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Abstract: Gas chromatography-coupled mass spectrometry (GC-MS) has been used in biomedical 

research to analyze volatile, non-polar, and polar metabolites in a wide array of sample types. De-

spite advances in technology, missing values are still common in metabolomics datasets and must 

be properly handled. We evaluated the performance of ten commonly used missing value imputa-

tion methods with metabolites analyzed on an HR GC-MS instrument. By introducing missing val-

ues into the complete (i.e., data without any missing values) NIST plasma dataset we demonstrate 

that Random Forest (RF), Glmnet Ridge Regression (GRR), and Bayesian Principal Component 

Analysis (BPCA) shared the lowest Root Mean Squared Error (RMSE) in technical replicate data. 

Further examination of these three methods in data from baboon plasma and liver samples demon-

strated they all maintained high accuracy. Overall, our analysis suggests that any of the three im-

putation methods can be applied effectively to untargeted metabolomics datasets with high accu-

racy. However, it is important to note that imputation will alter the correlation structure of the da-

taset, and bias downstream regression coefficients and p-values.  
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1. Introduction 

Metabolomics describes the systematic identification and quantification of a wide 

range of small molecules (<1500 Da) in biological samples (cells, tissues, and biological 

fluids, etc.). Although the metabolomics field is relatively new compared to other omics 

fields such as genomics and proteomics, it has seen steady growth in recent years. This is 

due, at least in part, to the rapid development and implementation of new technology 

platforms in mass spectrometry (MS) [1], in addition to nuclear magnetic resonance 

(NMR) spectroscopy [2]. Generally, metabolomics studies utilize targeted and untar-

geted analyses as the two main approaches. Untargeted studies tend to focus on global 

identification and quantification of as many metabolites as possible, while targeted ap-

proaches aim to characterize and quantify a select set of known metabolites with higher 

accuracy and sensitivity [1].  

One of the technologies used in metabolomics is gas chromatography-coupled mass 

spectrometry (GC-MS) which is capable of analyzing volatile, non-polar, and polar me-

tabolites, often with the intent to uncover novel biomarkers that can advance our under-

standing of biological processes and molecular mechanisms in health and disease [3, 4]. 
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With the large number of metabolites captured, and the wide dynamic range of intracel-

lular metabolite concentrations, missing values are not uncommon in metabolomics da-

tasets. However, in order to perform statistical analysis or combine such data with other 

omics datasets without simply removing all of the missing data points (which can lead 

to bias or reduce the number of metabolites to a small handful), the issue of missing val-

ues needs to be addressed [5]. Missing values in metabolomics can occur for both biolog-

ical and technical reasons [6-8]. The three main types of missing values are a) missing 

not at random (MNAR), b) missing at random (MAR), and c) missing completely at ran-

dom (MCAR). Random missingness related to data acquisition processes such as incom-

plete derivatization or incomplete ionization of analytes is defined as MCAR. Unlike 

MCAR, MAR values are dependent on other observed variables [9]. An example of this 

is the interference of high concentrations of one metabolite causing other metabolites of 

lower concentration to go undetected. The missing values of metabolites with low con-

centrations below the analytical platform’s limit of detection are categorized as MNAR 

[1, 10]. It is challenging to determine the underlying mechanism(s) of missingness that 

exist in a dataset as there is not yet a rigorous, straightforward method to diagnose and 

distinguish these mechanisms [11], and there is no accepted approach to correct the anal-

ysis of data once the causal mechanism has been defined. Advancements in analytical 

platforms and improvements in bioinformatics tools have provided partial solutions to 

reducing missing values in metabolomics data [12]. Several imputation algorithms have 

been established that can handle missing values in metabolomics data, but there is no 

consensus on which imputation method performs best on GC-MS-derived metabolomics 

data. In the past, imputation methods including Random Forest (RF), k-Nearest Neigh-

bors (kNN), Local Least Squares (LLS), Half Minimum, Average, Singular Value Decom-

position (SVD), Glmnet Ridge Regression (GRR), Zero, and Bayesian Principal Compo-

nent Analysis (BPCA) have been applied to impute missing metabolomics data [9, 11]. 

However, so far only a few studies have compared the performance and assessed the 

accuracy of these imputation methods on GC-MS metabolomics data Missing values 

may either mask, or be directly related to a biological response, and it is important to 

evaluate the accuracy of missing data imputation and the impact of the imputed values 

on downstream statistical correlation and association analyses. 

In this study, we evaluated the performance of multiple imputation strategies for 

untargeted high resolution (HR) GC-MS-based metabolomics datasets (Figure 1a). This 

was initially completed by using technical replicates of the National Institute of Stand-

ards and Technology (NIST) Standard Reference Material (SRM) 1950 human plasma 

metabolomics data generated by an HR GC-MS. With the complete NIST plasma dataset, 

we introduced missingness with four missing mechanisms (MCAR, MAR, MNAR, and a 

combination of all three: MCAR-MAR-MNAR) at various proportions of missingness (2-

70%) and subsequently evaluated the accuracy of 10 imputation methods. For the most 

accurate imputation methods, we then re-evaluated the imputation accuracy and bias in 

correlation and downstream statistical analyses in two different datasets (GC-MS metab-

olomics data from plasma and liver) collected from non-human primates (NHP).  
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Figure 1a. Metabolomics Imputation Study Workflow. Diagram detailing metabo-

lomics sample analysis, evaluation of imputation methods in technical replicate dataset 

(NIST plasma) and further validation in real baboon plasma and liver metabolomics da-

tasets. 

2. Results 

2.1. Missing values simulation and imputation evaluation using HR GC-MS metabolomics data 

for replicates of NIST plasma 

In order to systematically evaluate and assess performance of various imputation meth-

ods using metabolomics data acquired with an HR Orbitrap GC-MS, ten common impu-

tation methods (RF, GRR, BPCA, Mean, LLS, SVD, QR, kNN, HM, and Zero) were ini-

tially evaluated for accuracy in the complete NIST plasma dataset with four different 

missing mechanisms (i.e., MCAR, MAR, MNAR and MCAR-MAR-MNAR). Evaluation 

of imputation accuracy with RMSE revealed four methods (RF, GRR, BPCA, and Mean) 

with comparably low RMSEs (Figure 1). The RMSEs of these methods showed similar 

patterns across all 4 missing value types (Figures S1-S4). Further, to evaluate imputation 

methods on the full NIST plasma dataset (i.e., the entire dataset, including the real miss-

ing values), we imputed with Mean, BPCA, GRR and RF and assessed imputation per-

formance on these technical replicate samples based on correlation and Cronbach’s al-

pha. Here, we would expect the mean sample-to-sample correlation to be as close to 1 as 

possible. The Cronbach’s alpha is a measure of internal consistency that is highly related 

to the overall correlation structure. After imputation, RF, GRR, and BPCA all produced 

the highest mean sample-to-sample correlations and Cronbach’s alphas. The mean sam-

ple-to-sample correlations are listed along with the respective Cronbach’s alpha in pa-

renthesis for each method: RF 0.70 (0.986), GRR 0.70 (0.986), BPCA 0.70 (0.988), Mean 

0.67 (0.985). 
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Figure 1. Initial evaluations of imputation accuracy in the complete NIST plasma for a 

mixture of missingness types (MCAR-MAR-MNAR). Methods are listed across the x-

axis and RMSE is shown on the y-axis. The center line represents the median. The lower 

and upper box limits represent the 25% and 75% quantiles, respectively. The whiskers 

extend to the largest observation within the box limit ±1.5 × interquartile range. The 

number of observations for each method is 22,070. 

 

2.2. Evaluation of RF, GRR and BPCA imputation methods on NHP plasma 

The three most accurate imputation methods (RF, GRR, and BPCA) were subsequently 

used for imputation of metabolomics data from baboon plasma samples. Using a mix-

ture of all three missingness types (MCAR-MAR-MNAR), we evaluated imputation ac-

curacy based on RMSE at various ranges of missingness and different coefficients of var-

iance (CV) in the complete metabolomics dataset obtained for baboon plasma samples. 

We found significant increases in accuracy when imputing with GRR over the other two 

methods for CVs above 0.2 (Figure 2). To assess the correlation between RMSE and CV, 

we also performed a simple linear regression analysis with imputation method adjusted 

as covariant and revealed a significant association between CV and RMSE (estimate = 

1.48, p = 3.9x10-13). Similarly, metabolite missingness demonstrated a significant positive 

association with RMSE (estimate = 0.44, 4.2x10-15).  
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Figure 2. Evaluations of imputation accuracy in the complete baboon plasma. Accuracy 

is evaluated for a mixture of missingness types (MCAR-MAR-MNAR). Methods are 

listed across the x-axis and RMSE is shown on the y-axis. The top row compares accu-

racy across a range of missingness types. The bottom row compares accuracy across a 

range of coefficients of variance. The center line represents the median. The lower and 

upper box limits represent the 25% and 75% quantiles, respectively. The whiskers extend 

to the largest observation within the box limit ±1.5 × interquartile range. 

 

In most scenarios, BPCA was generally the least accurate method. The evaluation of 

Cronbach’s alpha to assess the differences between the imputed and real baboon plasma 

metabolomics data revealed that BPCA increased the correlations among the imputed 

results. Meanwhile the GRR and Random Forest imputations decreased the correlations 

below truth. No significant differences were noted between Random Forest and GRR 

(Figure 3). To test for biases in downstream statistical analysis, we estimated the differ-

ences between the regression coefficients of the imputed metabolites and the regression 

coefficients of the complete, original metabolite data. Regression analysis for this study 

was computed as a function of age, where age was the predictor and the metabolite 

abundance was the outcome. Pairwise Wilcoxon comparisons of the differences between 

the true and imputed regression estimates for each method revealed statistically signifi-

cant differences when applying the Random Forest imputation method (Figure 3).  
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Figure 3. Evaluations of Cronbach’s alpha. Methods are listed across the x-axis and the 

difference between the Cronbach’s alphas computed on the complete data and the im-

puted data is shown on the y-axis. The top row demonstrates differences in Cronbach’s 

alpha evaluated in the baboon plasma samples for 10% and 20% of overall missingness. 

The bottom row shows the differences in Cronbach’s alpha evaluated in the baboon liver 

samples for 10% and 20% overall missingness. The center line represents the median. 

The lower and upper box limits represent the 25% and 75% quantiles, respectively. The 

whiskers extend to the largest observation within the box limit ±1.5 × interquartile range. 

The p-values are based on pairwise testing with the Wilcoxon Rank Sum test. 

 

When using a one-sample t-test to test for departure from zero in the differences be-

tween the true and imputed regression estimates, all methods showed small but signifi-

cant downward biases (Figure 4). We observed similar patterns for each of the methods 

across all different types and proportions of missingness (data not shown). These results 

indicate that, on average, imputation is decreasing the magnitude of effect sizes. This is 

to be expected because when a relation between a variable exists and then missingness is 

introduced, the imputation will generally fail to recapture the full strength of that rela-

tionship. This will be particularly true for imputation in such high-dimensional sample 

space where many variables influence the imputation of a particular value. Using a one-

sample t-test to test for departure from zero in the differences between the true and im-

puted p-values, all of the methods showed a significant downward bias (FDR p = 0.02, 

0.02, 0.004 for GRR, BPCA, RF, respectively). GRR demonstrated the smallest shift in 

these p-value differences, but all of the methods had mean differences that were slightly 

below zero. Again, this indicates that, on average, the p-values after imputation are 

larger (less significant) than they were prior to introducing missing values. It is worth 

noting, however, that while these general trends occur, there are still frequent occasions 

where the p-values were much smaller after imputation for individual metabolites.  
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Figure 4. Evaluations of regression coefficient and regression p-value accuracy. Methods 

are listed across the x-axis. The differences between the regression coefficients (or p-val-

ues) computed on the complete data and the imputed data are shown on the y-axis. The 

top row demonstrates differences in regression coefficients evaluated in the baboon 

plasma samples for metabolites with <10%, 10-20%, and 20-30% missingness. The top 

row demonstrates differences in regression p-values evaluated in the baboon plasma 

samples for metabolites with <10%, 10-20%, and 20-30% missingness. The center line 

represents the median. The lower and upper box limits represent the 25% and 75% quan-

tiles, respectively. The whiskers extend to the largest observation within the box limit 

±1.5 × interquartile range. The p-values are based on pairwise testing with the Wilcoxon 

Rank Sum test.  

 

2.3. Evaluation of RF, GRR and BPCA imputation methods using metabolomics data from ba-

boon liver biopsy samples 

Having evaluated these three imputation methods in baboon plasma metabolomics data, 

we then performed a similar analysis on metabolites extracted from liver tissue samples 

to assess if the same patterns hold when using a different dataset such as tissue-derived 

metabolites. The imputation accuracy evaluated at various missingness thresholds and 

CVs in the complete baboon liver samples revealed that as both the CVs and the propor-

tions of metabolite missingness increase, GRR and RF appear to be the most accurate 

methods (Figure 5). A simple linear regression analysis between RMSE and CV revealed 
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a significant positive correlation between CV and RMSE that holds across all three meth-

ods (estimate = 1.42, p = 9x10-8). Similarly, metabolite missingness demonstrates a signifi-

cant positive association with RMSE (estimate = 0.42, 2.7x10-12).  

 

 

Figure 5. Evaluations of imputation accuracy in the complete baboon liver. Accuracy is 

evaluated for a mixture of missingness types (MCAR-MAR-MNAR). Methods are listed 

across the x-axis and RMSE is shown on the y-axis. The top row compares accuracy 

across a range of missingness types. The bottom row compares accuracy across a range 

of coefficients of variance. The center line represents the median. The lower and upper 

box limits represent the 25% and 75% quantiles, respectively. The whiskers extend to the 

largest observation within the box limit ±1.5 × interquartile range. 

 

The differences in accuracy between the three methods are marginal, but significant in 

some cases. Consistent with the baboon plasma metabolomics dataset, the differences 

between the Cronbach’s alpha computed on the complete dataset and the imputed liver 

dataset revealed that BPCA increased the correlation above truth while GRR and Ran-

dom Forest decreased the correlation below truth. No significant differences were noted 

between Random Forest and GRR (Figure 6). Pairwise Wilcoxon comparisons revealed 

no statistically significant differences between methods in their differences between the 

true and imputed regression estimates. A one-sample t-test to test for departure from 

zero in the differences between the true and imputed regression estimates showed a 

small but significant downward bias in the liver dataset similar to that reported for the 

plasma dataset (Figure 6). This was true for each of the methods across all of the differ-

ent types and proportions of missingness (data not shown). In terms of computing the 

true and imputed p-values differences using a one-sample t-test to test for departure 

from zero, we reported that only the BPCA method showed a significant downward bias 

(FDR p = 0.11, 7.3x10-09, 0.96 for GRR, BPCA, RF, respectively). Random Forest demon-

strated the smallest shift in these p-value differences, but all of the methods had mean 

differences that were slightly below zero (Figure 6).  
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Figure 6. Evaluations of regression coefficient and regression p-value accuracy. Methods 

are listed across the x-axis. The differences between the regression coefficients (or p-val-

ues) computed on the complete data and the imputed data are shown on the y-axis. The 

top row demonstrates differences in regression coefficients evaluated in the baboon liver 

samples for metabolites with <10%, 10-20%, and 20-30% missingness. The top row 

demonstrates differences in regression p-values evaluated in the baboon liver samples 

for metabolites with <10%, 10-20%, and 20-30% missingness. The center line represents 

the median. The lower and upper box limits represent the 25% and 75% quantiles, re-

spectively. The whiskers extend to the largest observation within the box limit ±1.5 × in-

terquartile range. The p-values are based on pairwise testing with the Wilcoxon Rank 

Sum test.  

  

2.4. In-depth evaluation of RF imputation accuracy at wide range of missingness using the entire 

baboon liver HR GC-MS metabolomics dataset 

We further examined RF imputation on the full dataset with a wider range of missing-

ness to assess the limits of meaningful imputation of missing data. The goal of these 

analyses was to observe the behavior of RF imputation on data where the global data 

structure is as close to reality as possible. To minimize altering the global data structure, 

we iteratively inserted only a single missing value into the existing data for a particular 

metabolite where there was previously a real value. The full data were then imputed, 

but only the difference between the original value and the imputed value at that one 

data point was recorded along with the information about the metabolite in which the 

missing data point was introduced (e.g., CV, proportion of already missing values, etc.). 

These analyses were intended to determine the proportion of missing values in metabo-

lomics data where imputation begins to introduce strong biases or becomes unreasona-

bly inaccurate. The majority of the percentage bias (PB) values were below 5%. How-

ever, there was an increase in percentage bias (i.e., decreased accuracy) in metabolites 

with more than 45% missing data (Figure 7). The evaluation of Cronbach’s alpha 

showed that at a low proportion of overall missingness, there were small but significant 

increases in the mean correlations between metabolites when imputing with Random 
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Forest. However, as missingness increased, this pattern diminished and then actually 

reversed where the correlations between metabolites decreased when imputing with 

Random Forest. We also observed a mean downward bias in the regression coefficients 

which grew larger as the amount of missingness increased. In addition, we observed 

that with more missingness, the standard deviation of the differences between the re-

gression coefficients from imputed data and the real values also increased. Finally, there 

was a slight mean upward bias in the p-values which grew larger as the amount of over-

all missingness increased (Figure 7). 

 

 

Figure 7. – In-depth evaluation on RF imputation. Percent Bias (accuracy of imputation 

on raw data), is shown in the upper left for metabolites in bins of percent missingness 

between 2-51%. Differences in Cronbach’s alpha are shown in the upper left for a variety 

of proportions of overall missingness between 10-70%. The differences in regression co-

efficients are shown in the bottom left for a variety of proportions of overall missingness 

between 10-60%. The respective differences in p-values are shown in the bottom right. 

The center line represents the median. The lower and upper box limits represent the 25% 

and 75% quantiles, respectively. The whiskers extend to the largest observation within 

the box limit ±1.5 × interquartile range. 

3. Discussion 

The metabolomics field continues to advance, primarily due to technological platform 

improvements and advances in data analysis, but the issue of missing values in metabo-

lomics datasets still remains a challenge [1]. Simply removing missing values or imput-

ing missing values with sub-optimal methods can have dire consequences on down-

stream statistical analysis [18, 19]. In the past, several studies have evaluated the perfor-

mance of imputation methods particularly using LCMS data [11]. Generally, evaluation 

of different imputation methods for missing data in metabolomics datasets have been 

based on simulated dataset or limited biological or clinical study data [1, 20, 21]. We per-

formed a systematic evaluation of imputation accuracy and bias based first on technical 

replicate data from a standard sample, and then we further assessed the performance of 

the top three imputation methods which are commonly cited in the literature, on baboon 
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plasma and liver tissue metabolomics data. We utilized metabolomics datasets acquired 

by a HR Q-Exactive GC-Orbitrap MS, which to the best of our knowledge, is the first 

time such a thorough imputation analysis using this newest metabolomics platform has 

been performed.  

Ten imputation methods were initially evaluated for accuracy in the complete NIST 

plasma dataset where we introduced four different types of missing values ((MCAR, 

MAR, MNAR, and a combination of all three: MCAR-MAR-MNAR). Because the NIST 

plasma sample dataset included technical replicates, the correlation across samples 

should be very high. Therefore, we made the assumption that imputation methods that 

increased mean sample-to-sample correlation would be the most optimal. In the NIST 

plasma GC-MS dataset, we observed that GRR, RF, and BPCA were all highly accurate 

and all improved the sample-to-sample correlation between technical replicates the 

most. These patterns held for all types of missing data regardless of the assumed mecha-

nism that causes them. We further evaluated these methods for accuracy and bias in the 

plasma and liver samples of healthy adult baboons. We pursued these analyses in this 

order to specifically examine how imputation methods perform as one moves from an 

“ideal” metabolomics dataset to more realistic plasma samples from NHP and then even 

into potentially less consistent metabolomics samples extracted from tissue. 

The analysis of the adult baboon plasma and liver tissue metabolomics datasets empha-

sized that there does not appear to be a single, superior imputation method. However, 

among the three most highly accurate methods observed here, GRR and RF showed im-

proved performance relative to BPCA for some of the assessments. It is worth noting, 

though, that the differences between these methods are very minor, and these differ-

ences may change depending on the dataset that is being imputed, as we observe to a 

small degree here. In both plasma and liver metabolomics datasets, there was a signifi-

cant downward or upward bias as demonstrated by Cronbach’s alpha, percent bias, p-

value and regression estimates in all three methods. This means that no matter what im-

putation method (unless one is applying Multiple Imputation) is applied in metabolom-

ics data, it will alter the correlation structure, regression coefficients, and p-values. As 

we have demonstrated in our current study, more often than not, imputation will shrink 

regression coefficients, and it is important to note that, in general, such biases grow even 

stronger with increased proportions of metabolite missingness. For this reason, we sug-

gest that imputation should always be applied with caution when making statistical in-

ference in downstream analyses and interpretations.  

While none of the top three methods in this study show better overall performance than 

any of the others, we would like to note that Random Forest imputation provides a ro-

bust approach to impute missing data from HR GC-MS untargeted metabolomics da-

tasets. Random Forest imputation has also been highlighted in a previous LC-MS study 

where it was suggested as the best method for imputing missing data in metabolomics 

[11]. Primarily, the RF method benefits from being a non-parametric technique that does 

not make distributional assumptions about the data [22]. This is important in metabo-

lomics data, where the distributions for individual metabolites are not easily categorized 

and are likely variable. We note that beyond 40% of metabolite missingness, we do not 

recommend Random Forest imputation (or any imputation), as imputation will lose ac-

curacy and introduce stronger and more significant biases into data thereby affecting 

downstream statistical analyses and interpretation of results. When regressing RMSE on 

either CV or metabolite missingness, we identified strong positive associations. As ex-

pected, these results imply that imputation accuracy deteriorates as both metabolite 

missingness and CVs increase. Although it is already common practice to filter out such 

metabolites, we re-emphasize that computing analysis with metabolites that have higher 

CVs and proportions of missingness should be done with caution. Metabolites with 

large proportions of missingness should not be considered for statistical analysis, except 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2022                   doi:10.20944/preprints202204.0106.v1

https://doi.org/10.20944/preprints202204.0106.v1


 

 

in the case where one is interested in testing differential rates of missingness between 

groups (i.e., testing if a particular metabolite is missing more frequently from one group 

because of a potential biological phenomenon).  

This study systematically investigates multiple possible underlying mechanisms leading 

to missing data in metabolomics experiments, and uses both technical replicates of a ref-

erence sample and sets of real biological samples to determine the best imputation meth-

ods for GC-MS-based metabolomics studies. Despite this comprehensive approach, there 

are still limitations, some of which will need to be addressed in future imputation stud-

ies. The current study was limited to only untargeted HR GC-MS metabolomics analysis. 

It is important for future studies to extend this to targeted HR GC-MS and other metabo-

lomics studies, although it is important to note that the RF imputation approach has also 

been recommended for imputation of LC-MS data [11]. We would also like to emphasize 

that all methods examined in this study were Single Imputation-based methods. We rec-

ognize the many benefits of Multiple Imputation to provide unbiased results in down-

stream statistical analyses [23-25]. However, applying Multiple Imputation in a high-

dimensional setting is complex and exceeds the scope of this manuscript. It is also likely 

to be a computationally challenging approach to implement for most metabolomics re-

searchers, therefore we restricted our analysis to methods widely available to scientists 

in the field.  

Unfortunately, for most metabolomics datasets, it is impossible to know what type of 

missingness and how much of each type of missingness exists in the data. For example, 

if the vast majority of the missing values in the data are only MNAR because the metab-

olites that are missing are missing simply due to low abundance, then our results here 

will be biased. This is particularly true because we started with the complete data 

(where there were no missing values), and then added missingness from there. Even 

though we introduced missingness in a way that would be consistent with MNAR (see 

Methods), we were imputing back to and comparing against highly abundant values 

that were really there in the first place, not metabolites that were actually low abun-

dance metabolites. It is worth noting, though, that the NIST plasma dataset contained 

missing values in metabolites that are actually highly abundant in some technical repli-

cates and missing in other samples that should be identical. This indicates that missing-

ness is not due only to low abundance, but can occur for other reasons, too. Lastly, we 

note that imputation is always a guess (no matter how informed it may be) and it must 

be applied carefully. Any discoveries made by way of imputation should always be vali-

dated.  

4. Materials and Methods 

4.1. Chemicals and reagents 

All solvents for GC–HR Orbitrap MS analysis (HPLC-grade acetonitrile, isopropanol, 

and pyridine, methanol) were purchased from Sigma-Aldrich, St. Louis, MO, USA. Con-

sumables such as syringe, liners, septa and filament were purchased from Thermo Scien-

tific (Madison, WI, USA). GC amber vials, caps, tubes with inserts were purchased from 

Microsolv Technology Corporation (Greater Wilmington, NC, USA) 

4.2 Animal husbandry, protocol and ethical clearance 

All animal procedures were reviewed and approved by the Texas Biomedical Research 

Institute’s Institutional Animal Care and Use Committee (IACUC protocol number 1675 

PC, September 30, 2018 ) Southwest National Primate Research Center (SNPRC) facilities 

at the Texas Biomedical Research Institute and the animal use programs, accredited by 

Association for Assessment and Accreditation of Laboratory Animal Care International 
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(AAALAC) which operates according to the National Institutes of Health (NIH) and U.S. 

Department of Agriculture guidelines, and are directed by doctors of veterinary medi-

cine. All animal care decisions were made by the SNPRC veterinarians. All animals were 

housed in group cages allowing them to live in their normal social groups with ad libi-

tum access to food and water. Enrichments including toys, food treats, and music were 

provided on a daily basis by the SNPRC veterinary and behavioral staff in accordance 

with AAALAC, NIH, and U.S. Department of Agriculture guidelines.  

For this imputation study, we used three independent metabolomics datasets that were 

generated using an HR-GC-Orbitrap-MS: the NIST SRM 1950 human plasma purchased 

from Sigma-Aldrich (St. Louis, MO, USA), and data obtained from NHP (baboon) 

plasma and liver samples while animals were fed a normal chow diet.  

4.3. Sample processing 

Metabolite extraction from NIST plasma, and baboon plasma and liver was adapted 

from a previously described protocol [13]. In brief, aliquots (15 μL) of plasma or liver 

samples were subjected to sequential solvent extraction, once each with 1 mL of acetoni-

trile: isopropanol: water (3:3:2) and 500 μL of acetonitrile: water (1:1) mixtures at 4°C 

[14]. An internal standard, adonitol (2 μL from 10 mg/ml stock) was added to each ali-

quot prior to the extraction. The extracts were dried under vacuum at 4°C prior to chem-

ical derivatization (silylation reactions). Blank tubes without samples, were treated simi-

larly as sample tubes and added to account for background noise and other sources of 

contamination. Samples and blanks were sequentially derivatized with methoxyamine 

hydrochloride (MeOX) and 1% TMCS in N-methyl-N-trimethylsilyl-trifluoroacetamide 

(MSTFA) or 1% TMCS containing N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide 

(MTBSTFA) as described elsewhere [15]. Briefly, the steps involved addition of 20 μL of 

MeOX (20 mg mL-1) in pyridine incubated at 55°C for 60 min followed by trimethylsi-

lylation at 60°C for 60 min after adding 80 μL MTBSTFA. 

4.4. GC-HR Orbitrap MS data acquisition and pre-processing 

Metabolites were analyzed by high-resolution/accurate (HRAM) Orbitrap mass spec-

trometry (Q-Orbitrap MS, Thermo Fisher) coupled to gas chromatography (GC). In all 

cases, 1 μL of derivatized sample was injected into the TRACE 1310 Gas chromatog-

raphy (Thermo Scientific, Austin, TX) in a splitless (SSL) mode at 220 °C. Carrier gas was 

helium carrier set at a flow rate of 1 mL/min for separation on a Thermo Scientific Trace 

GOLD TG-5SIL-MS 30 m length × 0.25 mm i.d. × 0.25 μm film thickness column with 

initial oven temperature of 50°C for 0.5 min, followed by an initial gradient of 20 °C/min 

ramp rate. The final temperature was 300 °C and held for 10 min. Eluting peaks were 

transferred through an auxiliary transfer line temperature of 230 °C into a Q Exactive-

GC mass spectrometer (Thermo Scientific, Bremen, Germany). The total run time was 25 

min. Data were acquired in electron ionization (EI) mode at 70 eV energy, emission cur-

rent of 50 μA with an ion source temperature of 250 °C. A filament delay of 5.7 min was 

selected to prevent excess reagents from being ionized. High resolution EI spectra were 

acquired using 60 000 resolution (fwhm at m/z 200) with a mass range of m/z 50–650. 

The transfer line was set to 230 °C and the ion source was set to 250 °C. Data acquisition 

and instrument control were carried out using Xcalibur 4.3 and TraceFinder 4.1 soft-

wares (Thermo Scientific). The capillary voltage was 3500V with a scan rate of 1 scan/s. 

Finally, raw data (.raw files) obtained from data acquired by GCMS were converted to 

.mzML formats using ProteoWizard’s msConvert  tool prior to data preprocessing us-

ing open source software, MS-DIAL 4.6 (Agilent Technologies). The MS-DIAL 4.6 was 

used for raw peaks extraction and the data baseline filtering and calibration of the base-

line, peak alignment, deconvolution analysis, peak annotation and integration of the 

peak height essentially followed as described [16]. Key parameters used include peak 
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width of 20 scan and minimum peak height of 10 000 amplitudes was applied for peak 

detection, and sigma window value of 0.5, EI spectra cutoff of 50 000 amplitudes was 

implemented for deconvolution. For annotation setting, the retention time tolerance was 

0.5 min, the m/z tolerance was 0.5 Da, the EI similarity cutoff was 60%, and the annota-

tion score cutoff was 60%. In the alignment parameters setting process, the retention 

time tolerance was 0.5 min, and retention time factor was 0.5. The full data prepro-

cessing parameters are found in supplementary table 1. Spectral library matching for 

metabolite identification was performed using an in-house and public library consisting 

of pool EI spectra from MassBank, GNPS, RIKEN, MoNA. All data were normalized by 

QC-based LOESS normalization followed by log10-transformation.  

The NIST plasma metabolomics dataset consisted of 150 replicate samples which were 

acquired in 12 different batches using an untargeted EI-GC-MS approach. The 12 

batched datasets were pooled, aligned, and processed using open source software MS-

DIAL (v4.6) [17]. A complete dataset of identified and quantified metabolites, containing 

only metabolites with no missing values, was created from the full dataset. The complete 

dataset was used to evaluate the accuracy of each of the imputation methods. The full 

dataset with missing values in some metabolites was used to assess which imputation 

method improved sample-to-sample correlation between technical replicates the most.  

The second dataset was generated from metabolic profiling of 45 baboon plasma sam-

ples collected from 35 females in the age range of 6-23 years and 10 males in the same 

age range. All 45 plasma samples were analyzed using an untargeted EI-GC-MS ap-

proach as described above.  

The third dataset consists of another EI-GC-MS analysis of metabolites extracted from 47 

liver biopsy samples collected from the same adult healthy baboons as the plasma which 

included 39 females and 8 males in the age range of 6-23 years. The metabolite extraction 

and data processing followed as previously described above. 

4.5. Generation of missing values  

For the initial evaluations of imputation accuracy and performance, only the complete 

NIST plasma data (i.e., metabolites with no missingness) were used. This dataset in-

cluded complete information on 150 replicate samples with no missing data for 60 me-

tabolites. Individual missing data were subsequently introduced to the complete data at 

varying rates and modeling four different mechanisms – missing completely at random 

(MCAR), missing at random (MAR), missing not at random (MNAR), and mixture of all 

three (MCAR-MAR-MNAR). Methods for simulating missingness have been previously 

described [11]. MAR values were introduced by sorting the abundance values of two 

metabolites using only one of the metabolite’s values. For the other metabolite not used 

to do the sorting, values were removed if the matched values (values shared across sam-

ples) in the metabolite used for sorting were above a cut point sampled from a chi-

squared distribution. This is done to simulate a situation where high abundance in one 

metabolite leads to missingness in another metabolite. MNAR values were introduced 

by sampling a threshold from a chi-squared distribution and removing all values within 

the same metabolite below that threshold. For the mixture of all three missingness mech-

anisms, each missing type was sequentially added to the data at equal proportions until 

the desired rate of missingness was achieved. The mixture of all three missingness 

mechanisms (MCAR-MAR-MNAR) was considered most heavily of all the simulations 

because all three types of missingness are likely present in most HR GC-MS data with all 

influencing the imputation procedures.  

4.6. Evaluation of imputation methods 
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Ten imputation methods were evaluated for accuracy in the complete NIST plasma da-

taset. Percent bias (i.e., the percent difference between the imputed value and truth, i.e., 

the original value in the dataset) and RMSE were observed for each method, for each 

type of missingness, at different coefficients of variance, and for varying degrees of me-

tabolite missingness or global missingness. We also examined the correlation structure 

after imputation in the full dataset of NIST plasma samples. Because the NIST plasma 

samples were technical replicates, it is expected that the correlation across each sample 

should be very high. Therefore, we made the assumption that imputation methods that 

increased the mean sample-to-sample correlation the most are better.  

We selected three highly accurate methods (GRR, BPCA, and Random Forest) for further 

evaluation for accuracy and bias in the plasma and liver biopsy samples of healthy, ag-

ing baboons. Percent Bias and RMSE were computed on each of the three datasets. Data 

were reduced to only metabolites with no missing data present (i.e., the complete data), 

before missing data were purposefully introduced. The data were then imputed with 

each of the methods of interest and the differences between the imputed result and the 

true data were used to compute Percent Bias and the RMSE as commonly computed 

when evaluating imputation methods.  

For the comparison of regression coefficients, we first introduced missing values into the 

complete dataset and then the data were merged with the available age information for 

each sample and, subsequently, the missing values were imputed. A simple regression 

analysis was computed between age and each metabolite’s abundance, treating the im-

puted values as truth. The differences between the regression coefficients and p-values 

from models using the complete dataset and regression coefficients from the models us-

ing the imputed data were recorded for each iteration of missingness that was intro-

duced into the complete dataset. This was computed for global missingness rates of 10% 

and 20% and each of the four missingness types. For each method, we computed pair-

wise Wilcoxon Rank Sum tests to compare each of the methods and a one sample t-test 

on the differences between the imputed and true regression coefficients and p-values to 

test for departure from zero. 

We also compared the Cronbach’s alpha (a measure of internal consistency) between the 

imputed results and truth. The Cronbach’s alpha was computed with the complete da-

taset and then missing values were introduced and imputation completed. Cronbach’s 

alpha was again computed on the imputed results and compared with the true 

Cronbach’s alpha. The difference between the two measures was recorded and the pro-

cess was repeated iteratively for global missingness rates of either 10% or 20% and each 

of the four missingness types. For each method, we computed pairwise Wilcoxon Rank 

Sum tests to compare each of the methods and a one sample t-test on the differences be-

tween the imputed and true Cronbach’s alphas to test for departure from zero.  

A more in-depth evaluation of accuracy and bias was carried out for the Random Forest 

method in the liver samples to determine the amount of missingness at which the 

method’s accuracy starts to deteriorate and where it begins to introduce biases, such as 

increased or decreased correlations. For this evaluation of accuracy, we attempted to 

maintain data structure as close to reality as possible. We used the full dataset after re-

moving metabolites with >75% missing data and randomly selecting only a single non-

missing data point at a time, setting it to missing, and then imputing it along with all of 

the other already present missing values. This was done iteratively for 10,000 of the pos-

sible 15,620 non-missing values present in the data. For each iteration, the true value was 

recorded along with the imputed value as well as the percentage of missing data in the 

metabolite being imputed. These data were analyzed to determine if there was a clear 

drop off in the accuracy of imputation as the proportion of missing values increases for a 

specific metabolite. In addition to these evaluations, we also computed Cronbach’s alpha 
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and regression coefficients for the Random Forest method. These were computed in an 

identical fashion to how they were computed for all methods, just across wider ranges of 

overall missingness rates (10% - 70%). 

5. Conclusions 

Our study demonstrates that three imputation methods (RF, GRR and BPCA) can be 

applied with high accuracy to untargeted HR GC-MS-derived metabolomics datasets. 

While the imputation of missing data was highly accurate, imputation altered the data 

correlation structure and biased both downstream regression coefficients and p-values. 

These biases grow stronger with increasing proportions of metabolite data missingness. 

Therefore, we suggest that imputation should only be applied when necessary and 

should always be applied with caution when making statistical inference downstream.  

Supplementary Materials: Metabolite statistics across QC pool injections for NIST plasma, baboon 

plasma and liver, and data preprocessing parameters can be found in supplementary Table S1. 
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