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Abstract: Phase transitions- both in the classical and in the quantum version- are the perfect play-
ground for appreciating universality at work. Indeed, the fine details become unimportant and a
classification in very few universality classes is possible. Very recently, a striking deviation from this
picture has been discovered: some antiferromagnetic spin chains with competing interactions show a
different set of phase transitions depending on the parity of number of spins in the chain. The aim of
this article is to demonstrate that the same behavior also characterizes the most simple quantum spin
chain: the Ising model in a transverse field. By means of an exact solution based on a Wigner-Jordan
transformation, we show that a first order quantum phase transition appears at zero applied field in
the odd spin case, while it is not present in the even case. A hint of a possible physical interpretation
is given by the combination of two fact: at the point of the phase transition, the degeneracy of the
ground state in the even and the odd case substantially differ, being respectively 2 and 2N, with N
the number of spins; the spin of the most favorable kink states changes at that point.
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1. Introduction

In the non-relativistic microscopic world, the fundamental laws of physics regulate
the interaction within pairs of constituents [1]. In the macroscopic scenario, emergent
phenomena such as the onset of order parameters, the appearance of phase transitions,
and the development of dissipation, are observed [2]. Connecting the two counterparts is
a central aim of statistical mechanics. Conceptually, the procedure is the following: one
calculates the properties of the system under inspection for an arbitrary number N of
constituents, and then performs the thermodynamic limit N to infinity. In such a highly
nontrivial limit, the emergent properties show up. Although it is most often not possible
to apply this strategy directly, this paradigm has proven extremely useful. Indeed, it
led to the description of the different phases of matter and the transitions between them.
This statement holds true for both the symmetry related phases of matter [2], and for the
topological phases [3–5]. At the same time, it applies to both thermal [2] and quantum [6]
phase transitions.
Very recently, a striking discovery was made: there are models in which the result of the
limit, at zero temperature, crucially depends on the parity of N [7–13]. We will here call
this phenomenon even-odd criticality. More specifically, what has been shown is that,
depending on the parity of N, the system is gapless or gapped. Moreover, again depending
on the parity, quantum phase transitions can be present or not. All the models known to
show this spectacular behavior are antiferromagnetic spin chains with competing orders
and subject to compactifying (periodic or twisted) boundary conditions. The physics behind
the phenomenon is the competition between the local antiferromagnetic order and the
global constraints posed by the boundary conditions. In this respect, the main difference
between the even and the odd N cases is that only in the odd N case at least one link
between spins must be in the energetically unfavorable condition; in other words, at least
one kink is present in the ground state.
Since the discovery is extremely recent, not much is known about even-odd criticality.
However, its potential is huge. From the theoretical side, it challenges the definition of
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phases, even thermal phases if classical models with even-odd criticality will be found, and
represents a strikingly new playground for the study of the quantum quench dynamics of
many-body physics and relaxation [14–28]. From a more practical perspective, it opens the
way to unprecedented possibilities for quantum technologies: spin chains represent the
typical models for the quantum buses transferring quantum information. Even-odd critical
systems are in principle able to allow or stop the flow of information by switching on or off
a single site.
In this work, we show for the first time that even the most simple, yet fruitful and inspiring,
spin chain shows even-odd criticality: we analyze the antiferromagnetic Ising spin chain
with N sites in a transverse field to show, by means of the exact solution based on the
Wigner-Jordan transformation, the presence of a first order quantum phase transition that
is only present in the case of odd N. Such quantum phase transition is manifested in a
discontinuity of the first derivative of the ground state energy with respect to the applied
field, calculated at zero field.
The rest of the article is structured as follows: in Sec. 2. we outline the Ising model in the
antiferromagnetic regime and its solution; in Sec. 3. we analyze the ground state and its
energy, and show that a quantum phase transition is only present in the odd N case. Finally,
in Sec. 3. we discuss the result and we draw our conclusions.

2. Model

The model under inspection is the antiferromagnetic quantum Ising chain in a trans-
verse field [6]. Explicitly, we consider the Hamiltonian

H =
J
2

N

∑
j=1

[
σx

j σx
j+1 + hσz

j

]
. (1)

Here, we impose periodic boundary conditions σα
N+1 = σα

1 . Moreover, in the Hamiltonian,
J > 0 parametrizes the antiferromagnetic coupling and sets the energy scale, h parametrizes
the transverse magnetic field (we will only consider |h| < 1), j is an index running over
the lattice sites, N is the number of lattice sites, and σα

j with α = x, y, z are the three Pauli
matrices defined on the j-th site.
The Hamiltonian can be exactly diagonalized by means of a Wigner-Jordan transformation
to free fermions [29,30]. To do so, previously we define

σ±j ≡
σx

j ± iσy
j

2
. (2)

Then, the transformation to free fermions is introduced, namely

σ+
j ≡ eiπ ∑

j−1
l=1 ψ†

l ψl ψj , (3)

σ−j = e−iπ ∑
j−1
l=1 ψ†

l ψl ψ†
j , (4)

σz
j = 1− 2ψ†

j ψj , (5)

where {ψ†
j , ψl} = δj,l and {ψ†

j , ψ†
l } = {ψj, ψl} = 0. Here {·, ·} is the anticommutator

and ψj is the spinless fermionic operator associated to a particle on the site j. From the
interpretation point of view, it is fruitful to note that the number nj = ψ†

j ψj of spinless
femions on the j-th site equals one or zero if the z projection of the spin on that site j is 1
or -1 respectively. The advantage brought by this transformation is that the Hamiltonian,
written in terms of the fermions, can be diagonalized by simple Bogoliubov transformations.
Indeed, one finds

H = PH(+)P +QH(−)Q . (6)
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Here P is the projector onto the even parity sector of the fermionic Fock space, given by

P ≡
1 + ∏N

j=1

(
1− 2ψ†

j ψj

)
2

, (7)

that satisfies [P , H] = 0, with [·, ·] the commutator. Furthermore, Q ≡ 1 − P . The
Hamiltonians H(±) are given by

H(±) =
J
2

N

∑
j=1

[
ψ
(±)†
j ψ

(±)
j+1 + ψ

(±)†
j ψ

(±)†
j+1 − hψ

(±)†
j ψ

(±)
j +

h
2

]
+ h.c.. (8)

It is important to underline that the number of fermions, and hence their parity, is not
related to the number of sites N, but rather to the magnetization in the z direction.
Although H(+) and H(−) have the same form, they are not the same operator. Indeed, the
fermionic operators obey different boundary conditions. One has

ψ
(±)
N+1 = ∓ψ

(±)
1 . (9)

The origin of the different boundary conditions is the non-locality of the Wigner Jordan
transformation, that produces a different coupling between the j = 1 and the j = N sites in
the even and the odd N cases.
The different boundary conditions imply a different Fourier series for the diagonalization,
namely we define

ψ
(±)
j ≡ ei π

4
√

N
∑

q∈Γ(±)
eiqjψ̃

(±)
q , (10)

where Γ(+) ≡
{

π
N (2k + 1)

}
and Γ(−) ≡

{ 2π
N k
}

, with k = 0, ..., N − 1. We find

H(±) = −J ∑
q∈Γ(±)

[
(h− cos(q))ψ̃(±)†

q ψ̃
(±)
q +

1
2

sin(q)
(

ψ̃
(±)†
−q ψ̃

(±)†
q + ψ̃

(±)
q ψ̃

(±)
−q

)]
+

JhN
2

.

(11)
It is here crucial to notice that two values of q need to be treated with particular care: q = 0
and q = π. In those cases, no superconducting-like coupling is present and they need to be
treated separately. However, this fact only generates subtleties for q = 0. Subsequently, we
rotate the fields introducing

ψ̃
(+)
q ≡ cos

(
θq
)
χ
(+)
q + sin

(
θq
)
χ
(+)†
2π−q , (12)

ψ̃
(−)
q 6=0 ≡ cos

(
θq
)
χ
(−)
q + sin

(
θq
)
χ
(−)†
2π−q , (13)

ψ̃
(−)
0 ≡ χ

(−)
0 , (14)

with θq satisfying

tan 2θq =
sin(q)

h− cos(q)
. (15)

We thus find

H(+) = −J ∑
q∈Γ(+)

[
ε(q)

(
χ
(+)†
q χ

(+)
q − 1

2

)]
(16)

and

H(−) = −J ∑
q∈Γ(−),q 6=0

[
ε(q)

(
χ
(−)†
q χ

(−)
q − 1

2

)]
+ Jε(0)

(
χ
(−)†
0 χ

(−)
0 − 1

2

)
, (17)

with
ε(q) ≡

√
(h− cos(q))2 + sin2(q). (18)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2022                   doi:10.20944/preprints202204.0108.v1

https://doi.org/10.20944/preprints202204.0108.v1


4 of 7

Figure 1. Energy dispersion ε(q) as a function of q for h = 0 (green), h = 0.1 (orange) and h = −0.1
(blue).

Importantly, ε(q) is flat for h = 0, while it has its minimum for q = 0 ∈ Γ(−) (q = π ∈ Γ(+))
for h > 0 (h < 0). This fact is shown in Fig.1. Note that we did not have to treat separately
the q = π case since, in the parameter range we inspect, h + 1 = ε(π). This was not the
case for q = 0. Indeed, limq→0 does not converge to the energy contribution related to the

occupation of the fermion χ
(−)
0 , but rather to its opposite. Finally, it is worth to stress that

the parity of the fermions ψ is the same as the parity of the fermions χ.

3. Results

In order to demonstrate the presence of the first order quantum phase transition, we
need to study the ground state energy as a function of h and of the parity of N. To do so,
we have to address the lowest energy state of both H(+) and H(−) that is compatible with
the parity requirements and can hence contribute to the eigenstates of H. We will hence
analyze, the eight energies E(±)

g/l,e/o of the lowest energy eigenstates of H emerging from

H(+) and H(−), for even (e) and odd (o) N, and for h > 0 (g) and h < 0 (l). We now proceed
to the assessment of the eight cases.

1) For N even and h > 0, the lowest energy state of H(+) with an even number of fermions
is simply obtained by occupying all the energy levels, so

E(+)
g,e = − J

2 ∑
q∈Γ(+)

ε(q). (19)

2) For N even and h > 0, the lowest energy state of H(−) with an odd number of fermions
is the one obtained by occupying all the fermionic states, except for one. Since Γ(−) contains
q = 0, and q = 0 is the only state with positive energy, it is indeed favorable to keep it
empty. By doing so, and by noticing that the energy contribution of keeping the q = 0
empty is Jε(0), the energy becomes

E(−)
g,e = − J

2 ∑
q∈Γ(−)

ε(q). (20)

3) For N even and h < 0, the lowest energy state of H(+) with an even number of fermions
is simply obtained by occupying all the energy levels, so

E(+)
l,e = − J

2 ∑
q∈Γ(+)

ε(q). (21)

4) For N even and h < 0, the lowest energy state of H(−) with an odd number of fermions
is the one obtained by occupying all the fermionic states, except for one. Since Γ(−) contains
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q = 0, and q = 0 is the only state with positive energy, it is indeed favorable to keep it
empty. By doing so, and by noticing that the energy contribution of keeping the q = 0
empty is Jε(0), the energy becomes

E(−)
l,e = − J

2 ∑
q∈Γ(−)

ε(q). (22)

5) For N odd and h > 0, the lowest energy state of H(+) with an even number of fermions
is the one obtained by filling all the states except for the one with the smallest energy in
modulus (note that all energies are negative). For h > 0 such minimum is for q = π

N , 2π− π
N .

We hence get

E(+)
g,o = − J

2 ∑
q∈Γ(+)

ε(q) + Jε
( π

N

)
. (23)

6) For N odd and h > 0, the lowest energy state of H(−) with an even number of fermions
is the one obtained by filling all the states. We get

E(−)
g,o = − J

2 ∑
q∈Γ(−)

ε(q) + Jε(0). (24)

7) For N odd and h < 0, the lowest energy state of H(+) with an even number of fermions
is the one obtained by filling all the states except for the one with the smallest energy in
modulus (note that all energies are negative), given by q = π. We hence get

E(+)
l,o = − J

2 ∑
q∈Γ(+)

ε(q) + Jε(π). (25)

8) For N odd and h < 0, the lowest energy state of H(−) is the one obtained by leaving
both q = 0 and q = p empty, where p is the nearest to π element in Γ(−). We hence get

E(−)
l,o = − J

2 ∑
q∈Γ(−)

ε(q) + Jε(p). (26)

In the thermodynamic limit N → ∞, E(+)
g,e and E(−)

g,e are degenerate and constitute the

ground state manifold for N even and h > 0. The same holds for E(+)
l,e and E(−)

l,e for h < 0.
It is clear that the ground state energy is smooth in h = 0.
As far as the odd N is concerned, and again considering the thermodynamic limit, E(+)

l,o

and E(−)
l,o are degenerate, as well as E(+)

g,o and E(−)
g,o . However, here a peculiar effect happens:

the ground state energy is not smoothly connected between h < 0 and h > 0. Indeed we
find, and this is the central result of the present study, that

lim
N→∞

∂E(+)
g,o

∂h

∣∣∣∣
h→0+

−
∂E(+)

l,o

∂h

∣∣∣∣
h→0−

 = −2J. (27)

We have indeed found that a first order quantum phase transition appears for odd N only
in the quantum Ising chain in a transverse field.

4. Discussion and conclusion

In this work we have analytically demonstrated that a first order quantum phase
transition (a discontinuity of the derivative of the ground state energy) is present as a
function of the applied field in the case of an odd number of spins, while this is not the case
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for even N.
The crucial mathematical point is that in the odd case only, for h = 0, the degeneration of
the ground state is remarkably different from the h 6= 0 case. Indeed, while in both cases the
energy dispersion ε(q) becomes flat for h = 0, only in the odd N case that fact influences
the ground state degeneracy, due to the parity constraints posed by the projectors P and
Q appearing in the fermionic description of H. A further ingredient that is crucial for the
existence of the effect is that the minimum of ε(q) switches from q = 0 to q = π as h goes
from positive to negative.
From the physical point of view such mathematical statements translate into the following
considerations: in the even N case for every h the ground state is doubly degenerate,
gapped, antiferromagnetic and no feature appears. On the other hand, in the odd N case
the spectrum is not gapped since at least one kink must be present. Moreover, the kink
states form a metallic band. This fact is due to the fact that not all the antiferromagnetic
nearest neighbour interactions can be fulfilled. In the classical h = 0 case this reflect into
a degeneracy 2N of the ground state, since such a kink can be equivalently positioned
anywhere in the chain and a full spin flip does not change the energy. For finite h the
degeneracy is lifted by hybridization. In switching from h < 0 to h > 0 the most favorable
majority spin orientation changes, and this reorganization of the ground state, allowed by
the degeneracy at h = 0, has the first order quantum phase transition as a signature.
The implications and opportunities for further inspections that are opened by our discovery
are, in our opinion, remarkable. Indeed the finite temperature effects of the phenomenon,
the quantum quench related thermodynamics of the model, the search for even-odd crit-
icality without classical point and its physical interpretation and the quest for even-odd
thermal phase transitions are all possible follow ups of our finding in the prototypical
quantum Ising chain.
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