These process maps
give detailed information about users’ navigation habits. It is important to visualize and

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202204.0138.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

20f17

understand user actions while interacting with a cloud application so that the latter be
engineered to better satisfy user needs and ensure that users come back to the application.

Unfortunately, the complexity of clickstream data and other event logs from cloud-
based applications is typically too difficult to handle by process mining tools, out of the
box. A research challenge here includes how to reduce, in a repeatable way, log
complexity caused by numerous cloud event attributes, action orderings (e.g., clicks and
refreshes), and low-level events. Our research objective is to develop and assess a method
to preprocess event logs collected from cloud-based applications to discover user actions
and processes. A secondary objective is to examine how process mining can be applied on
clickstream data collected from Software-as-a-Service (SaaS) applications and discover
users’” behavioral characteristics. A suitable method should provide high automation (e.g.,
by being scriptable), high abstraction, high scalability, and low effort to accommodate
changes frequently occurring in cloud-based logging infrastructures. The focus here is
also on advanced preprocessing of event logs, where the preprocessed logs can then be fed
to many existing process mining tools for visualization and analysis.

This research was conducted following Design Science Research in Information
Systems [9]. This methodology consists of five iterative steps, 1) awareness of problem, 2)
suggestion, 3) development, 4) evaluation, and 5) conclusion, that are illustrated
throughout the different sections in this paper.

The main research contribution of this paper is a Cloud Pattern API — Process Mining
(CPA-PM) method, accompanied by a scriptable application programming interface (API)
with an R implementation, to preprocess little-structured cloud-based event logs and
enable simpler and repeatable process discovery.

In this paper, Section 2 presents the related work, including important challenges,
while Section 3 highlights the research materials and methods. Section 4 introduces the
CPA-PM method and Section 5 presents its API. Section 6 shows the application of the
method to a SaaS application case study, while Section 7 discusses analysis results and
threats to validity. Finally, Section 8 concludes.

2. Related Work and Challenges

Important motivations for applying process mining techniques on a dataset include
discovering and generating understandable process models (or maps). When analyzing
processes with many different cases, much noise, and a high diversity of behaviors, which
are typical of cloud-based applications, the generated models are often confusing and
difficult to understand. Bose and van der Aalst [2] call such process models spaghetti
models and explored the iterative use of pattern abstraction to produce simpler and
hierarchical models that eliminate irrelevant paths and reduce complexity.

A recent survey on user behavior analysis from clickstream data highlights different
approaches based on clustering, classification, and association, but no PM approaches
specifically [10]. Our own systematic literature review [7] however assessed 27 peer-
reviewed papers related to the application of PM technologies to cloud processes as well
as clickstream datasets, including applications to customer journey process modeling [13].
This review shows that the area of cross-organizational process mining (initially explored
by van der Aalst[14][17]), common in a cloud-based context, is still challenging. The
review also highlights specific challenges faced when preprocessing event logs collected
from cloud-based applications, including clickstream data. In particular [7]:

1. Cloud-based logs are generated from different monitoring systems, often
from different organizations, leading to ID/case alignment issues especially
in the presence of privacy constraints.

2. Cloud-based logs often contain hundreds of attributes that are sparsely
populated, which require analysts to select/merge attributes at pre-
processing time.

3. Cloud-based processes typically evolve more rapidly than conventional
processes, especially in a DevOps context with daily deployments. Different

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

30f17

types of events/attributes can then start/stop appearing in the logs at a very
high rate.

4. For real-time processing, the granularity of cloud-based logs is often much
finer (hundreds of clicks/events per second) than in conventional processes,
which adds to the processing complexity.

5. Given that users are usually free to click anywhere on a Web application, and
that the proportion of incomplete process instances is high in cloud-based
application, the readability of mined process models is low (and spaghetti-
like).

6. Dealing with noisy cloud-based logs, where too many events are tracked,
adds to the complexity of models.

7. Many cloud-based events have generic names and must be split according to
some of their attributes into different events.

8. The monitoring and trace management tools in cloud environments
frequently evolve, which in turn results in changes in the nature of the
collected logs.

9. Events whose ordering or even presence in not important (for instance,
click-refresh-click-refresh) often pollute cloud-based logs and should
often be aggregated (e.g., to click-click-refresh or even just click-
refresh) in order to simplify the resulting processes.

In the process mining literature, simplification of event logs is often done with a
combination of abstraction [5], event/trace filtering (e.g., based on frequencies or
attributes) [1], and trace clustering (e.g., K-means clustering) [4]. While filtering
techniques alone work well with structured processes, they have problems discovering
less structured ones, especially in a cloud-based context [5].

Preprocessing is required to reduce and simplify event logs [11][12]. Preprocessing
such logs before applying process mining techniques usually takes up between 40% and
80% of the total effort for most people [18]. Preprocessing is so important that the IEEE
Task Force on Process Mining is currently surveying the community regarding challenges
and solutions for improving event data preparation for process mining (see
https://bit.ly/TFPM-survey2001). Preprocessing is even more needed in a cloud
application context. Generic technologies such as Extract, Transform, and Load (ETL)
certainly have a role to play [3], especially regarding challenge #1 (see Fig. 1), but they are
insufficient for the other challenges. There are several process mining tools that support
different types of filtering for the event logs, though such tools do not provide much
flexibility in terms of the filtering that the analyst can do. The filtering techniques are also
decided based on the type of the data and the analysis that has to be done.

Output Import to —
y ol
Data Sources CsV file xz= PM tools
ETL Tools API o d = e

8 B
| =2

Can be used to produce the Provides a focus on PM,
first CSV file from multiple and trace-level functions
data sources

Fig. 1. Relationship between ETL and a desirable API for preprocessing.

There is also a need to automate this preprocessing, ideally using repeatable scripts
exploiting a domain-specific API that focuses on solving some of the PM-related
challenges for cloud and clickstream applications. Scripting filters helps minimize

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

40f17

repetitive and often error-prone manual labor. Yet, scripting is not even mentioned in a
recent review of event log preprocessing for process mining [11].

3. Materials and Method

Our research method follows Hevner's Design Science Research (DSR) in
Information Systems (IS) [9], both in terms of research relevance and research rigor. The
design science paradigm is based on iterative problem solving. It aims to create
innovations that define the ideas, practices, and products through the analysis, design,
implementation where the use of IS can be effectively and efficiently accomplished. In this
paradigm, an artifact should be produced taking into consideration the exiting knowledge
in the discipline and should be produced creatively to solve real-world problems.
Artefacts are usually constructs, models, methods, and instantiations. We have
instantiated DSR’s five steps to our research context.

1) Awareness of problem: In this phase, the researcher defines the specific research
problem and justifies the value of this research and the proposed solution. We performed
a systematic literature review about the challenges in the area of process mining for cloud-
based applications [7], whose conclusions are summarized in the previous chapter. Input
from key informants of a SaaS application provider was also informally taken into
consideration. This also led to our main research question: What is a suitable method to
discover and analyze cloud-based application processes?

2) Suggestion: In this phase, from the defined problem and knowledge of what is
possible and feasible, we defined the objectives for the solution. A tentative solution was
developed that was presented to a SaaS company that provided event logs from their
systems. In this phase, a new method (our main artifact) and its different steps were
defined, and the solution was illustrated with a manual example. This new method is the
topic of Section 4.

3) Development: In this phase, the researcher creates an artifact, which is the solution
to the defined problem. The artefact developed here is a method that exploits an API (with
an implementation). The development went through several iterations by exploring
available features in existing tools (mainly Disco, several ProM plug-ins, and data
processing libraries) with open-source datasets and real event logs from the case study.
The existing functions relevant to the pre-processing of cloud-based application logs can
hence be replicated outside these tools (in the API, in order to support automation in one
place, independently of the PM tools used for visualization and analysis) and
supplemented by new useful functions in the API. An implementation of the API was
done in the R programming language!. R was selected as this is a common data
manipulation and analysis language, and it was also already used extensively by the SaaS
company. This API is presented in Section 5.

4) Evaluation: In this step, the researcher observes and measures how well the
artifacts support a solution to the problem. Additionally, the researcher communicates the
problem and its importance. The evaluation method that was used here is an application
case study, combined to a comparative analysis and a performance evaluation. A dataset
provided by a SaaS company was used to evaluate the developed method for
preprocessing event logs before importing the event logs to the PM tools. After
preprocessing the event logs using the proposed method, the Disco and ProM PM tools
were both used to build the process maps and visualize how processes are executed in
reality. Several iterations are performed on the dataset in order to answer the questions
about the business processes. Here, we used two iterations based on two versions of the
event log (taken at different times) to assess the complexity of adapting scripts in the
context where the structure of logs changes. The case study is presented in Section 6,
whereas Section 7 presents the comparative analysis and a performance evaluation.

1 https://www.r-project.org/about.html

https://www.r-project.org/about.html
https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

50f 17

5) Conclusion: This phase is the last step in the research process. Here, the results of
the research are finalized, indicating the end of a research cycle. This step concludes the
research projects and presents the results. A paper [7] and a thesis [6] were already
produced, and this paper (accompanied with code and examples on GitHub) concludes
this research.

4. Cloud Pattern API - Process Mining Method

Cloud Pattern API - Process Mining (CPA-PM), as the main artifact of this research
paper, is a method for preprocessing event logs (including clickstream data) collected
from cloud-based applications, that tackles challenges #2 to #9 from the previous section.
Through an API, currently implemented in R, CPA-PM enables scripting for log
manipulation and for replacing patterns before applying process mining techniques on
the event logs. The CPA-PM method consists of three main steps (see Fig. 2) that enable
preprocessing cloud-based application event logs, which usually include a large number
of columns (i.e.,, event attributes) that need to be taken into consideration when
aggregating rows in the dataset.

The input for this method is an event log dataset (in CSV) and the output is a cleaned
log (CSV) that can be imported by process mining tools for building simpler process maps
and enable further analysis. The single input CSV file can itself be a result of a prior
extraction and processing from multiple data sources where, for example, conventional
technologies (ETL) and their tools can be used. The steps of the CPA-PM method might
go through several iterations to get answers for analysis questions.

Note that CPA-PM and its API offer tools to automate the simplification of event logs,
but they do not guarantee that the resulting logs will preserve the right information to
support understanding. This remains the responsibility of the analyst.

Step 2:
Restructing Dataset

Step 1t e 9T O
nwscsvie obmish, owcnar () ' (D) P,

Analysis and
answering

Event Pattern

Substitution "
questions

e . R— %ﬂ [

lterations

Fig. 2. Overview of the CPA-PM method and its three main iterative steps.

4.1. Clean-up Step

In this step, initial cleaning of the dataset is done. Seven sub-steps are included here,
and the last two sub-steps (1.6 and 1.7) can be interleaved.

Step 1.1: Read the CSV log file, which must include the three main columns that are
needed to apply process mining (case ID, event, and timestamp). It may also include other
columns, for example resources and other properties.

Step 1.2: Clean column identifiers, e.g., by removing white spaces and dots from the
column’s names and ensuring their unicity. This returns a dataframe dataset with clean
names that consist only of lowercase letters, numbers, and underscores.

Step 1.3: Ensure the time format of the timestamps reflects the granularity needed.
For example, if the timestamp must include detailed information about the minutes,
seconds, and milliseconds for when the event occurred, this may require merging separate
date and time columns, or change the encoding of the date/time information.

Step 1.4: Ensure that the cells in a given column comply with their expected column
type and transform or cast the column, if necessary, to the required data type.

Step 1.5: Select only the columns needed for the analysis questions. For clickstream
data, the analyst should select a) the Case Identifier, Event, and Timestamp columns

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

6 of 17

minimally required by PM techniques; b) the resource columns relevant to the analysis
questions; and c) the attribute columns that refine events. Consider also excluding
columns that are empty or that threaten re-identification.

Step 1.6: Filter the event log. Filtering is a popular preprocessing technique whose
goal is to reduce the complexity or to focus on a specific part of the process during the
analysis. This technique is usually performed multiple times, iteratively.

Step 1.7: Remove incomplete cases. An incomplete case is a truncated case/trace that is
missing the start and/or the end event(s) in a process instance.

4.2. Dataset Restructuring Step

Restructuring for the event log is performed in such a way that process mining
algorithms can be applied depending on the understanding or analysis questions that
should be answered. These different techniques, some of which implementing several
known event abstraction approaches [17], can be applied during this step.

e Enriching the event log dataset: event logs can be enriched with additional
attributes, e.g., by adding external additional data collected or by combining
two different datasets. This is however often done before the generation of
the original CSV file (e.g., using ETL). Another way is by deriving or
computing additional or derived events and data attributes based on the
existing attributes in the data, resulting in new columns calculated from
other columns. Such additions depend on the required analysis, e.g., for
calculating the time difference between the occurrence of two events to
reason about durations.

o Aggregating events: aggregating events into coarser-grained or more abstract
events (e.g., along “is-a” or “part-of” relationships between events) can help
reduce complexity and improve the structure of clickstream datasets, leading
to better and simpler processes.

e Aggregating rows: this technique includes aggregating several rows into one
row, to reduce complexity and (unnecessary) repetition of the same event.
For example, let us consider that event A is repeated multiple times in a given
case, but needs to be considered only once. Options here include keeping
only the first occurrence of event A, keeping only its last occurrence, or
merging all the A rows into one by applying maximum, minimum, average,
and other such functions on the columns’ attributes for the repeated event A.
This will be illustrated in more detail in the API functions and their
implementations.

4.3. Event Pattern Substitution Step

In this step, complex event patterns are substituted with a new event to reduce the
complexity of the resulting process maps. If several events patterns are repeated and are
known to occur together, then they can be substituted by a single, more abstract event.
Defining, selecting, and substituting patterns in this step is done by domain knowledge
experts. Several common patterns are defined as rewrite rules at this stage and can be
used on the cloud-based application event log dataset. These and other patterns can be
defined by the analyst depending on the analysis context.

For example, consider a common event in a cloud application case: a page refresh. A
pattern could consist of a non-empty sequence of refresh events (refresh*). As whether the
page is refreshed once or many times without any other events in between, that sequence
refresh* could be replaced by only refresh event. This would simplify many traces, and
make them equivalent along the way, which would help simplify the resulting process
model generated through process mining, without negatively affecting its usefulness.
More complex patterns involving sequences of interleaving click and refresh events (click-

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

7 of 17

{click | refresh}*-refresh) could similarly be simplified by substituting them to a single click-
refresh pair.

5. CPA-PM Application Programming Interface (API)

This section presents the API functions, mainly described in terms of addition,
removal, or modification of rows, columns, and traces. As the purpose here is to simplify
and shorten event logs, the API offers mainly removal and modification functions. Please
note that in the following, an event log table with a heading row is also called a dataframe.
Most of the functions (except writeCsV) return a new dataframe.

e readCSV(String file): reads the CSV file into a dataframe that it creates.

e writeCSV(table DataSet, String file): writes the dataframe to a file.

e cleanHeaders(table DataSet): cleans the dataset’s headers of the columns
from spaces (replaced with _) and other special characters (removed). This
function only keeps lower case letters, numbers, and underscores (_).

e selectColumns (table DataSet, string columnName, ..): selects/keeps the
list of columns needed for analysis from the dataset. Only the list of selected
columns/attributes are included in the dataset.

e deleteColumns (table DataSet, string columnName, ...): drops the listed
columns from the dataset.

e filter(table DataSet, condition Conditions): keeps records/rows based
on the conditions specified. Only the rows where the condition is true are
kept in the DataSet. Comparison and composite functions are supported
with==,><,>= <= &, |, and !.

e removeEventsLowFrequency(table DataSet, String eventName, integer
freq): removes the events from the dataset that have a frequency below the
value freq (count integer) when grouping by eventName.

e deleteTraceLengthLessThan(table DataSet, String groupID, integer
num): removes the traces where the number of events is less than a specified
value. groupID is the name of the variable to group traces by, and num is the
minimum number of events.

e deleteTruncatedTracesStart(table DataSet, String groupID, String
eventColumn, String value):removes the traces/traces that do not start with
the required event value. groupID is the name of the variable to group traces
by, and eventColumn is the name of the event column. value is the value of the
eventColumn that specifies the required start event name.

e deleteTruncatedTracesEnd(table DataSet, String groupID, String
eventColumn, String value): similar to the previous one, but removes the
traces/cases that do not end with the required event.

e deleteTracesWithTimeLess(table DataSet, String groupID, String
timestampColumn, integer t): removes the traces/cases that ran for a total
duration less than t. timestampColumn is the name of the timestamp column,
and f is the value of the minimum total duration for each trace/case, in
seconds.

e concatenateColumns(table DataSet, String newColumn, String col1l,
String col2, ..): concatenates two or more columns (coll, col2, ...) in a
dataframe into a newColumn that is added to the dataframe.

e arrangeRows(table DataSet, String columnName, ..): sorts the rows by
columnName, in increasing order. columnName is a list of unquoted names.

e eventIsRepeated(table DataSet, String groupIDCol, String eventCol,
String newCol): creates a new column newCol that indicates whether the
event has been repeated or not. The event is represented by the eventCol
parameter. The new column will only include values 0 (when not repeated)
or 1 (when repeated).

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

8of 17

e deleteAllEvents(table DataSet , String event, String eventName):
deletes all records/rows with an eventName value in the event column.

e keepFirstEvent(table DataSet, groupID, String eventAttribute, String
eventName): keeps the first occurrence of an event (i.e., the first occurrence of
several repeated events). groupID represents the column for grouping the
records, eventAttribute the event attribute column, and eventName the event
name whose first occurrence in each group we want to keep.

e keepLastEvent(table DataSet, groupID, String eventAttribute, String
eventName): similar to the previous one, but keeps the last occurrence of an
event (i.e., the last occurrence of several repeated events).

e mergeRows(table DataSet, list groupByVariables, list
columnArguments): aggregates several rows into one row. groupByVariables
represent the variables to group the dataframe by, and columnArguments
represents the new column arguments based on aggregation functions. Each
column of the aggregated rows requires one predefined aggregation
operator from: mean, median, min, max, sum, first, last, n (count), of logical
operators. String concatenation is supported too. Those aggregation
operators are defined by the analyst.

As mergeRows() is the most complex function of this API, we are illustrating its
application on a simple sequence of events extracted from a real event log. This function
works by splitting the data into groups, applying some analysis to each group of data, and
then combing the results. It works by aggregating several rows for each column. For
instance, the first three rows of Table 1 target the same activity of the same case identifier.
The analyst may decide to keep only one such event (as in the patterns described earlier).
The issue here is to decide how to aggregate the information in the various columns.

Table 1 Simple event log example, with targeted events to be merged highlighted in blue

case_id timestamp activity city weekday client num_ product_ device
items category

121 2018-08-01 00:04:22 Main home page Ottawa Monday Phone App 3 B Android

121 2018-08-01 00:04:23 Main home page Ottawa Monday NA 4 B Android

121 2018-08-01 00:04:25 Main home page Ottawa Monday NA 6 D Android

121 2018-08-01 00:04:27 Home page for product Ottawa Monday Phone App 4 A Android

121 2018-08-01 00:04:48 General website search Ottawa Monday Phone App 4 N/A Android

When aggregating the rows grouping by case_id and activity attributes, the analyst
may decide to keep the timestamp and weekday of the first event; produce lists of unique
activity, city, client, and device values for their respective columns; calculate the sum of the
merged elements in the num_items column, and keep all the values of the product_category
column (without uniqueness). The invocation of this APl in R on the log named EventLogs
is as follows, with the result shown in Table 2.

mergeRows (EventLogs, .(case_id, activity), summarise,
timestamp = first(timestamp),
activity = paste(unique(activity), collapse = ',"'),
city = paste(unique(city), collapse="',"'),
weekday = first(weekday),
client = paste(unique(client), collapse=',"),
num_items = sum(num_items),

product_category = paste((product_cateogry), collapse=’,’),

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

90of 17

device = paste(unique(device), collapse=',')) -> EventlLogs

Table 2 Event log after merging the first three rows of Table 1 into one row, in blue

case_id timestamp activity city weekday client num_ product_ device
items category

121 2018-08-01 00:04:22 Main home page Ottawa Monday Phone App 13 B,B,D Android

121 2018-08-01 00:04:27 Home page for product Ottawa Monday Phone App 4 A Android

121 2018-08-01 00:04:48 General website search Ottawa Monday Phone App 4 N/A Android

Tracel I

This API contains basic functions to load/save CSYV files and filter rows and columns,
but also advanced ones that support the various steps of CPA-PM more directly and
efficiently. For example, deleteTruncatedTracesStart() and
deleteTruncatedTracesEnd() are essentially used to support Step 1.7 of the CPA-PM
method (Section 4.1). These methods exclude from the event log the incomplete traces (i.e.,
all the events for one case) that either started too early or finished too late (or did not
finish) according to the time frame where the log was produced, see Fig. 3.

deleteTruncatedTracesStart()

X

Trace 211

1
1
I
1
I
1
I I
1 1
Trgce3 ¢] !
I I
1 1
1 Trace4 1 1 1
1 1
! I
H Trace5 ¢ i
1 1
I I
! Trace 6 I x ; 1
1 1
! deleteTruncatedTracesEnd() !
! ! Time
Log Log
Start End

Fig. 3. Example of incomplete traces with missing start events (Trace 1) of end events (Trace 6)

This API addresses challenges #2 to #9 from the literature review. It is currently
implemented in R, but a Python version is also being considered. More detail about the
API and its usage is available in [6], and its R implementation is available online at
https://github.com/NajaElgharib/CPA PM.

6. SaaS Application Case Study

The CPA-PM method is applied to a real clickstream event log dataset in order to assess the effect of the CPA-PM method on the

preprocessing of datasets collected from a SaaS application on the process mining results. The logs’ events include user actions from

when users start the trial version of the application until they either become real clients or give up along the way. CPA-PM is then

applied to a second dataset extracted from the same log management tool for the same process taken several months later to understand

and assess the impact on the initial script of the evolution of the processes and of the log monitoring infrastructure after a long time

in a SaaS company.

6.1. Case Study Overview

The aim of the case study is to apply the CPA-PM method steps to preprocess the
raw event log dataset in order to discover better structured process maps than without
using preprocessing. The dataset was provided and anonymized by a SaaS company, but
it still cannot be shared publicly for confidentiality reasons. The dataset was collected
from a cloud-based data visualization application that allow users to create interactive
dashboards. The logs’ events include user actions from when users start the trial version
of the application until they become real clients, or give up along the way.

https://github.com/NajaElgharib/CPA_PM
https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

10 of 17

6.2. Dataset

Data extraction is the first step in such PM project, which is then followed by data
preprocessing. Data extraction involves getting the event log from the (possibly many) log
management tools used by the SaaS company. The starting point in this case study is the
eventlog dataset related to the trial version, provided as one CSV file after anonymization,
and renaming of some of the events (to preserve the confidentiality).

The dataset includes three months (August 2018 to October 2018) of events, with
1,602,438 different records/rows and a very large number (152) of variables/columns. The
dataset includes records from 4,462 different cities. From the case study, only 24 different
variables are needed based on the process-oriented questions that we want to answer.
These questions pertain, for example, to the situations under which the users stop using
the trial version before becoming (paying) customers.

6.3. Case Study Planning

The main columns in the dataset that are required before applying PM techniques
are the case identifier, the timestamp, and the activity.

1) Case ID: The Company ID attribute is chosen as the case ID, as it refers to
cross-site identifier used to differentiate users. The Company ID does not
change from the starting point of the process (user sign up for trial version)
until the last activity within the time frame that is included in the dataset,
even if the user uses the trial version of the application sporadically over
several days.

2) Timestamp: each event occurs at a particular moment. The timestamp used
here is in this format: YYYY-MM-DD hh:mm:ss.

3) Activity: from the event log dataset, the event attribute was selected as the
activity. The event attribute represents the clicks and actions done by users
while using the online application. Table 3 displays some event names
(among 93) from the dataset, with their descriptions.

4) Other attributes: In addition to the main three attributes that are needed for
PM analysis, the dataset includes additional columns that represent other
attributes and properties that exist when an activity/action occurs. Here,
those attributes include data source, data source number, help guide name,
template name, account type, number of users, device type, browser, city,
weekday, number of dashboards, dashboard type, and others. These
attributes are considered as other necessary properties that will be used in
the analysis.

5) Process mined from the original event log: The initial process map
generated using the Disco tool [8] for the original event log is much too
complex and unreadable to be presented here. With high numbers of variants
with respect to the cases, such spaghetti process maps are generated but are
not helpful during analysis. Preprocessing and restructuring of the dataset
are required.

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022

d0i:10.20944/preprints202204.0138.v1

11 0f 17

Table 3 Some event names with their descriptions

Event Name

Description

Add graph from

User adds a graph from the library that provides

library several ones
Add new graph button | User adds a new button to the graph
Add template User adds a template to build a graph

Build graph from
library

User builds a new graph from existing ones in the

library

Connect to data source | User connects to a data source to import data into a

graph
Create dashboard User creates a dashboard
Create data source User creates a new data source to import their own

datasets

6.4. Data Preparation and Preprocessing

CPA-PM isillustrated on the SaaS application dataset, starting with the Clean-up step.
The following six points correspond to steps 1.1 to 1.6 in Section 4.1.

1) The first step involved importing the dataset (a CSV file) to RStudio, the R
environment we used to execute the R functions from the CPA-PM API The following
step is executed in order to read the CSV dataset file:

EventLogs <-readCSV(file="full_DS.csv",header=TRUE,sep=",")

The EventLogs dataframe is created in RStudio. Then the dataset was explored to
compute the total number of unique events that exist. The EventLogs dataset includes 93
unique events executed by users during the three-month period.

2) After importing the CSV file, the cleanHeaders() function was applied to make
sure there is consistency with the column headers names:

cleanHeaders(EventLogs)-> EventLogs

3) In this step, the time format was check and it was already appropriate.

4) We ensured that the attributes needed for the analysis were available in the SaaS
application dataset, with the right type.

5) In this step, the selectColumns() function was called to select the list of columns
needed for the analysis, which are here. Here is a list of the columns that were selected for
the analysis:

selectColumns(EventLogs, company_id, event, time, client, template, guide_name,
guide_type, number_of_graphs, number_of_graphs_on_dashboard, graph_origin,
source, kpi_count, template_name, account_type,graphs_owned, data_format,
data_sources_owned, dashboard_template_name,
connector_backend, x_city, weekday) -> EventLogs

6) Then, some initial filtering was done. This filtering includes cleaning the dataset
from some of the attributes that are not needed:

Remove the empty case identifiers:

EventLogs %>% filter(company_id !="") -> EventLogs
Remove the records where the client attribute value is Phone App, since for this

analysis we are not interested in including the phone app users:
EventLogs %>% filter(client != "Phone App") -> EventLogs

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

12 of 17

Remove the records where the event is View Dashboard, because this is an event with
a very high frequency and many variants as it is clicked many times by users, and it will
not add useful information to the analysis:

EventLogs %>% filter(event !="View Dashboard") -> EventLogs

Other records with very low frequency (10 and less) and not needed in the analysis
were removed:

removeEventsLowFrequency(EventLogs, company_id, 10) -> EventLogs

Sort the events in the dataset according to company_id and time variables:
arrangeRows (EventLogs, company_id, time) -> EventlLogs

After doing the initial cleaning of the dataset EventLogs, the resulting dataset was
imported to Disco to start the analysis. Company_id was selected as the case identifier,
event as the activity variable, and time as the timestamp variable. According to Disco, the
resulting EventLogs dataset includes 960,919 events over time (a 40% reduction from the
initial dataset); 52,084 cases; 85 activities; and 13,848 different variants.

7) The removal of incomplete cases (Step 1.7 in Section 4.1) is an important data
preparation step that needs to be done before starting the PM analysis. For example,
truncated cases may appear to be faster than they really are and distort case durations.
Removing incomplete cases can also help simplify the process map, because incomplete
cases inflate the process map layout by adding spurious end or start points to the process
map. In this case study, we removed all the traces that did not start with the Trial Sign Up
Completed event:

deleteTruncatedTracesStart(EventLogs, company_id, event, "Trial Sign Up
Completed") -> EventLogs

After applying this function, the dataset got simpler, with 816,125 different records
and 15,190 unique cases. Note that deleting cases truncated at the end with the API's
deleteTruncatedTracesStart() function is not performed here because we want to analyze
the reasons why users abandon trials before buying the application, and so these
incomplete process instances must be preserved.

Another type of filter based on very short traces (Step 1.5 in Section 4.1) can be
considered. For example, there are 520 cases that have only one event “Trial Sign Up
Completed”, and 149 cases with only two events; “Trial Sign Up Completed” and “Help
Guide Start”. The cases (traces) with very few events per trace (1 to 2 events) are not
interesting for the analysis since they do not provide much information about the
processes (the users simply started the trial version of the cloud application but did not
really use it). These traces should be removed from the dataset. In this case study, the
traces that included only one or two events were deleted:

deleteTraceLengthLessThan(EventLogs, company_id, 2)

-> EventLogs

Simple loops involving one event (e.g., the “Help Guide Start” activity) were also not
deemed interesting, and they were filtered out to further simply the logs:

eventIsRepeated(EventLogs, company_id, event, isRepeated) -> EventLogs

EventLogs %>% filter(isRepeated !="1")-> EventLogs

More complex simplifications involving pattern-based substitutions and the merging
of rows were also used (see [6]). These were all captured in an R script, available online.

6.5. Process Discovery, Mining, and Analysis

After preprocessing the event logs using the CPA-PM method, the resulting dataset
was imported to two PM tools, namely Disco and ProM, for process discovery (the specific
type of process mining of interest in this case study) and analysis. The preprocessing steps
can go through several iterations before getting to the final answers to the analysis
questions. Even after importing the dataset to PM tools, the analyst can iterate again
through filtering, aggregations, and pattern substitutions before importing the resulting
dataset again to PM tools (see Fig. 2).

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

13 of 17

Different variants of our R script were produced to answer different questions of our
stakeholders, such as “what are the steps followed by trial users who give up before
registering (non-converters)?”, “what is the main process for converters?”, and “how
different are the processes when non-converters give up within 5 minutes from when they
use the application between 1 to 14 days?”. Fig. 4 shows one of these answers in the form
of a Disco process model, and the other models can be found in [6].

Purchase Billing Details
20

Fig. 4. Process map for users that converted to customers within 5 minutes, generated with Disco from an event log with 96 cases and 30

variants.

6.6. A Second Dataset

Another dataset was provided by the SaaS company for analysis. The purpose here
is to re-apply the functions for preprocessing the dataset (essentially captured in a reusable
script) and check how much change the original script is required in order to adapt it to
new, more recent datasets. This addresses challenges #3 and #8 from Section 2.

The new dataset was collected for the period from January 2019 to August 2019, and
it includes 21 different variables/attributes, 2,144,210 records/rows, and 34,315 different
traces. Additionally, the new dataset includes 142 unique events, which is more than the
number of events in the first dataset. That could mean that the process activities have
changed over time, or that new types of events were collected while using the application.
The aim here is to evaluate how well the analyst can execute the original script on this
dataset in order to adjust for processes and logging environments that change over time.
The initial preprocessing script was hence applied again.

Although scripts can be used many times, especially in a short time period, at some
point, as processes and technologies evolve in an enterprise, the scripts many need to
evolve as well. Indeed, the script developed for the initial dataset, which was used as is
on other datasets from 2018, could not be reused as is here because of the new types of

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

14 of 17

events that were observed in logs from 2019. Step 1.5 of the CPA-PM method was hence
re-applied to handle these new events (i.e., to decide whether to keep them or not). This
took a few minutes of manual effort, mainly to understand the nature of the new events.
The rest of the script did not have to be modified, and its execution led to similar
reductions in log and process complexity as previously observed for the first dataset.
Overall, modifications to the script took a few minutes, suggesting high reusability and
good tolerance to the evolution of logs over long periods of time.

7. Discussion

This section analyses the proposed CPA-PM method for helping analysts better
preprocess event logs. Additionally, a scalability analysis for the method is performed.
Threats to validity are also discussed.

7.1. CPA-PM Method Analysis

Often, real-life cloud-based processes are so complex that the resulting process maps
are too complicated to interpret and use for discovery and analysis purpose. These
spaghetti processes are not incorrect per se. The problem however is that such process
maps are too large and unstructured to derive any useful insights or information that can
be used to answer analysis questions that may lead to process or application
improvement. At this level, what is needed is to simplify such complicated process maps,
or their source event logs. Clickstream datasets can contain millions of events capturing
user clicks anywhere on application pages, as well as page refreshes.

The CPA-PM method proposed here can help in cleaning such datasets in a suitable
way in order to build more meaningful process maps automatically and repeatedly for
different datasets using the same logging infrastructure. After applying the steps of the
CPA-PM method, the resulting process maps are less complex and more understandable
in terms of displaying the main events that were executed in the process. Many traces and
events can be deleted or aggregated without affecting the answers to analysis questions.
This method also focuses on reducing variations in one same process. Finally, the API
invocations used to support the CPA-PM steps for a particular event log can be collected
as a script that can be run each time a new version of the event log becomes available,
hence helping automate the analysis while reducing manual labor. This preprocessing
method is applied on the dataset before importing the reduced dataset to process mining
tools. In this paper, Disco was used to display process maps.

Analysts can also discover along the way that a better logging mechanism should be
used in their cloud system. For example, not all user activities may be logged properly in
the log management tools. After applying process mining techniques and building
process maps, analysts may discover that some activities that should be present are
actually not displayed in the process maps since they are not properly logged.

Note however that the logs may also be simplified too much, and that important
information may be removed along the way. CPA-PM does not compute similarity
metrics or information loss (as in [12]); such features could be added in the future.

7.2. Scalability Analysis

As the number of records in event logs increases, the resulting process maps often
become more complex. More preprocessing iterations and effort are hence usually
required. It is important to test the scalability of the CPA-PM method and scripts when
the size of event logs increases. A scalability analysis was performed on subsets of a real
datasets that vary in size (by doubling the initial one 9 times). The same script with the
same API function invocations was run on each of the datasets. The script was run three
times on each dataset, and the average execution times are reported in Fig. 5.

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

15 of 17

18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0

0.0
6,250 25,000 100,000 400,000 1,600,000

Size (number of records in event log), logarithm scale (base 2)

Time (minutes)

Fig. 5. Script execution performance (the X axis uses a logarithmic scale).

In term of environment, the scalability analysis was performed with RStudio running
on a laptop with Windows 10 (64-bit), 16 GB RAM, and an Intel® Core™ i5-8250U
processor. No other application was running in parallel.

As expected, the higher the number of events in the log, the higher the average
runtime. This might cause issues in some contexts where this part of the analysis is time
sensitive. What is interesting in Fig. 5 however is that the increase in average duration is
less than linear with respect to the number of events in the log, likely because the initial
filtering steps are efficiently removing many of the records up front.

In some situations, the dataset might include more attributes (i.e., more columns),
which would require more computations when merging the rows and hence result in
longer run times. The impact of such additional attributes was not assessed explicitly here.
However, in situations where more pattern iterations are executed, the number of rows
would be reduced, which might in turn shorten the average runtime.

Still, in general, having to wait 10-12 minutes to pre-process automatically a million
events, in a repeatable way, is still much better than doing so manually, as the latter
approach would take much longer and be more prone to errors.

7.3. Threats to Validity

Several potential threats to the validity of this research are discussed here.

Construct validity aims to assess the extent to which the tests performed actually
measure what our method claims to be doing. An important threat here is that the chosen
case study may not reflect all the different analysis questions that process maps can
answer. The data quality may have been an issue in answering some further questions
about the processes in the case study. Additionally, there was only one case study in this
paper and the data was provided only by one source. Another threat is that only two
process mining tools were used to build the process maps. To mitigate some of these
threats, a second dataset was provided to the method and the script could be used again.
The limitation remains that the new dataset was provided by the same stakeholder and
from the same system, just at a different time and for a different period.

Internal validity aims to estimate and evaluate the degree to which conclusions about
the analysis of the proposed method can be made based on the case study and the data
provided. The first threat here is that bias might have been introduced by having to
perform the evaluation and analyze the results of the case study. This threat was partially
mitigated by having two people evaluate the results of the case study. Also, this could be
further mitigated by having the stakeholders apply the method on other datasets and
having them evaluate it themselves.

External validity aims to estimate whether results of the evaluation can be generalized
to other cases. Although there is no reason to believe the proposed method and API cannot

https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

16 of 17

Supplementary Materials

The R implementation

be used on other datasets (even outside the context of cloud-based applications), there is
currently no evidence they can. To mitigate this threat in the future, we can apply the
method and API functions on dataset provided by different stakeholders and for different
types of processes.

8. Conclusions

This paper contributes a data preprocessing method (CPA-PM) for event logs
generated by cloud-based information systems, with an emphasis on clickstream data. To
properly apply process mining on such logs, advanced and iterative preprocessing must
be done in order simplify the resulting mined processes without losing valuable
information. It is also important that the preprocessing steps be repeatable. CPA-PM
includes different steps needed to clean and restructure cloud-based event logs and
address relevant challenges in that area (especially #2 to #9 in Section 2), including a large
number of events and attributes, spurious and repetitive events, and unstructured
orderings of events. As an additional contribution, the method is supported by a new API
with an implementation in R, which enable the scripting and reuse of preprocessing steps.
CPA-PM goes beyond what is usually found in ETL tools and in the preprocessing
capabilities of process mining tools.

There are many opportunities to extend this research work, some of which being
identified in the previous section. We also plan to extend the CPA-PM method to include
more functions for preprocessing event logs, provide a Python implementation, and
integrate the API to an existing PM tool. Additionally, more case studies can be done to
apply the method on event logs that represent user actions while navigating the different
parts of an application, or different application domains. The integration of similarity and
information loss metrics, together with support for multiple, different logging systems in
cloud environments, would also be beneficial. The usability of the API also deserves
further attention in the future.

of the API and an example are freely available online at:

https://github.com/NajaElgharib/CPA PM.

Acknowledgement

We thank Dr. Alireza Pourshahid and Tomasz Ogrodzinski for their help in providing event logs and assessing the

resulting process models. The first author thanks the University of Ottawa and the Ontario Graduate Scholarship for

funding this work.
Author Contributions

Conceptualization, N.M.E.-G. and D.A.; Methodology, N.M.E.-G. and D.A.; Software, N.M.E.-G.; Validation, N.M.E.-G. and D.A;
Formal Analysis, N.M.E.-G.; Investigation, N.M.E.-G. and D.A.; Resources, N.M.E.-G.; Data Curation, N.M.E.-G.; Writing —
Original Draft Preparation, N.M.E.-G. and D.A.; Writing — Review & Editing, N.M.E.-G. and D.A.; Visualization, N.M.E.-G;
Supervision, D.A.; Project Administration, N.M.E.-G. and D.A.; Funding Acquisition, D.A.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A., Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE Transactions on Knowledge and Data Engineering, 31(4), pp. 686705 (2018)

[2] Bose, R.P.J.C., van der Aalst, W.M.P.: Abstractions in Process Mining: A Taxonomy of Patterns. In: Int. Conference on Business Process Management,
LNCS 5701, pp. 159-175. Springer (2009)

https://github.com/NajaElgharib/CPA_PM
https://doi.org/10.20944/preprints202204.0138.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2022 d0i:10.20944/preprints202204.0138.v1

17 of 17

[3] deMurillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Connecting databases with process mining: a meta model and toolset. Software & Systems Modeling,
18(2), pp. 1209-1247 (2019)

[4] De Weerdt, J., Vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Transactions on Knowledge
and Data Engineering, 25(12), pp. 2708-2720 (2013)

[5] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of business process management, Springer (2013)

[6] EI-Gharib, N.M.: Using Process Mining Technology to Understand User Behavior in SaaS Applications. Master’s thesis, University of Ottawa, Canada,
December (2019). DOI:10.20381/ruor-24202

[7] El-Gharib, N.M., Amyot, D.: Process mining for cloud-based applications: a systematic literature review. In: 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW), pp. 34-43. IEEE CS (2019)

[8] Giinther, C.W., Rozinat, A.: Disco: Discover Your Processes. In: BPM (Demos), CEUR-WS 940, pp. 40-44 (2012). https://fluxicon.com/disco/
[9] Hevner, A, Chatterjee, S.: Design science research in information systems. Design Research in Information Systems, vol. 22, pp. 9-22. Springer (2010)

[10] Kumar Padigela, P., Suguna, R.: A Survey on Analysis of User Behavior on Digital Market by Mining Clickstream Data. In: Third International Conference
on Computational Intelligence and Informatics, AISC 1090, pp. 535-545. Springer (2020)

[11] Marin-Castro, H.M., Tello-Leal, E.: Event Log Preprocessing for Process Mining: A Review. Applied Sciences, 11(22), 10556 (2021)
[12] Sani, M.F.: Preprocessing Event Data in Process Mining. In: CAISE (Doctoral Consortium), CEUR-WS 2613, pp. 1-10 (2020)

[13] Terragni, A., Hassani, M.: Analyzing Customer Journey with Process Mining: From Discovery to Recommendations. In: 2018 IEEE 6th Int. Con. on Future
Internet of Things and Cloud, pp. 224-229 (2018)

[14] van der Aalst, W.M.P.: Configurable Services in the Cloud: Supporting Variability While Enabling Cross-Organizational Process Mining. In: 9th Confed. Int.
Conf. Move to Meaningful Internet Systems, LNCS 6426, pp. 8-25. Springer (2010)

[15] van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer-Verlag (2011)

[16] van der Aalst, W.M.P.: Intra- and Inter-Organizational Process Mining: Discovering Processes within and between Organizations. In: The Practice of Enterprise
Modeling. POEM 2011, LNBIP 92, pp. 1-11. Springer (2011)

[17] van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A. Event abstraction in process mining: literature review and taxonomy. Granular Computing, 6,
pp. 719-736 (2021)

[18] Wynn, M.T. et al.: Rethinking the Input for Process Mining: Insights from the XES Survey and Workshop. In: Process Mining Workshops. ICPM 2021. LNBIP
433, pp. 3-16. Springer (2022).

https://fluxicon.com/disco/
https://doi.org/10.20944/preprints202204.0138.v1

