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Abstract: Background: Process mining (PM) exploits event logs to obtain meaningful information 
about the processes that produced them. As the number of applications developed on cloud 
infrastructures is increasing, it becomes important to study and discover their underlying processes. 
However, many current PM technologies face challenges in dealing with complex and large event 
logs from cloud applications, especially when they have little structure (e.g., clickstreams). 
Methods: Using Design Science Research, this paper introduces a new method, called Cloud Pattern 
API – Process Mining (CPA-PM), that enables discovering and analyzing cloud-based application 
processes using PM in a way that addresses many of these challenges. CPA-PM exploits a new 
application programming interface (API), with an R implementation, for creating repeatable scripts 
that preprocess event logs collected from such applications. Results: Applying CPA-PM to a case 
with real and evolving event logs related to the trial process of a Software-as-a-Service cloud 
application led to useful analyses and insights, with reusable scripts. Conclusion: CPA-PM helps 
producing executable scripts for filtering event logs from clickstream and cloud-based applications, 
where the scripts can be used in pipelines while minimizing the need for error-prone and time-
consuming manual filtering. 
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1. Introduction 
Organizations use information systems to support an increasing number of business 

processes, where a process is a set of related activities that happen over time in order to 
achieve a goal [15]. Many such systems record what happens in running processes as event 
logs that contain information such as process instances, activities, timestamps, and 
resources. Event logs form a large amount of data ready to be exploited through process 
mining (PM), which aims to discover processes to improve process understanding, 
compliance, and quality aspects based on evidence. PM is often needed because concrete 
processes are often more complex than their idealized process definitions or models. 

The interest in information systems exploiting cloud computing is also rapidly 
growing in the industry and research communities. The number of applications 
developed in a cloud environment is increasing because of benefits that a cloud 
infrastructure offers, especially regarding scalability, availability, and maintainability. 

Clickstream data is used to represent the electronic record of a user’s behavior on Web-
based information systems and cloud applications. This data shows the path a user takes 
while navigating the website or application. This path reflects the different choices that 
the user takes while navigating. Given that clickstream event logs might include a record 
of every page visited by the user, they usually form large amounts of behavioral data. 
Such logs provide opportunities for a detailed look at the decision-making process of 
users. When applying process mining techniques on such data, process maps can be 
generated that represent the user actions on web/cloud applications. These process maps 
give detailed information about users’ navigation habits. It is important to visualize and 
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understand user actions while interacting with a cloud application so that the latter be 
engineered to better satisfy user needs and ensure that users come back to the application.  

Unfortunately, the complexity of clickstream data and other event logs from cloud-
based applications is typically too difficult to handle by process mining tools, out of the 
box. A research challenge here includes how to reduce, in a repeatable way, log 
complexity caused by numerous cloud event attributes, action orderings (e.g., clicks and 
refreshes), and low-level events. Our research objective is to develop and assess a method 
to preprocess event logs collected from cloud-based applications to discover user actions 
and processes. A secondary objective is to examine how process mining can be applied on 
clickstream data collected from Software-as-a-Service (SaaS) applications and discover 
users’ behavioral characteristics. A suitable method should provide high automation (e.g., 
by being scriptable), high abstraction, high scalability, and low effort to accommodate 
changes frequently occurring in cloud-based logging infrastructures. The focus here is 
also on advanced preprocessing of event logs, where the preprocessed logs can then be fed 
to many existing process mining tools for visualization and analysis.  

This research was conducted following Design Science Research in Information 
Systems [9]. This methodology consists of five iterative steps, 1) awareness of problem, 2) 
suggestion, 3) development, 4) evaluation, and 5) conclusion, that are illustrated 
throughout the different sections in this paper.  

The main research contribution of this paper is a Cloud Pattern API – Process Mining 
(CPA-PM) method, accompanied by a scriptable application programming interface (API) 
with an R implementation, to preprocess little-structured cloud-based event logs and 
enable simpler and repeatable process discovery. 

In this paper, Section 2 presents the related work, including important challenges, 
while Section 3 highlights the research materials and methods. Section 4 introduces the 
CPA-PM method and Section 5 presents its API. Section 6 shows the application of the 
method to a SaaS application case study, while Section 7 discusses analysis results and 
threats to validity. Finally, Section 8 concludes. 

2. Related Work and Challenges 
Important motivations for applying process mining techniques on a dataset include 

discovering and generating understandable process models (or maps). When analyzing 
processes with many different cases, much noise, and a high diversity of behaviors, which 
are typical of cloud-based applications, the generated models are often confusing and 
difficult to understand. Bose and van der Aalst [2] call such process models spaghetti 
models and explored the iterative use of pattern abstraction to produce simpler and 
hierarchical models that eliminate irrelevant paths and reduce complexity. 

A recent survey on user behavior analysis from clickstream data highlights different 
approaches based on clustering, classification, and association, but no PM approaches 
specifically [10]. Our own systematic literature review [7] however assessed 27 peer-
reviewed papers related to the application of PM technologies to cloud processes as well 
as clickstream datasets, including applications to customer journey process modeling [13]. 
This review shows that the area of cross-organizational process mining (initially explored 
by van der Aalst [14][17]), common in a cloud-based context, is still challenging. The 
review also highlights specific challenges faced when preprocessing event logs collected 
from cloud-based applications, including clickstream data. In particular [7]: 

1. Cloud-based logs are generated from different monitoring systems, often 
from different organizations, leading to ID/case alignment issues especially 
in the presence of privacy constraints. 

2. Cloud-based logs often contain hundreds of attributes that are sparsely 
populated, which require analysts to select/merge attributes at pre-
processing time. 

3. Cloud-based processes typically evolve more rapidly than conventional 
processes, especially in a DevOps context with daily deployments. Different 
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types of events/attributes can then start/stop appearing in the logs at a very 
high rate. 

4. For real-time processing, the granularity of cloud-based logs is often much 
finer (hundreds of clicks/events per second) than in conventional processes, 
which adds to the processing complexity. 

5. Given that users are usually free to click anywhere on a Web application, and 
that the proportion of incomplete process instances is high in cloud-based 
application, the readability of mined process models is low (and spaghetti-
like). 

6. Dealing with noisy cloud-based logs, where too many events are tracked, 
adds to the complexity of models. 

7. Many cloud-based events have generic names and must be split according to 
some of their attributes into different events. 

8. The monitoring and trace management tools in cloud environments 
frequently evolve, which in turn results in changes in the nature of the 
collected logs. 

9. Events whose ordering or even presence in not important (for instance, 
click-refresh-click-refresh) often pollute cloud-based logs and should 
often be aggregated (e.g., to click-click-refresh or even just click-
refresh) in order to simplify the resulting processes. 

In the process mining literature, simplification of event logs is often done with a 
combination of abstraction [5], event/trace filtering (e.g., based on frequencies or 
attributes) [1], and trace clustering (e.g., K-means clustering) [4]. While filtering 
techniques alone work well with structured processes, they have problems discovering 
less structured ones, especially in a cloud-based context [5]. 

Preprocessing is required to reduce and simplify event logs [11][12]. Preprocessing 
such logs before applying process mining techniques usually takes up between 40% and 
80% of the total effort for most people [18]. Preprocessing is so important that the IEEE 
Task Force on Process Mining is currently surveying the community regarding challenges 
and solutions for improving event data preparation for process mining (see 
https://bit.ly/TFPM-survey2001). Preprocessing is even more needed in a cloud 
application context. Generic technologies such as Extract, Transform, and Load (ETL) 
certainly have a role to play [3], especially regarding challenge #1 (see Fig. 1), but they are 
insufficient for the other challenges. There are several process mining tools that support 
different types of filtering for the event logs, though such tools do not provide much 
flexibility in terms of the filtering that the analyst can do. The filtering techniques are also 
decided based on the type of the data and the analysis that has to be done.  

 

Fig. 1. Relationship between ETL and a desirable API for preprocessing. 

There is also a need to automate this preprocessing, ideally using repeatable scripts 
exploiting a domain-specific API that focuses on solving some of the PM-related 
challenges for cloud and clickstream applications. Scripting filters helps minimize 

ETL Tools API
Data Sources

Output  
CSV file

Import to 
PM tools

Can be used to produce the 
first CSV file from multiple 
data sources

Provides a focus on PM, 
and trace-level functions
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repetitive and often error-prone manual labor. Yet, scripting is not even mentioned in a 
recent review of event log preprocessing for process mining [11]. 

3. Materials and Method 
Our research method follows Hevner’s Design Science Research (DSR) in 

Information Systems (IS) [9], both in terms of research relevance and research rigor. The 
design science paradigm is based on iterative problem solving. It aims to create 
innovations that define the ideas, practices, and products through the analysis, design, 
implementation where the use of IS can be effectively and efficiently accomplished. In this 
paradigm, an artifact should be produced taking into consideration the exiting knowledge 
in the discipline and should be produced creatively to solve real-world problems. 
Artefacts are usually constructs, models, methods, and instantiations. We have 
instantiated DSR’s five steps to our research context.  

1) Awareness of problem: In this phase, the researcher defines the specific research 
problem and justifies the value of this research and the proposed solution. We performed 
a systematic literature review about the challenges in the area of process mining for cloud-
based applications [7], whose conclusions are summarized in the previous chapter. Input 
from key informants of a SaaS application provider was also informally taken into 
consideration. This also led to our main research question: What is a suitable method to 
discover and analyze cloud-based application processes? 

2) Suggestion: In this phase, from the defined problem and knowledge of what is 
possible and feasible, we defined the objectives for the solution. A tentative solution was 
developed that was presented to a SaaS company that provided event logs from their 
systems. In this phase, a new method (our main artifact) and its different steps were 
defined, and the solution was illustrated with a manual example. This new method is the 
topic of Section 4.  

3) Development: In this phase, the researcher creates an artifact, which is the solution 
to the defined problem. The artefact developed here is a method that exploits an API (with 
an implementation). The development went through several iterations by exploring 
available features in existing tools (mainly Disco, several ProM plug-ins, and data 
processing libraries) with open-source datasets and real event logs from the case study. 
The existing functions relevant to the pre-processing of cloud-based application logs can 
hence be replicated outside these tools (in the API, in order to support automation in one 
place, independently of the PM tools used for visualization and analysis) and 
supplemented by new useful functions in the API. An implementation of the API was 
done in the R programming language 1 . R was selected as this is a common data 
manipulation and analysis language, and it was also already used extensively by the SaaS 
company. This API is presented in Section 5. 

4) Evaluation: In this step, the researcher observes and measures how well the 
artifacts support a solution to the problem. Additionally, the researcher communicates the 
problem and its importance. The evaluation method that was used here is an application 
case study, combined to a comparative analysis and a performance evaluation. A dataset 
provided by a SaaS company was used to evaluate the developed method for 
preprocessing event logs before importing the event logs to the PM tools. After 
preprocessing the event logs using the proposed method, the Disco and ProM PM tools 
were both used to build the process maps and visualize how processes are executed in 
reality. Several iterations are performed on the dataset in order to answer the questions 
about the business processes. Here, we used two iterations based on two versions of the 
event log (taken at different times) to assess the complexity of adapting scripts in the 
context where the structure of logs changes. The case study is presented in Section 6, 
whereas Section 7 presents the comparative analysis and a performance evaluation. 

                                                           
1 https://www.r-project.org/about.html 
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5) Conclusion: This phase is the last step in the research process. Here, the results of 
the research are finalized, indicating the end of a research cycle. This step concludes the 
research projects and presents the results. A paper [7] and a thesis [6] were already 
produced, and this paper (accompanied with code and examples on GitHub) concludes 
this research. 

4. Cloud Pattern API – Process Mining Method 
Cloud Pattern API – Process Mining (CPA-PM), as the main artifact of this research 

paper, is a method for preprocessing event logs (including clickstream data) collected 
from cloud-based applications, that tackles challenges #2 to #9 from the previous section. 
Through an API, currently implemented in R, CPA-PM enables scripting for log 
manipulation and for replacing patterns before applying process mining techniques on 
the event logs. The CPA-PM method consists of three main steps (see Fig. 2) that enable 
preprocessing cloud-based application event logs, which usually include a large number 
of columns (i.e., event attributes) that need to be taken into consideration when 
aggregating rows in the dataset.  

The input for this method is an event log dataset (in CSV) and the output is a cleaned 
log (CSV) that can be imported by process mining tools for building simpler process maps 
and enable further analysis. The single input CSV file can itself be a result of a prior 
extraction and processing from multiple data sources where, for example, conventional 
technologies (ETL) and their tools can be used. The steps of the CPA-PM method might 
go through several iterations to get answers for analysis questions. 

Note that CPA-PM and its API offer tools to automate the simplification of event logs, 
but they do not guarantee that the resulting logs will preserve the right information to 
support understanding. This remains the responsibility of the analyst. 

 

Fig. 2. Overview of the CPA-PM method and its three main iterative steps. 

4.1. Clean-up Step 
In this step, initial cleaning of the dataset is done. Seven sub-steps are included here, 

and the last two sub-steps (1.6 and 1.7) can be interleaved.  
Step 1.1: Read the CSV log file, which must include the three main columns that are 

needed to apply process mining (case ID, event, and timestamp). It may also include other 
columns, for example resources and other properties. 

Step 1.2: Clean column identifiers, e.g., by removing white spaces and dots from the 
column’s names and ensuring their unicity. This returns a dataframe dataset with clean 
names that consist only of lowercase letters, numbers, and underscores.  

Step 1.3: Ensure the time format of the timestamps reflects the granularity needed. 
For example, if the timestamp must include detailed information about the minutes, 
seconds, and milliseconds for when the event occurred, this may require merging separate 
date and time columns, or change the encoding of the date/time information. 

Step 1.4: Ensure that the cells in a given column comply with their expected column 
type and transform or cast the column, if necessary, to the required data type. 

Step 1.5: Select only the columns needed for the analysis questions. For clickstream 
data, the analyst should select a) the Case Identifier, Event, and Timestamp columns 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2022                   doi:10.20944/preprints202204.0138.v1

https://doi.org/10.20944/preprints202204.0138.v1


 6 of 17 
 

 

minimally required by PM techniques; b) the resource columns relevant to the analysis 
questions; and c) the attribute columns that refine events. Consider also excluding 
columns that are empty or that threaten re-identification. 

Step 1.6: Filter the event log. Filtering is a popular preprocessing technique whose 
goal is to reduce the complexity or to focus on a specific part of the process during the 
analysis. This technique is usually performed multiple times, iteratively. 

Step 1.7: Remove incomplete cases. An incomplete case is a truncated case/trace that is 
missing the start and/or the end event(s) in a process instance. 

4.2. Dataset Restructuring Step 
Restructuring for the event log is performed in such a way that process mining 

algorithms can be applied depending on the understanding or analysis questions that 
should be answered. These different techniques, some of which implementing several 
known event abstraction approaches [17], can be applied during this step. 

• Enriching the event log dataset: event logs can be enriched with additional 
attributes, e.g., by adding external additional data collected or by combining 
two different datasets. This is however often done before the generation of 
the original CSV file (e.g., using ETL). Another way is by deriving or 
computing additional or derived events and data attributes based on the 
existing attributes in the data, resulting in new columns calculated from 
other columns. Such additions depend on the required analysis, e.g., for 
calculating the time difference between the occurrence of two events to 
reason about durations. 

• Aggregating events: aggregating events into coarser-grained or more abstract 
events (e.g., along “is-a” or “part-of” relationships between events) can help 
reduce complexity and improve the structure of clickstream datasets, leading 
to better and simpler processes.  

• Aggregating rows: this technique includes aggregating several rows into one 
row, to reduce complexity and (unnecessary) repetition of the same event. 
For example, let us consider that event A is repeated multiple times in a given 
case, but needs to be considered only once. Options here include keeping 
only the first occurrence of event A, keeping only its last occurrence, or 
merging all the A rows into one by applying maximum, minimum, average, 
and other such functions on the columns’ attributes for the repeated event A. 
This will be illustrated in more detail in the API functions and their 
implementations. 

4.3. Event Pattern Substitution Step 
In this step, complex event patterns are substituted with a new event to reduce the 

complexity of the resulting process maps. If several events patterns are repeated and are 
known to occur together, then they can be substituted by a single, more abstract event. 
Defining, selecting, and substituting patterns in this step is done by domain knowledge 
experts. Several common patterns are defined as rewrite rules at this stage and can be 
used on the cloud-based application event log dataset. These and other patterns can be 
defined by the analyst depending on the analysis context.  

For example, consider a common event in a cloud application case: a page refresh. A 
pattern could consist of a non-empty sequence of refresh events (refresh+). As whether the 
page is refreshed once or many times without any other events in between, that sequence 
refresh+ could be replaced by only refresh event. This would simplify many traces, and 
make them equivalent along the way, which would help simplify the resulting process 
model generated through process mining, without negatively affecting its usefulness. 
More complex patterns involving sequences of interleaving click and refresh  events (click-
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{click | refresh}*-refresh) could similarly be simplified by substituting them to a single click-
refresh pair. 

5. CPA-PM Application Programming Interface (API) 
This section presents the API functions, mainly described in terms of addition, 

removal, or modification of rows, columns, and traces. As the purpose here is to simplify 
and shorten event logs, the API offers mainly removal and modification functions. Please 
note that in the following, an event log table with a heading row is also called a dataframe. 
Most of the functions (except writeCSV) return a new dataframe.  

• readCSV(String file): reads the CSV file into a dataframe that it creates.  
• writeCSV(table DataSet, String file): writes the dataframe to a file.  
• cleanHeaders(table DataSet): cleans the dataset’s headers of the columns 

from spaces (replaced with _) and other special characters (removed). This 
function only keeps lower case letters, numbers, and underscores (_). 

• selectColumns (table DataSet, string columnName, …): selects/keeps the 
list of columns needed for analysis from the dataset. Only the list of selected 
columns/attributes are included in the dataset. 

• deleteColumns (table DataSet, string columnName, …): drops the listed 
columns from the dataset.  

• filter(table DataSet, condition Conditions): keeps records/rows based 
on the conditions specified. Only the rows where the condition is true are 
kept in the DataSet.  Comparison and composite functions are supported 
with ==, >,<, >=, <=, &, |, and !. 

• removeEventsLowFrequency(table DataSet, String eventName, integer 
freq): removes the events from the dataset that have a frequency below the 
value freq (count integer) when grouping by eventName. 

• deleteTraceLengthLessThan(table DataSet, String groupID, integer 
num): removes the traces where the number of events is less than a specified 
value. groupID is the name of the variable to group traces by, and num is the 
minimum number of events. 

• deleteTruncatedTracesStart(table DataSet, String groupID, String 
eventColumn, String value): removes the traces/traces that do not start with 
the required event value. groupID is the name of the variable to group traces 
by, and eventColumn is the name of the event column. value is the value of the 
eventColumn that specifies the required start event name. 

• deleteTruncatedTracesEnd(table DataSet, String groupID, String 
eventColumn, String value): similar to the previous one, but removes the 
traces/cases that do not end with the required event.  

• deleteTracesWithTimeLess(table DataSet, String groupID, String 
timestampColumn, integer t): removes the traces/cases that ran for a total 
duration less than t. timestampColumn is the name of the timestamp column, 
and t is the value of the minimum total duration for each trace/case, in 
seconds. 

• concatenateColumns(table DataSet, String newColumn, String col1, 
String col2, …): concatenates two or more columns (col1, col2, …) in a 
dataframe into a newColumn that is added to the dataframe. 

• arrangeRows(table DataSet, String columnName, …): sorts the rows by 
columnName, in increasing order. columnName is a list of unquoted names. 

• eventIsRepeated(table DataSet, String groupIDCol, String eventCol, 
String newCol): creates a new column newCol that indicates whether the 
event has been repeated or not. The event is represented by the eventCol 
parameter. The new column will only include values 0 (when not repeated) 
or 1 (when repeated).  
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• deleteAllEvents(table DataSet , String event, String eventName): 
deletes all records/rows with an eventName value in the event column. 

• keepFirstEvent(table DataSet, groupID, String eventAttribute, String 
eventName): keeps the first occurrence of an event (i.e., the first occurrence of 
several repeated events). groupID represents the column for grouping the 
records, eventAttribute the event attribute column, and eventName the event 
name whose first occurrence in each group we want to keep. 

• keepLastEvent(table DataSet, groupID, String eventAttribute, String 
eventName): similar to the previous one, but keeps the last occurrence of an 
event (i.e., the last occurrence of several repeated events). 

• mergeRows(table DataSet, list groupByVariables, list 
columnArguments): aggregates several rows into one row. groupByVariables 
represent the variables to group the dataframe by, and columnArguments 
represents the new column arguments based on aggregation functions. Each 
column of the aggregated rows requires one predefined aggregation 
operator from: mean, median, min, max, sum, first, last, n (count), of logical 
operators. String concatenation is supported too. Those aggregation 
operators are defined by the analyst. 

As mergeRows() is the most complex function of this API, we are illustrating its 
application on a simple sequence of events extracted from a real event log. This function 
works by splitting the data into groups, applying some analysis to each group of data, and 
then combing the results. It works by aggregating several rows for each column. For 
instance, the first three rows of Table 1 target the same activity of the same case identifier. 
The analyst may decide to keep only one such event (as in the patterns described earlier). 
The issue here is to decide how to aggregate the information in the various columns. 

Table 1 Simple event log example, with targeted events to be merged highlighted in blue 

 
When aggregating the rows grouping by case_id and activity attributes, the analyst 

may decide to keep the timestamp and weekday of the first event; produce lists of unique 
activity, city, client, and device values for their respective columns; calculate the sum of the 
merged elements in the num_items column, and keep all the values of the product_category 
column (without uniqueness). The invocation of this API in R on the log named EventLogs 
is as follows, with the result shown in Table 2.  

mergeRows(EventLogs, .(case_id, activity), summarise,  

   timestamp = first(timestamp),  

   activity = paste(unique(activity), collapse = ','),  

   city = paste(unique(city), collapse=','),  

   weekday = first(weekday), 

   client = paste(unique(client), collapse=','), 

   num_items = sum(num_items),  

   product_category = paste((product_cateogry), collapse=’,’), 

case_id timestamp activity city weekday client num_ 
items 

product_ 
category 

device 

121 2018-08-01 00:04:22 Main home page Ottawa Monday Phone App 3 B Android 

121 2018-08-01 00:04:23 Main home page Ottawa Monday NA 4 B Android 

121 2018-08-01 00:04:25 Main home page Ottawa Monday NA 6 D Android 

121 2018-08-01 00:04:27 Home page for product Ottawa Monday Phone App 4 A Android 

121 2018-08-01 00:04:48 General website search Ottawa Monday Phone App 4 N/A Android 
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   device = paste(unique(device), collapse=',')) -> EventLogs 

Table 2 Event log after merging the first three rows of Table 1 into one row, in blue 

 

This API contains basic functions to load/save CSV files and filter rows and columns, 
but also advanced ones that support the various steps of CPA-PM more directly and 
efficiently. For example, deleteTruncatedTracesStart() and 
deleteTruncatedTracesEnd() are essentially used to support Step 1.7 of the CPA-PM 
method (Section 4.1). These methods exclude from the event log the incomplete traces (i.e., 
all the events for one case) that either started too early or finished too late (or did not 
finish) according to the time frame where the log was produced, see Fig. 3. 

 
Fig. 3. Example of incomplete traces with missing start events (Trace 1) of end events (Trace 6) 

This API addresses challenges #2 to #9 from the literature review. It is currently 
implemented in R, but a Python version is also being considered. More detail about the 
API and its usage is available in [6], and its R implementation is available online at 
https://github.com/NajaElgharib/CPA_PM. 

6. SaaS Application Case Study 

The CPA-PM method is applied to a real clickstream event log dataset in order to assess the effect of the CPA-PM method on the 
preprocessing of datasets collected from a SaaS application on the process mining results. The logs’ events include user actions from 
when users start the trial version of the application until they either become real clients or give up along the way. CPA-PM is then 
applied to a second dataset extracted from the same log management tool for the same process taken several months later to understand 
and assess the impact on the initial script of the evolution of the processes and of the log monitoring infrastructure after a long time 
in a SaaS company. 

6.1. Case Study Overview 
The aim of the case study is to apply the CPA-PM method steps to preprocess the 

raw event log dataset in order to discover better structured process maps than without 
using preprocessing. The dataset was provided and anonymized by a SaaS company, but 
it still cannot be shared publicly for confidentiality reasons. The dataset was collected 
from a cloud-based data visualization application that allow users to create interactive 
dashboards. The logs’ events include user actions from when users start the trial version 
of the application until they become real clients, or give up along the way.  

case_id timestamp activity city weekday client num_ 
items 

product_ 
category 

device 

121 2018-08-01 00:04:22 Main home page Ottawa Monday Phone App 13 B,B,D Android 

121 2018-08-01 00:04:27 Home page for product Ottawa Monday Phone App 4 A Android 

121 2018-08-01 00:04:48 General website search Ottawa Monday Phone App 4 N/A Android 

 

Log
Start

Log
End

Time

Trace 1

Trace 2

Trace 3

Trace 4

Trace 5

Trace 6

deleteTruncatedTracesStart()

deleteTruncatedTracesEnd()
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6.2. Dataset 
Data extraction is the first step in such PM project, which is then followed by data 

preprocessing. Data extraction involves getting the event log from the (possibly many) log 
management tools used by the SaaS company. The starting point in this case study is the 
event log dataset related to the trial version, provided as one CSV file after anonymization, 
and renaming of some of the events (to preserve the confidentiality).  

The dataset includes three months (August 2018 to October 2018) of events, with 
1,602,438 different records/rows and a very large number (152) of variables/columns. The 
dataset includes records from 4,462 different cities. From the case study, only 24 different 
variables are needed based on the process-oriented questions that we want to answer. 
These questions pertain, for example, to the situations under which the users stop using 
the trial version before becoming (paying) customers.  

6.3. Case Study Planning 
The main columns in the dataset that are required before applying PM techniques 

are the case identifier, the timestamp, and the activity. 
1) Case ID: The Company ID attribute is chosen as the case ID, as it refers to 

cross-site identifier used to differentiate users. The Company ID does not 
change from the starting point of the process (user sign up for trial version) 
until the last activity within the time frame that is included in the dataset, 
even if the user uses the trial version of the application sporadically over 
several days. 

2) Timestamp: each event occurs at a particular moment. The timestamp used 
here is in this format: YYYY-MM-DD hh:mm:ss. 

3) Activity: from the event log dataset, the event attribute was selected as the 
activity. The event attribute represents the clicks and actions done by users 
while using the online application. Table 3 displays some event names 
(among 93) from the dataset, with their descriptions. 

4) Other attributes: In addition to the main three attributes that are needed for 
PM analysis, the dataset includes additional columns that represent other 
attributes and properties that exist when an activity/action occurs. Here, 
those attributes include data source, data source number, help guide name, 
template name, account type, number of users, device type, browser, city, 
weekday, number of dashboards, dashboard type, and others. These 
attributes are considered as other necessary properties that will be used in 
the analysis. 

5) Process mined from the original event log: The initial process map 
generated using the Disco tool [8] for the original event log is much too 
complex and unreadable to be presented here. With high numbers of variants 
with respect to the cases, such spaghetti process maps are generated but are 
not helpful during analysis. Preprocessing and restructuring of the dataset 
are required.  
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Table 3 Some event names with their descriptions 
Event Name Description 

Add graph from 

library 

User adds a graph from the library that provides 

several ones 

Add new graph button User adds a new button to the graph 

Add template User adds a template to build a graph 

Build graph from 

library 

User builds a new graph from existing ones in the 

library 

Connect to data source User connects to a data source to import data into a 

graph 

Create dashboard User creates a dashboard  

Create data source User creates a new data source to import their own 

datasets 

6.4. Data Preparation and Preprocessing 
CPA-PM is illustrated on the SaaS application dataset, starting with the Clean-up step. 

The following six points correspond to steps 1.1 to 1.6 in Section 4.1. 
1) The first step involved importing the dataset (a CSV file) to RStudio, the R 

environment we used to execute the R functions from the CPA-PM API. The following 
step is executed in order to read the CSV dataset file: 

EventLogs <-readCSV(file="full_DS.csv",header=TRUE,sep=",") 
The EventLogs dataframe is created in RStudio. Then the dataset was explored to 

compute the total number of unique events that exist. The EventLogs dataset includes 93 
unique events executed by users during the three-month period.  

2) After importing the CSV file, the cleanHeaders() function was applied to make 
sure there is consistency with the column headers names:  

cleanHeaders(EventLogs)-> EventLogs 
3) In this step, the time format was check and it was already appropriate. 
4) We ensured that the attributes needed for the analysis were available in the SaaS 

application dataset, with the right type. 
5) In this step, the selectColumns() function was called to select the list of columns 

needed for the analysis, which are here. Here is a list of the columns that were selected for 
the analysis:  

selectColumns(EventLogs, company_id, event, time, client, template, guide_name, 
guide_type, number_of_graphs, number_of_graphs_on_dashboard,  graph_origin, 
source, kpi_count, template_name, account_type,graphs_owned, data_format, 
data_sources_owned, dashboard_template_name,  
connector_backend, x_city, weekday) -> EventLogs 

6) Then, some initial filtering was done. This filtering includes cleaning the dataset 
from some of the attributes that are not needed:  

Remove the empty case identifiers:  
EventLogs %>% filter(company_id != "") -> EventLogs 

Remove the records where the client attribute value is Phone App, since for this 
analysis we are not interested in including the phone app users:  
EventLogs %>% filter(client != "Phone App") -> EventLogs 
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Remove the records where the event is View Dashboard, because this is an event with 
a very high frequency and many variants as it is clicked many times by users, and it will 
not add useful information to the analysis:   

 EventLogs %>% filter(event != "View Dashboard") -> EventLogs 
Other records with very low frequency (10 and less) and not needed in the analysis 

were removed:  
 removeEventsLowFrequency(EventLogs, company_id, 10) -> EventLogs 
Sort the events in the dataset according to company_id and time variables:   

arrangeRows(EventLogs, company_id, time) -> EventLogs 
After doing the initial cleaning of the dataset EventLogs, the resulting dataset was 

imported to Disco to start the analysis. Company_id was selected as the case identifier, 
event as the activity variable, and time as the timestamp variable. According to Disco, the 
resulting EventLogs dataset includes 960,919 events over time (a 40% reduction from the 
initial dataset); 52,084 cases; 85 activities; and 13,848 different variants.  

7) The removal of incomplete cases (Step 1.7 in Section 4.1) is an important data 
preparation step that needs to be done before starting the PM analysis. For example, 
truncated cases may appear to be faster than they really are and distort case durations. 
Removing incomplete cases can also help simplify the process map, because incomplete 
cases inflate the process map layout by adding spurious end or start points to the process 
map. In this case study, we removed all the traces that did not start with the Trial Sign Up 
Completed event:  

deleteTruncatedTracesStart(EventLogs, company_id, event, "Trial Sign Up 
Completed") -> EventLogs 

After applying this function, the dataset got simpler, with 816,125 different records 
and 15,190 unique cases. Note that deleting cases truncated at the end with the API’s 
deleteTruncatedTracesStart() function is not performed here because we want to analyze 
the reasons why users abandon trials before buying the application, and so these 
incomplete process instances must be preserved. 

Another type of filter based on very short traces (Step 1.5 in Section 4.1) can be 
considered. For example, there are 520 cases that have only one event “Trial Sign Up 
Completed”, and 149 cases with only two events; “Trial Sign Up Completed” and “Help 
Guide Start”. The cases (traces) with very few events per trace (1 to 2 events) are not 
interesting for the analysis since they do not provide much information about the 
processes (the users simply started the trial version of the cloud application but did not 
really use it). These traces should be removed from the dataset. In this case study, the 
traces that included only one or two events were deleted:   

deleteTraceLengthLessThan(EventLogs, company_id, 2)  
  -> EventLogs 

Simple loops involving one event (e.g., the “Help Guide Start” activity) were also not 
deemed interesting, and they were filtered out to further simply the logs: 

eventIsRepeated(EventLogs, company_id, event, isRepeated) -> EventLogs 
EventLogs %>% filter(isRepeated != "1")-> EventLogs 
More complex simplifications involving pattern-based substitutions and the merging 

of rows were also used (see [6]). These were all captured in an R script, available online. 

6.5. Process Discovery, Mining, and Analysis 
After preprocessing the event logs using the CPA-PM method, the resulting dataset 

was imported to two PM tools, namely Disco and ProM, for process discovery (the specific 
type of process mining of interest in this case study) and analysis. The preprocessing steps 
can go through several iterations before getting to the final answers to the analysis 
questions. Even after importing the dataset to PM tools, the analyst can iterate again 
through filtering, aggregations, and pattern substitutions before importing the resulting 
dataset again to PM tools (see Fig. 2). 
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Different variants of our R script were produced to answer different questions of our 
stakeholders, such as “what are the steps followed by trial users who give up before 
registering (non-converters)?”, “what is the main process for converters?”, and “how 
different are the processes when non-converters give up within 5 minutes from when they 
use the application between 1 to 14 days?”. Fig. 4 shows one of these answers in the form 
of a Disco process model, and the other models can be found in [6]. 

 

Fig. 4. Process map for users that converted to customers within 5 minutes, generated with Disco from an event log with 96 cases and 30 

variants. 

6.6. A Second Dataset 
Another dataset was provided by the SaaS company for analysis. The purpose here 

is to re-apply the functions for preprocessing the dataset (essentially captured in a reusable 
script) and check how much change the original script is required in order to adapt it to 
new, more recent datasets. This addresses challenges #3 and #8 from Section 2. 

The new dataset was collected for the period from January 2019 to August 2019, and 
it includes 21 different variables/attributes, 2,144,210 records/rows, and 34,315 different 
traces. Additionally, the new dataset includes 142 unique events, which is more than the 
number of events in the first dataset. That could mean that the process activities have 
changed over time, or that new types of events were collected while using the application. 
The aim here is to evaluate how well the analyst can execute the original script on this 
dataset in order to adjust for processes and logging environments that change over time. 
The initial preprocessing script was hence applied again.  

Although scripts can be used many times, especially in a short time period, at some 
point, as processes and technologies evolve in an enterprise, the scripts many need to 
evolve as well. Indeed, the script developed for the initial dataset, which was used as is 
on other datasets from 2018, could not be reused as is here because of the new types of 
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events that were observed in logs from 2019. Step 1.5 of the CPA-PM method was hence 
re-applied to handle these new events (i.e., to decide whether to keep them or not). This 
took a few minutes of manual effort, mainly to understand the nature of the new events. 
The rest of the script did not have to be modified, and its execution led to similar 
reductions in log and process complexity as previously observed for the first dataset. 
Overall, modifications to the script took a few minutes, suggesting high reusability and 
good tolerance to the evolution of logs over long periods of time. 

7. Discussion 
This section analyses the proposed CPA-PM method for helping analysts better 

preprocess event logs. Additionally, a scalability analysis for the method is performed. 
Threats to validity are also discussed.  

7.1. CPA-PM Method Analysis 
Often, real-life cloud-based processes are so complex that the resulting process maps 

are too complicated to interpret and use for discovery and analysis purpose. These 
spaghetti processes are not incorrect per se. The problem however is that such process 
maps are too large and unstructured to derive any useful insights or information that can 
be used to answer analysis questions that may lead to process or application 
improvement. At this level, what is needed is to simplify such complicated process maps, 
or their source event logs. Clickstream datasets can contain millions of events capturing 
user clicks anywhere on application pages, as well as page refreshes.  

The CPA-PM method proposed here can help in cleaning such datasets in a suitable 
way in order to build more meaningful process maps automatically and repeatedly for 
different datasets using the same logging infrastructure. After applying the steps of the 
CPA-PM method, the resulting process maps are less complex and more understandable 
in terms of displaying the main events that were executed in the process. Many traces and 
events can be deleted or aggregated without affecting the answers to analysis questions. 
This method also focuses on reducing variations in one same process. Finally, the API 
invocations used to support the CPA-PM steps for a particular event log can be collected 
as a script that can be run each time a new version of the event log becomes available, 
hence helping automate the analysis while reducing manual labor. This preprocessing 
method is applied on the dataset before importing the reduced dataset to process mining 
tools. In this paper, Disco was used to display process maps. 

Analysts can also discover along the way that a better logging mechanism should be 
used in their cloud system. For example, not all user activities may be logged properly in 
the log management tools. After applying process mining techniques and building 
process maps, analysts may discover that some activities that should be present are 
actually not displayed in the process maps since they are not properly logged. 

Note however that the logs may also be simplified too much, and that important 
information may be removed along the way. CPA-PM does not compute similarity 
metrics or information loss (as in [12]); such features could be added in the future.  

7.2. Scalability Analysis 
As the number of records in event logs increases, the resulting process maps often 

become more complex. More preprocessing iterations and effort are hence usually 
required. It is important to test the scalability of the CPA-PM method and scripts when 
the size of event logs increases. A scalability analysis was performed on subsets of a real 
datasets that vary in size (by doubling the initial one 9 times). The same script with the 
same API function invocations was run on each of the datasets. The script was run three 
times on each dataset, and the average execution times are reported in Fig. 5. 
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Fig. 5. Script execution performance (the X axis uses a logarithmic scale). 

In term of environment, the scalability analysis was performed with RStudio running 
on a laptop with Windows 10 (64-bit), 16 GB RAM, and an Intel® Core™ i5-8250U 
processor. No other application was running in parallel. 

As expected, the higher the number of events in the log, the higher the average 
runtime. This might cause issues in some contexts where this part of the analysis is time 
sensitive. What is interesting in Fig. 5 however is that the increase in average duration is 
less than linear with respect to the number of events in the log, likely because the initial 
filtering steps are efficiently removing many of the records up front.  

In some situations, the dataset might include more attributes (i.e., more columns), 
which would require more computations when merging the rows and hence result in 
longer run times. The impact of such additional attributes was not assessed explicitly here. 
However, in situations where more pattern iterations are executed, the number of rows 
would be reduced, which might in turn shorten the average runtime.  

Still, in general, having to wait 10-12 minutes to pre-process automatically a million 
events, in a repeatable way, is still much better than doing so manually, as the latter 
approach would take much longer and be more prone to errors. 

7.3. Threats to Validity 
Several potential threats to the validity of this research are discussed here. 
Construct validity aims to assess the extent to which the tests performed actually 

measure what our method claims to be doing. An important threat here is that the chosen 
case study may not reflect all the different analysis questions that process maps can 
answer. The data quality may have been an issue in answering some further questions 
about the processes in the case study. Additionally, there was only one case study in this 
paper and the data was provided only by one source. Another threat is that only two 
process mining tools were used to build the process maps. To mitigate some of these 
threats, a second dataset was provided to the method and the script could be used again. 
The limitation remains that the new dataset was provided by the same stakeholder and 
from the same system, just at a different time and for a different period. 

Internal validity aims to estimate and evaluate the degree to which conclusions about 
the analysis of the proposed method can be made based on the case study and the data 
provided. The first threat here is that bias might have been introduced by having to 
perform the evaluation and analyze the results of the case study. This threat was partially 
mitigated by having two people evaluate the results of the case study. Also, this could be 
further mitigated by having the stakeholders apply the method on other datasets and 
having them evaluate it themselves.  

External validity aims to estimate whether results of the evaluation can be generalized 
to other cases. Although there is no reason to believe the proposed method and API cannot 
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be used on other datasets (even outside the context of cloud-based applications), there is 
currently no evidence they can. To mitigate this threat in the future, we can apply the 
method and API functions on dataset provided by different stakeholders and for different 
types of processes. 

8. Conclusions  
This paper contributes a data preprocessing method (CPA-PM) for event logs 

generated by cloud-based information systems, with an emphasis on clickstream data. To 
properly apply process mining on such logs, advanced and iterative preprocessing must 
be done in order simplify the resulting mined processes without losing valuable 
information. It is also important that the preprocessing steps be repeatable. CPA-PM 
includes different steps needed to clean and restructure cloud-based event logs and 
address relevant challenges in that area (especially #2 to #9 in Section 2), including a large 
number of events and attributes, spurious and repetitive events, and unstructured 
orderings of events. As an additional contribution, the method is supported by a new API 
with an implementation in R, which enable the scripting and reuse of preprocessing steps. 
CPA-PM goes beyond what is usually found in ETL tools and in the preprocessing 
capabilities of process mining tools. 

There are many opportunities to extend this research work, some of which being 
identified in the previous section. We also plan to extend the CPA-PM method to include 
more functions for preprocessing event logs, provide a Python implementation, and 
integrate the API to an existing PM tool. Additionally, more case studies can be done to 
apply the method on event logs that represent user actions while navigating the different 
parts of an application, or different application domains. The integration of similarity and 
information loss metrics, together with support for multiple, different logging systems in 
cloud environments, would also be beneficial. The usability of the API also deserves 
further attention in the future. 

Supplementary Materials 

The R implementation of the API and an example are freely available online at: 

https://github.com/NajaElgharib/CPA_PM.  

Acknowledgement 

We thank Dr. Alireza Pourshahid and Tomasz Ogrodzinski for their help in providing event logs and assessing the 
resulting process models. The first author thanks the University of Ottawa and the Ontario Graduate Scholarship for 
funding this work. 
Author Contributions 
Conceptualization, N.M.E.-G. and D.A.; Methodology, N.M.E.-G. and D.A.; Software, N.M.E.-G.; Validation, N.M.E.-G. and D.A.; 
Formal Analysis, N.M.E.-G.; Investigation, N.M.E.-G. and D.A.; Resources, N.M.E.-G.; Data Curation, N.M.E.-G.; Writing – 
Original Draft Preparation, N.M.E.-G. and D.A.; Writing – Review & Editing, N.M.E.-G. and D.A.; Visualization, N.M.E.-G.; 
Supervision, D.A.; Project Administration, N.M.E.-G. and D.A.; Funding Acquisition, D.A. 

Conflicts of Interest 
The authors declare no conflict of interest. 

References 

[1] Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A., Mecella, M., Soo, A.: Automated discovery of process models from event logs: 
Review and benchmark. IEEE Transactions on Knowledge and Data Engineering, 31(4), pp. 686–705 (2018) 

[2] Bose, R.P.J.C., van der Aalst, W.M.P.:  Abstractions in Process Mining: A Taxonomy of Patterns. In: Int. Conference on Business Process Management, 
LNCS 5701, pp. 159–175. Springer (2009) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2022                   doi:10.20944/preprints202204.0138.v1

https://github.com/NajaElgharib/CPA_PM
https://doi.org/10.20944/preprints202204.0138.v1


 17 of 17 
 

 

[3] de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Connecting databases with process mining: a meta model and toolset. Software & Systems Modeling, 
18(2), pp. 1209–1247 (2019) 

[4] De Weerdt, J., Vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Transactions on Knowledge 
and Data Engineering, 25(12), pp. 2708–2720 (2013) 

[5] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of business process management, Springer (2013) 
[6] El-Gharib, N.M.: Using Process Mining Technology to Understand User Behavior in SaaS Applications. Master’s thesis, University of Ottawa, Canada, 

December (2019). DOI:10.20381/ruor-24202 
[7] El-Gharib, N.M., Amyot, D.: Process mining for cloud-based applications: a systematic literature review. In: 2019 IEEE 27th International Requirements 

Engineering Conference Workshops (REW), pp. 34–43. IEEE CS (2019) 
[8] Günther, C.W., Rozinat, A.: Disco: Discover Your Processes. In: BPM (Demos), CEUR-WS 940, pp. 40–44 (2012). https://fluxicon.com/disco/ 
[9] Hevner, A., Chatterjee, S.: Design science research in information systems. Design Research in Information Systems, vol. 22, pp. 9-22. Springer (2010)  
[10] Kumar Padigela, P., Suguna, R.: A Survey on Analysis of User Behavior on Digital Market by Mining Clickstream Data. In: Third International Conference 

on Computational Intelligence and Informatics, AISC 1090, pp. 535–545. Springer (2020) 
[11] Marin-Castro, H.M., Tello-Leal, E.: Event Log Preprocessing for Process Mining: A Review. Applied Sciences, 11(22), 10556 (2021) 
[12] Sani, M.F.: Preprocessing Event Data in Process Mining. In: CAiSE (Doctoral Consortium), CEUR-WS 2613, pp. 1–10 (2020) 
[13] Terragni, A., Hassani, M.: Analyzing Customer Journey with Process Mining: From Discovery to Recommendations. In: 2018 IEEE 6th Int. Con. on Future 

Internet of Things and Cloud, pp. 224-229 (2018) 
[14] van der Aalst, W.M.P.: Configurable Services in the Cloud: Supporting Variability While Enabling Cross-Organizational Process Mining. In: 9th Confed. Int. 

Conf. Move to Meaningful Internet Systems, LNCS 6426, pp. 8–25. Springer (2010) 
[15] van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer-Verlag (2011) 
[16] van der Aalst, W.M.P.: Intra- and Inter-Organizational Process Mining: Discovering Processes within and between Organizations. In: The Practice of Enterprise 

Modeling. PoEM 2011, LNBIP 92, pp. 1–11. Springer (2011) 
[17] van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A. Event abstraction in process mining: literature review and taxonomy. Granular Computing, 6, 

pp. 719–736 (2021) 
[18] Wynn, M.T. et al.: Rethinking the Input for Process Mining: Insights from the XES Survey and Workshop. In: Process Mining Workshops. ICPM 2021. LNBIP 

433, pp. 3–16. Springer (2022). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2022                   doi:10.20944/preprints202204.0138.v1

https://fluxicon.com/disco/
https://doi.org/10.20944/preprints202204.0138.v1

