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0. Introduction 10

Under consideration is the parabolic equation

Mu = ut + Lu = f (t, x), (t, x) ∈ Q = (0, T)× G, T ≤ ∞, (1)

where Lu = −∆u + ∑n
i=1 ai(x)uxi + a0(x)u, G is a domain in Rn with boundary Γ ∈ C2,

and n = 2, 3. The equation (1) is furnished with the initial-boundary conditions

Bu|S = g(t, x) (S = (0, T)× Γ), u|t=0 = u0(x), (2)

where Bu = ∂u
∂ν + σ(x)u, with ν the outward unit normal to Γ, and, respectively, with the

overdetermination conditions

u(t, bi) = ψi(t) (i = 1, 2, . . . , r), (3)

where {bi}r
i=1 is a collection of points lying in G. The problem is to find a solution to the 11

equation (1) satisfying (2)-(3) and an unknown function g(t, x) = ∑r
j=1 αi(t)Φi(x), where 12

the functions Φi(x) are given and αi are unknowns. 13

Inverse problems of recovering the boundary regimes are classical. The arise in many 14

different problems of mathematical physics, in particular, in the heat and mass transfer 15

theory, diffusion, filtration (see [1], [2]), and ecology [3]-[7]. 16

A particular attention is payed to numerical solving the problems (1)-(3) and close to 17

them. Most of the methods are based on reducing the problems to optimal control problems 18

and minimization of the corresponding quadratic functionals (see, for instance, [8–14]). But 19

the problem is that these functionals can have several local minima (see Sect. 3.3 in [15]). 20

First, we describe some articles, where pointwise measurements are employed as additional 21
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data. Numerical determination of constant fluxes in the case of n = 2 is described in [9]. 22

Similar results are presented in [16] for n = 1. The three-dimensional problem of recovering 23

constant fluxes of green house gases is discussed in [3]. But numerical results are presented 24

only in the one-dimensional case. In [4] (see also [5]) the method of recovering a constant 25

surface flux relying on the approach developed in [17] is described, where special solutions 26

to the adjoint problem are employed (see also [6,7]). The surface fluxes depending on t are 27

recovered in [12,18–20] in the case of n = 1, and in [11,21,22] in the case of n > 1. The flux 28

depending on time and spatial variables is reconstructed in [14,23]. 29

It is sometimes the case when additional Diriclet data are given on a part of the 30

boundary and the flux is reconstructed with the use of this data on another part of the 31

boundary (see [24]). The article [13] is devoted to recovering of the flux h(t, x) f (x) (the 32

function f (x) is unknown) with the use of final or integral overdetermination data. The 33

existence and uniqueness theorems for solutions to the inverse problems of recovering the 34

surface flux with the use of integral data are presented in [25,26]. 35

There is a limited number of theoretical results devoted to the problem (1)-(3). We 36

refer the reader to the article [27] (see also [28]), where, in the case of Mu = ut − ∆u, r = 1, 37

and b1 ∈ Γ, the existence and uniqueness theorems of classical solutions to the problem 38

(1)-(3) are established. In contrast to our case, the problem is well-posed in the Hadamard 39

sense. If the points {bi}r
i=1 are interior points of G then the problem becomes ill-posed and 40

this fact was observed in many articles. In this article we describe a new approach to the 41

existence theory of solutions to this problem and establish the corresponding existence and 42

uniqueness theorems. We hope that these results can be used in developing new numerical 43

algorithms for solving the problem. 44

1. Preliminaries 45

Let E be a Banach space. By Lp(G; E) (G is a domain in Rn), we mean the space 46

of E-valued measurable functions such that ∥∥u(x)∥E∥Lp(G) < ∞ [29]. The symbols 47

Ws
p(G; E) and Ws

p(Q; E) stand for the Sobolev spaces (see the definitions in [29], [30]). 48

If E = R or E = Rn then the latter spaces is denoted by Ws
p(Q). The definitions of 49

the Hölder spaces Cα,β(Q), Cα,β(S) can be found in [31]. By the norm of a vector, we 50

mean the sum of the norms of coordinates. Given an interval J = (0, T), put Ws,r
p (Q) = 51

Ws
p(J; Lp(G)) ∩ Lp(J; Wr

p(G)) and, respectively, Ws,r
p (S) = Ws

p(J; Lp(Γ)) ∩ Lp(J; Wr
p(Γ)). 52

Denote by (u, v)0 =
∫

G u(x)v(x)dx the inner product in L2(G). Let ρ(Y, X) designate the 53

distance between the sets X, Y. In this case, ρ(x, Γ) is the distance from a point x to Γ. 54

Denote by Bδ(x) the ball of radius δ centered at x. 55

We say that a boundary Γ of a domain G belongs to Cs, s ≥ 1 (see the definition in [31, 56

Ch.1]) if, for each point x0 ∈ Γ, there exists a neighborhood Yx0 about x0 and a coordinate 57

system y (the local coordinate system) obtained from the initial one by the translation of 58

the origin and rotation such that the axis yn is directed as the interior normal to Γ at x0 and 59

the equation of the part Yx0 ∩ Γ of the boundary is of the form yn = γ(y′), γ(0) = 0, y′ = 60

(y1, . . . , yn−1); moreover, γ ∈ Cs(B′
δ(0)) (B′

δ(0) = {y′ : |y′| < δ}), G ∩ Yx0 = {y : |y′| < 61

δ, 0 < yn − γ(y′) < δ1}, and (Rn \ G) ∩ Yx0 = {y : |y′| < δ,−δ1 < yn − γ(y′) < 0}. The 62

smoothness of Γ0 ⊂ Γ, with Γ0 an open subset of Γ, is defined similarly. The numbers δ, δ1 63

for a given G are fixed and we can assume without loss of generality that δ1 > (2M + 1)δ, 64

with M the Lipschitz constant of the function γ. We employ the straightening of the 65

boundary, i. e., the transformation zn = yn − γ(y′), z′ = y′, y = y(x), with y the local 66

coordinate system at a given point b. 67

Below, we assume that G = Rn
+ = {x ∈ Rn : xn > 0} or G is a domain with compact

boundary of the class C2. The coefficients of the equation (1) are assumed to be real. We
consider an elliptic operator L, i. e., there exists a constant δ0 > 0 such that

n

∑
i,j=1

aijξiξ j ≥ δ0|ξ|2 ∀ξ ∈ Rn, ∀x ∈ G.
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Assign a⃗ = (a1, a2) for n = 2 and a⃗ = (a1, a2, a3) for n = 3. The symbol (·, ·) stands for an
inner product in Rn. Let

φj(x) =
1
2

∫ 1

0
(⃗a(bj + τ(x − bj)), (x − bj)) dτ (4)

and assume that

ai ∈ W2
∞(G) (i = 1, . . . , n), ∇φj, ∆φj (j = 1, . . . , r), a0 ∈ L∞(G), σ ∈ C1(Γ). (5)

Moreover, we suppose that the functions ai admits extensions to the whole Rn such that
the condition (5) is valid in G = Rn. If G is a domain with compact boundary of the class
C2 such an extension always exists (see, Theorem 1 in Subsect. 4.3.6 of Sect. Remarks in
[32]). Consider the equation

L∗u + λu = δ(x − bj), x ∈ Rn (n = 2, 3), j = 1, 2, . . . , r, (6)

where the operator L∗ is a formally adjoint to L. Its coefficients also satisfy (5). Let 68

bj = (b1
j , . . . , bn

j ). Introduce the functions λα = |λ|αeiarg λα, | arg λ| < π. It follows from 69

Theorems 3.5 and 3.1 in [33] and Theorem 3.3 in [34] that 70

Theorem 1. Assume that G = Rn (n = 2, 3) and the conditions (5) hold. Fix δ0 ∈ (0, π). Then
there exists a number λ1 ≥ 0 such that, for all λ with |arg (λ − λ1)| ≤ π − δ0, there exist a
unique solution un(x) (n = 2, 3) to the equation (6) decreasing at ∞ such that un ∈ W1

p(G) for
all p ∈ (1, n/(n − 1)), and un ∈ W2

2 (Gε) for all ε > 0, Gε = {x ∈ G : |x − bj| > ε}. In every
domain 0 < ε < |x − bj| < R a solution un admits the representation

u2(x) =
1

2
√

2π|x − bj|λ1/4
e−φj(x)−

√
λ|x−bj |

(
1 + O

( 1√
|λ|

))
; (7)

u2xi (x) =
−λ1/4e−φj(x)−

√
λ|x−bj |

2
√

2π|x − bj|

( xi − bi
j

|x − bj|
+ O

( 1√
|λ|

))
; (8)

u3(x) =
1

4π|x − bj|
e−φj(x)−

√
λ|x−bj |

(
1 + O

( 1√
|λ|

))
; (9)

u3xi (x) =
−
√

λe−φj(x)−
√

λ|x−bj |

4π|x − bj|

( xi − bi
j

|x − bj|
+ O

( 1√
|λ|

))
. (10)

In what follows, we denote by vj(x) a solution un obtained in Theorem 1 for a given j. 71

Consider the problem

Lw + λw = f (x) (x ∈ G), Bw|S = g, , (11)

where G = Rn or G = Rn
+ or G is a domain with compact boundary of the class C2. 72

Theorem 2. Let ai ∈ L∞(G) (i = 0, 1, . . . , n), f ∈ Lp(G), σ ∈ C1(Γ), and g ∈ W2−1/p
p (Γ) 73

(p > 1). Then there exists a number λ0 ≥ 0 such that, for all λ with Re λ ≥ λ0, there exists a 74

unique solution w ∈ W2
p(G) to the problem (11). 75

The theorem results from Theorem 5.7 for G = Rn, Theorem 7.11 for G = Rn
+ and 76

Theorem 8.2 in the case of a domain with compact boundary in [30]. 77

The following Green formula holds. 78
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Lemma 1. Let the conditions (5) hold and let Re λ ≥ λ0, where λ0 is chosen so that Theorem 2 is
valid for p = 2. If w ∈ W2

2 (G) is a solution to the problem (11) with f = 0 from the class specified
in Theorem 2 then∫

Γ
(−∂w

∂ν
− σw)vj + w(

∂vj

∂ν
+ σ∗vj) + w(bj) = 0, σ∗ = σ +

n

∑
i=1

aiνi. (12)

If φ(x) ∈ C∞
0 (Rn) and φ = 1 in some neighborhood about bj, then

∫
Γ
(−∂w

∂ν
−σw)φvj +w(

∂φvj

∂ν
+ σ∗φvj)+w(bj) =

∫
G

2∇φ∇vj +∆φvj +
n

∑
i=1

ai φxi v dx. (13)

Proof. The proof is conventional. It suffices to approximate the functions w, vj by sequences 79

of smooth functions in the corresponding norms, to write out the above formulas (12), (13) 80

for these approximations, and pass to the limit. 81

Assume that G = Rn
+ or G is a domain with compact boundary of the class C2. Given 82

a collection of points bj ∈ G (j = 1, 2, . . . , r), construct points b ∈ Γ such that δj = ρ(bj, Γ) = 83

|b − bj|. Denote by Kj the set of these points. Let b ∈ Kj. Take n = 3. There exists a local 84

coordinate system y such that the axes y1, y2 agree with the principal directions on the 85

surface Γ at y = 0, in this case, ∑2
i,j=1 γyiyj(0)yiyj = γy1y1(0)y

2
1 + γy2y2(0)y

2
2, γy1,y2(0) = 0, 86

where κi = γyiyi (0) are the principal curvatures of the surface y3 = γ(y′) (y′ = (y1, y2)) at 87

0. In the case of n = 2, the equation of the boundary in some neighborhood about b is of 88

the form y2 = γ(y1) and κ = γ′′(0) is the curvature of the curve γ at b. 89

Lemma 2. Assume that, for every j = 1, 2, . . . , r, the set Kj consists of finitely many points and,
for every b ∈ Kj, we have

max(κ1, κ2) < 1/δj, where n = 3, κ < 1/δj, where n = 2, (14)

where κi are principal curvatures of Γ at b∗ for n = 3 and κ is the curvature of Γ for n = 2. Then 90

there are constants c0, c1 > 0, 0 < ε1 ≤ δ such that c0|x − b|2 ≤ |x − bj| − δj ≤ c1|x − b|2 for 91

every b ∈ Kj and all x ∈ Bε1(b) ∩ Γ, j = 1, 2, . . . , r. 92

Remark 1. For n = 3, the condition (14) can be reformulated as follows. There exists a constant 93

q0 ∈ (0, 1) such that ∑2
k,l=1 γykyl (0)ykyl ≤ q0|y′|2/δj ∀y′ ∈ R2, j = 1, 2, . . . , r, where y is a 94

local coordinate system at b ∈ Kj. The claim follows from the fact that there exists an orthogonal 95

transformation of coordinates such that the new axes ỹ1, ỹ2 agree with the principal directions on 96

the surface Γ at y = 0. 97

Proof. Take b ∈ Kj. We prove the claim in the case of n = 3. If n = 2 then the proof
is simpler and we omit it. Let y be a local coordinate system at b. Since y = y(x) is a
superposition of an orthogonal transformation and a translation, the distances between
points and their images are the same. We have b = 0, bj = (0, 0, y3j), x = (y′, γ(y′)) (y′ =

(y1, y2)), |x − b| =
√
|y′|2 + γ2(y′), |bj − b| = |y3j| = δj, |x − bj| =

√
|y′|2 + |γ(y′)− y3j|2,

and

|x − bj| − δj =
|x − bj|2 − δ2

j

|x − bj|+ δj
=

|y′|2 + γ2 − 2γy3j

|x − bj|+ δj
= J.

Remark 1 implies that

γ(y′) =
1
2

n−1

∑
i,j=1

γyiyj(0)yiyj + o(|y′|2) ≤ q0|y′|2/2δj + o(|y′|2)
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in some neighborhood about 0. Fix a parameter ε0 > 0 such that ε0 + q0 < 1. In this case
there exists δ1 ≤ δ such that

q0|y′|2/2δj + o(|y′|2) ≤ (ε0 + q0)|y′|2/2δj

for |y′| ≤ δ1. Therefore, we obtain

J ≥ |y′|2(1 − (q0 + ε0)) + γ2

|x − bj|+ δj
≥ c0|x − b|2, c0 > 0.

The converse inequality follows directly from the definition of the quantity J. 98

Below, we preserve the notations of Lemma 2. Take b ∈ Kj. We can define the transfor-

mations y = y(x) and x = x(y). For n = 3, put cj(b) = 1/
√

1 − δjκ1, dj(b) = 1/
√

1 − δjκ2,

Ij(b) = cj(b)dj(b), c∗j (b) = 1/
√

1 + δjκ1, d∗j (b) = 1/
√

1 + δjκ2, I∗j (b) = c∗j (b)d
∗
j (b),

Bjλ(b) = {x ∈ Γ : y2
1(x)/c2

j (b) + y2
2(x)/d2

j (b) ≤ |λ|−1/2+ε0}, B̃jλ(b) = {y ∈ R2 :

y2
1/c2

j (b) + y2
2/d2

j (b) ≤ |λ|−1/2+ε0}, B∗
jλ(b) = {x ∈ Γ : y2

1(x)/c∗2
j (b) + y2

2(x)/d∗2
j (b) ≤

|λ|−1/2+ε0}, B̃∗
jλ(b) = {y ∈ R2 : y2

1/c∗2
j (b) + y2

2/d∗2
j (b) ≤ |λ|−1/2+ε0}, where the pa-

rameter ε0 ∈ (0, 1/4) is chosen below. The map y = y(x) takes Bλ(b) onto B̃λ(b).
Similar notations are used in the case of n = 2, i. e., Ij(b) = cj(b) = 1/

√
1 − δjκ,

I∗j (b) = c∗j (b) = 1/
√

1 + δjκ, Bjλ(b) = {x ∈ Γ : |y1(x)|/cj(b) ≤ |λ|−1/4+ε0/2}, B̃jλ(b) =

{y1 ∈ R : |y1|/cj(b) ≤ |λ|−1/4+ε0/2}, B∗
jλ(b) = {x ∈ Γ : |y1(x)|/cj(b) ≤ |λ|−1/4+ε0/2},

B̃∗
jλ(b) = {y1 ∈ R : |y1|/c∗j (b) ≤ |λ|−1/4+ε0/2}. Below, we assume that, for every

j = 1, 2, . . . , r, the set Kj consists of finitely many points and

∀j = 1, 2, . . . , r, ∀b ∈ Kj |κi|δj < 1 (i = 1, 2) for n = 3, |κ|δj < 1 for n = 2, (15)

where κi are the curvatures of Γ for n = 3 and, respectively, κ is the curvature of Γ for n = 2. 99

Let vj be a solution to the equation (6). Given b ∈ Kj, construct the point bb
j lying

on the straight line joining bj and b and such that δj = |bj − b| = |b − bb
j |, |bj − bb

j | = 2δj.

The point bb
j is symmetric to bj with respect to the surface Γ. Let vb

j be a solution to the

equation (6), where the point bj is replaced with bb
j . Denote by φb

j the functions defined by

the equality (4), where bj is replaced with bb
j . In what follows, we assume that the closures

of coordinate neighborhoods about the points b ∈ Kj are disjoint, otherwise, we can always
decrease them. Fix a point b ∈ Kj. The quantity minb′∈Kj ,b′ ̸=b |b′ − bb

j | − δj is positive (it

depends on δj and the angles between the vectors
−→
bbj and

−→
b′bj). Let Xb = Yb ∩ Γ ( Yb is the

coordinate neighborhood about b). Without loss of generality, we can also assume that
the constant minb′∈Kj ,b′ ̸=b ρ(Xb′ , bb

j )− δj is positive for all b ∈ Kj and all j, otherwise, we

decrease the parameter δ of the coordinate neighborhoods Yb. Denote by ε0 > 0 a constant
smaller than the minimum of these constants. Theorem 1 for b ̸= b′ and b ∈ Kj yields

|
√

λvb
j eδj

√
λ|+ |eδj

√
λ|∇vb

j || ≤ c1e−ε0
√

|λ|/2 ∀x ∈ Xb′ , (16)

where c2 > 0 and q0 ∈ (0, 1) are constants independent of j, b ∈ Kj, and λ such that 100

Re λ ≥ λ1 (see Theorem 1). 101

Lemma 3. Assume that the conditions (5) and (15) hold, b ∈ Kj (j = 1, 2, . . . , r), and

Φ(x) ∈ Cα0(Xb), Xb = Yb ∩ Γ (17)
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for some α0 ∈ (0, 1]. Then there exists a number λ0 > 0 such that, for Re λ ≥ λ0, we have the
representation

Φj =
√

λeδj
√

λ
∫

Xb

Φ(x)vj(x) dΓ =
Φ(b)e−φj(b)

2Ij(b)
(1 + O(|λ|−β)), β = α0/4, (18)

Φ∗
j =

√
λeδj

√
λ
∫

Xb

Φ(x)vb
j (x) dΓ =

Φ(b)e−φb
j (b)

2I∗j (b)
(1 + O(|λ|−β), (19)

eδj
√

λ
∫

Xb

vj dΓ =
e−φj(b)

2Ij(b)
√

λ
(1+O(|λ|−1/4)), eδj

√
λ
∫

Xb

∂vj

∂ν
dΓ =

−e−φj(b)

2Ij(b)
(1+O(|λ|−1/4)),

(20)

eδj
√

λ
∫

Xb

vb
j dΓ =

e−φb
j (b)

2I∗j (b)
√

λ
(1+O(|λ|−1/4)), eδj

√
λ
∫

Xb

∂vb
j

∂ν
dΓ =

e−φb
j (b)

2I∗j (b)
(1+O(|λ|−1/4)).

(21)

Proof. Consider the case of n = 3. We have

I =
∫

Xb

Φ(x)vj(x) dΓ =
∫

Bλ(b)
Φ(x)vj(x) dΓ +

∫
Xb\Bλ(b)

Φ(x)vj(x) dΓ. (22)

Theorem 1 implies that

vj(x) =
1

4π|x − bj|
e−φj(x)−

√
λ|x−bj |(1 + O(

1√
|λ|

)), x ∈ Γ,

where Re λ ≥ λ1. We can assume that |O( 1√
|λ|

)| ≤ 1/2 for all such λ and j. Estimate the

second integral J2 on the right-hand side of (22) from above. We derive that

|J2e
√

λδj | ≤ c
∫

Xb\Bλ(b)
|e
√

λδj ||vj(x)| dΓ ≤ c1

∫
Xb\Bλ(b)

e−Re
√

λ(|x−bj |−δj) dΓ. (23)

In view of the definitions, there exists a constant ε2 > 0 such that |x− bj| − δj ≥ ε2|λ|−1/2+ε0

for all x ∈ Xb \ Bλ(b) and, thereby,

|J2e
√

λδj | ≤ c4e−ε4|λ|ε0 (24)

for some constant ε4 > 0. For the first summand J1 on the right-hand side of (22), we have

e
√

λδj J1 = e
√

λδj
[∫

Bλ(b)
(e−φj(x)Φ(x)− e−φj(b)Φ(b))eφj(x)vj(x) dΓ+

Φ(b)e−φj(b)
∫

Bλ(b)
eφj(x)vj(x) dΓ

]
. (25)
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Consider the last integral in (25) multiplied by e
√

λδj . This quantity is written as

J2 = Φ(b)e−φj(b)
∫

Bλ(b)

e−
√

λ(|x−bj |−δj)

4π|x − bj|
(1 + O(

1√
|λ|

)) dΓ =

Φ(b)e−φj(b)
∫

B̃λ(b)

e−
√

λ(|y−b̃j |−δj)

4π|y − b̃j|

√
1 + |∇γ(y)|2(1 + O(

1√
|λ|

)) dy′ =

Φ(b)e−φj(b)

4πδj

∫
B̃λ(b)

e−
√

λ(|y−b̃j |−δj) dy′+

Φ(b)e−φj(b)
∫

B̃λ(b)
e−

√
λ(|y−b̃j |−δj)ψ0(y)O(

1√
|λ|

) dy′+

Φ(b)e−φj(b)
∫

B̃λ(b)
e−

√
λ(|y−b̃j |−δj)(ψ0(y)− ψ0(0)) dy′, ψ0(y) =

√
1 + |∇γ(y)|2
4π|y − b̃j|

, (26)

where b̃j is the point bj written in the coordinate system y. Consider the integral I0 =∫
B̃λ(b)

e−
√

λ(|y−b̃j |−δj)dy′. We can assume that the axes of the local coordinate system y are
directed as the principal directions on Γ at b. In this case (see Lemma 2) we obtain that

|y− bj|− δj =
y2

1(1 − κ1δj) + y2
2(1 − κ2δj) + o(|y′|2)

|x(y)− bj|+ δj
=

y2
1(1 − κ1δj)

2δj
+

y2
2(1 − κ2δj)

2δj
+ o(|y′|2),

where o(|y′|2) is a C2-function in some neighborhood about 0. Make the change of variables

yi = τi

√
2δj/(1 − κiδj) in I0. We obtain that

I0 =
2δj

cj(b)dj(b)

∫
|τ|≤r0

e−
√

λ(|τ|2+o(|τ|2)) dτ, r0 = |λ|−1/4+ε0/2/
√

2δj.

Introducing the polar coordinate system, we arrive at the expression

I0 =
2δj

cj(b)dj(b)

∫ 2π

0

∫ r0

0
e−

√
λφ0(r,ψ)r drdψ, φ0(r, ψ) = r2 + o(r2).

Integrating by parts yields

I0 =
−2δj√

λcj(b)dj(b)

∫ 2π

0
e−

√
λφ0(r,ψ) r

φ0r(r, ψ)

∣∣∣r0

r=0
dψ+

2δj√
λcj(b)dj(b)

∫ 2π

0

∫ r0

0
e−

√
λφ0(r,ψ)

( r
φ0r(r, ψ)

)′
drdψ =

2δjπ√
λcj(b)dj(b)

−
2δj√

λcj(b)dj(b)

∫ 2π

0
e−

√
λφ0(r0,ψ) r0

φ0r(r0, ψ)
dψ+

2δj√
λcj(b)dj(b)

∫ 2π

0

∫ r0

0
e−

√
λφ0(r,ψ)

( r
φ0r(r, ψ)

)′
drdψ.

The last integral here admits the estimate

|
∫ 2π

0

∫ r0

0
e−

√
λφ0(r,ψ)

( r
φ0r(r, ψ)

)′
drdψ| ≤ c7

∫ 2π

0

∫ r0

0
e−Re

√
λc0r2

drdψ ≤ c8|λ|−1/4.
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The second integral on the right-hand side is estimated as∣∣∣ 2δj√
λcj(b)dj(b)

∫ 2π

0
e−

√
λφ0(r0,ψ) r0

φ0r(r0, ψ)
dψ

∣∣∣ ≤ c9e−ε5|λ|ε0 ,

where ε5 is a positive constant. Thus, we establish the representation

I0 =
2δjπ√

λcj(b)dj(b)
(1 + O(|λ|−1/4)). (27)

Consider the integral

I′0 =
∫

B̃λ(b)
|y′|β0 e−Re

√
λ(|y−b̃j |−δj)dy′ ≤ c0

∫
|τ|≤r0

|τ|β0 e−Re
√

λ(|τ|2+o(|τ|2)) dτ.

Introducing the polar coordinate system, we infer

I′0 ≤ c0

∫ 2π

0

∫ r0

0
e−Re

√
λφ0(r,ψ)r1+β0 drdψ, φ0(r, ψ) = r2 + o(r2).

Making the change of variables r = t/|Re
√

λ|1/2, we obtain the estimate

I′0 ≤ c0|Re
√

λ|−1−β0/2
∫ 2π

0

∫ r0|Re
√

λ|1/2

0
e−t2(1+ Re

√
λ

t2
o( t2

Re
√

λ
))t1+β0 dtdψ ≤ c1|λ|−1/2−β0/4.

This inequality and (24) imply that

I′0 ≤ c1|λ|−1/2−β0/4, (28)

where the constant c1 is independent of λ. In this case the last integral I1 on the right-hand
side of (26) admits the estimate

|I1| ≤
∣∣∣Φi(b)e

−φj(b)
∫

B̃λ(b)
e−

√
λ(|y−b̃j |−δj)(ψ0(y)− ψ0(0)) dy′

∣∣∣ ≤
c10

∫
B̃λ(b)

e−Re
√

λ(|y−b̃j |−δj)|y′|2 dy′ ≤ c11|λ|−1.

In view of (28), the previous integral I2 in (26) (β0 = 1) is estimated as follows: |I2| ≤
c12/|λ|. Finally, the second summand on the right-hand side of (25) is representable as

J2 =
Φ(b)e−φj(b)

2
√

λcj(b)dj(b)
(1 + O(|λ|−1/4)). (29)

In view of our conditions on the coefficients, φj ∈ W2
∞(K) for every compact set K ∈ G and,

thereby, |φj(x)− φj(b)| ≤ c|x − b| = c
√
|y′|2 + |γ(y′)|2 ≤ c1|y′|. Involving the condition

of the lemma and (28), we can estimate the integral J3 = e
√

λδj
∫

Bλ(b)
(Φ(x)− Φ(b))vj(x) +

Φ(b)(1 − e−φj(b)+φj(x))vj(x) dΓ on the right-hand side of (25) by

|J3| ≤ c2

∫
B̃λ(b)

|y′|α0 e−Re
√

λ(|y−b̃j |−δj)dy′ ≤ c4|λ|−1/2−α0/4. (30)

The representation (29) and the estimate (30) validate the equality (18). The equality (19) is
proven by analogy and the former equalities in (20), (21) are consequences of (18) and (19).
The proof in the case of n = 2 is simpler. Display the asymptotics of the main integral

I = Φ(b)e−φj(b) I0, I0 = e
√

λδj

∫
Xb

eφj(x)vj(x) dΓ,
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where Xb = {x(y) ∈ Γ : |y1| ≤ δ}, y = (y1, y2) is the local coordinate system at b, and
y2 = γ(y1) is the equation of the curve Γ. To reduce arguments, we take δ ≤ ε1, where the
parameter ε1 is defined in lemma 2. Theorem 1 implies that

I0 =
λ−1/4

2
√

2π

∫
Xb

e−
√

λ(|x−bj |−δj)
1

|x − bj|1/2 (1 + O(
1√
|λ|

)) dΓ =

λ−1/4

2
√

2π

∫ δ

−δ
e−

√
λ(|y−b̃j |−δj)

√
1 + (γ′(y1))2

|y − b̃j|1/2
dy1+

λ−1/4

2
√

2π

∫ δ

−δ
e−

√
λ(|y−b̃j |−δj)

√
1 + (γ′(y1))2

|y − b̃j|1/2
O(

1√
|λ|

) dy1. (31)

As before, we have |y − bj| − δj =
y2

1(1−κδj)−2δj(γ−κy2
1/2)+γ2√

y2
1+(γ−δj)2+δj

(κ = κ(b) = γ′′(0)). We have

the asymptotic formula (see §1, Ch. 2 in [41])

∫ b

a
eλS(x) f (x) dx =

√
−2π

λS′′(x0)
f (x0) + O(1/|λ|3/2),

where x0 ∈ (a, b) is a point in which S reaches its maximum. Applying this formula to the
first integral on the right-hand side of (31) and estimating the second integral by c/|λ|3/4,
we obtain the formula

I0 =
λ−1/2

2
√

1 − κδj

+ O(1/|λ|3/4).

All other arguments are similar. The proof in the case of G = Rn
+ is even simpler and we 102

omit it. 103

It remains to prove the latter inequalities in (19), (20). As before, take n = 3. The
asymptotics from Theorem 1, ensures that

e
√

λδj
∂vj

∂ν
=

−
√

λeφj(x(y))e−
√

λ(|y−b̃j |−δj)

4π|y − b̃j|
[ (y − b̃j, ν)

|y − b̃j|
+ O(|λ|−1/2)

]
,

ν = 1√
1+|∇γ|2

(γy1 , γy2 ,−1). If yn = γ(y′) then we have

(y − b̃j, ν)

|y − b̃j|
=

y1γy1 + y2γy2 − γ(y) + δj

|y − b̃j|
= 1 + O(|y′|2), b̃j = (0, 0, δj).

Thus, we obtain that

e
√

λδj
∂vj

∂ν
= −

√
λeδj

√
λvj(x(y))(1 + O(|y′|2) + O(|λ|−1/2)). (32)

This equality and the previous arguments validate the claim. 104

Remark 2. Let G = BR(x0). Then the condition (15) holds if bj ̸= x0 for all j. 105

Consider the problem (11), where f = 0, i. e., the problem

Lw + λw = 0, x ∈ G, (33)

Bw|S = g, (34)

and obtain some estimates of its solution. Fix j and take b ∈ Kj. In Lemma 4 below, 106

we use functions φ(y) ∈ C∞
0 (Rn) such that φ(y) = 1 on the set U3δ/4 = {y : |y′| ≤ 107
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3δ/4, |yn| ≤ Mδ + 3δ/4} and supp φ ⊂ Uδ = {y : |y′| < δ, |yn| < (M + 1)δ}. The 108

condition δ1 ≥ (2M + 1)δ ensures the inclusion Uδ ⊂ Yb. The map zn = yn − γ(y′), 109

z′ = y′ takes a neighborhood Yb ∩ G onto the set U = {z : |z′| < δ, 0 < zn < δ1}. Denote 110

B′
δ(0) = {z′ : |z′| < δ} and Γδ = (∪r

j=1 ∪b∈Kj
Yb) ∩ Γ. 111

Lemma 4. Assume that the conditions (5) hold, b ∈ Kj (j = 1, 2, . . . , r), and g ∈ W1/2
2 (Γ) ∩

W1
2 (Xb). Then there exists a number λ0 > 0 such that, for Re λ ≥ λ0, there exists a unique a

solution to the problem (33), (34) from the space W2
2 (G) satisfying the estimates∫

G
|∇w|2 + |λ||w|2 dx ≤ c0∥g∥2

L2(Γ)
|λ|−1/2+2ε7 ,

∥w∥Wα
2 (Γ)

≤ c1∥g∥L2(Γ)|λ|
α/2−1/2+ε7 , α ∈ (0, 1/2). (35)

If v = φw, with φ from the above-described class of functions, then there exist constants c2, c3 > 0
such that∫

U

n−1

∑
k,l=1

|vzkzl |
2 +

n−1

∑
k=1

|vznzk |
2 + |λ||∇z′v|2 dx ≤ c2(∥g∥2

W1
2 (Xb)

+ ∥g∥2
L2(Γ)

)|λ|−1/2+2ε7 , (36)

∥v∥W1+α
2 (B′

δ(0))
≤ c3(∥g∥W1

2 (Xb)
+ ∥g∥L2(Γ))|λ|

α/2−1/2+ε7 , α ∈ (0, 1/2), (37)

where ε7 > 0 is arbitrarily small constant. If additionally g ∈ W2
2 (Xb) and

a0 ∈ W1
∞(∪b∈Kj

(Yb ∩ G)), Γδ ∈ C3, σ ∈ C3/2+ε(Γδ) (ε > 0), (38)

then φw ∈ W3
2 (Yb ∩ G) for any φ and there exist constants c4, c5 > 0 such that

∫
U

n−1

∑
i,j,k=1

|vzizjzk |
2 +

n−1

∑
k,i=1

|vzizkzn |2 + |λ|
n−1

∑
i,k=1

vzizk |
2 dx ≤ c4(∥g∥2

W2
2 (Xb)

+ ∥g∥2
L2(Γ)

)|λ|
−1
2 +2ε7 ,

(39)
∥v∥W2+α

2 (B′
δ(0))

≤ c5(∥g∥W2
2 (Xb)

+ ∥g∥L2(Γ))|λ|
α/2−1/2+ε7 , α ∈ (0, 1/2). (40)

Proof. Theorem 2 for p = 2 ensures the existence and uniqueness of solutions provided
that Re λ ≥ λ0 for some λ0 > 0. Multiply the equation (33) by a function w and integrate
the result over G. Integrating by parts, we infer

∫
G
|∇w|2 + l0(w)w + λ|w|2 =

∫
Γ

gw − σ|w|2 dΓ, l0(w) =
n

∑
i=1

aiwxi + a0w.

Separating the real and imaginery parts, we obtain∫
G
|∇w|2 + Reλ|w|2 dx = Re

∫
Γ

gw − σ|w|2 dΓ − Re
∫

G
l0(w)w dx. (41)

Im λ
∫

G
|w|2 dx = Im

∫
Γ

gw − σ|w|2 dΓ − Im
∫

G
l0(w)w dx.

The last equality yields

|Im λ|
∫

G
|w|2 dx ≤

∣∣Im
∫

Γ
gw − σ|w|2 dΓ|+ |Im

∫
G

l0ww dx
∣∣. (42)

Summing (42) and (41) and estimating the modules of the right-hand sides∫
G
|∇w|2 + |λ||w|2 dx ≤ c0

(∣∣∫
Γ

gw − σ|w|2 dΓ
∣∣+ ∣∣∫

G
l0(w)w dx

∣∣). (43)
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Below, we use the inequality

|ab| ≤ ε|a|p/p + ε−q/p|b|q/q, p ∈ (1, ∞), q = p/(p − 1), ε > 0.

The last integral is estimated by

∣∣∫
G

l0(w)w dx
∣∣ ≤ ∥∇w∥L2(G)∥w∥L2(G) + ∥w∥2

L2(G) ≤
1
4
∥∇w∥2

L2(G) + c1∥w∥2
L2(G). (44)

Similarly, we have

∣∣∫
Γ

gw − σ|w|2 dΓ
∣∣ ≤ ∥g∥L2(Γ)∥w∥L2(Γ) + c2∥w∥2

L2(Γ)
≤

c(ε)∥g∥2
L2(Γ)

|λ|−1/2+2ε7 + ε|λ|1/2−2ε7∥w∥2
L2(Γ)

+ c2∥w∥2
L2(Γ)

,

where ε and ε7 are arbitrary positive constants. The embedding theorems and interpolation
inequalities (see [29]) imply that

|λ|1/2−2ε7∥w∥2
L2(Γ)

≤ c3|λ|1/2−2ε7∥w∥2
W1/2+2ε7

2 (G)
≤

c5|λ|1/2−2ε7∥w∥2(1/2+2ε7)

W1
2 (G)

∥w∥2(1/2−2ε7)
L2(G)

≤ ∥∇w∥2 + c6∥w∥2
L2(G)|λ|.

Similarly,

c2∥w∥2
L2(Γ)

≤ 1
4
∥∇w∥2 + c7∥w∥2

L2(G). (45)

Estimating the right-hand side of (43) with the use of (44)-(45), we arrive at the inequality

∫
G
|∇w|2 + |λ||w|2 dx ≤ c8∥g∥2

L2(Γ)
|λ|−1/2+2ε7+

εc6|λ|∥w∥2
L2(G) + (ε + 1/2)∥∇w∥2

L2(G) + c9∥w∥2
L2(G).

Choosing sufficiently small ε and increasing λ0, if necessary, we derive that∫
G
|∇w|2 + |λ||w|2 dx ≤ c9∥g∥2

L2(Γ)
|λ|−1/2+2ε7 , (46)

where the constant c9 is independent of λ with Re λ ≥ λ0 and ε7 > 0 can be taken arbitrarily
small). Using (46) and interpolation inequalities we obtain that

∥w∥Wα
2 (Γ)

≤ c∥w∥W1/2+α
2 (G)

≤ c10∥w∥1/2+α
W1

2 (G)
∥w∥1/2−α

L2(G)
≤ c11|λ|α/2−1/2+ε7∥g∥L2(Γ).

Rewriting (33) in the coordinate system y, we obtain the problem

−∆w +
n

∑
i=1

ãiwyi + a0w + λw = 0, Bw|Γ = g. (47)

Multiply the equation (47) by φ(y). The result is the problem

−∆v +
n

∑
i=1

ãivyi + a0v + λv = −2∇w∇φ − w∆φ +
n

∑
i=1

ai φyi w = f0, v = wφ. (48)

Bv|Γ = φg − φνw. (49)
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Introduce the coordinate system z, with z′ = y′, zn = yn − γ(y′). In this case, the function
v = wφ is a solution to the problem

−∆z′v + 2
n−1

∑
i=1

γzi vznzi − σ0(z′)vznzn +
n

∑
i=1

civzi + a0v + λv = f0, σ0(z′) = (1 + |∇z′γ|2).

(50)

−vzn σ0(z′) +
n−1

∑
i=1

vzi γzi + σ(x(z))σ0(z′)v|zn=0 = (φg − φνw)|zn=0σ0(z′).

Multiplying the equation (50) by −∆z′v and integrating the result over U, we obtain that

∫
U
|∆z′v|2 −

n−1

∑
i=1

γzi vznzi ∆z′v + ∂zn(−
n−1

∑
i=1

γzi vzi + σ0(z′)vzn)∆z′v−

(
n

∑
i=1

civzi + a0v)∆z′v + λ|∇z′v|2 dz = ( f0,−∆z′v)0. (51)

Integrating by parts, we rewrite the first summand in the form

∫
U
|∆z′v|2 dz =

n−1

∑
k,l=1

∫
U
|vzkzl |

2 dz. (52)

Note that v ∈ W2
2 (G) and integrating by parts we obtain the integrals containing third

order derivatives. However, the result of integration is easily justified if we employ smooth
approximations of functions in W2

2 (G). Similar arguments can be found, for instance, in
the proof of Lemma 7.1 of Ch. 3 in [38]. We also have

∫
U

∂zn(−
n−1

∑
i=1

γzi vzi + σ0vzn)∆z′v dz = −
∫

U
∂zn∇z′(−

n−1

∑
i=1

γzi vzi + σ0vzn)∇z′v dz =

∫
G
∇z′(−

n−1

∑
i=1

γzi vzi + σ0vzn) · ∇z′vzn dz +
∫

B′
δ(0)

(∇z′(−
n−1

∑
i=1

γzi vzi + σ0vzn) · ∇z′v dz′ =

∫
U
(1 + |∇z′γ|2)|∇z′vzn |2 dz −

∫
U

n−1

∑
i=1

γzi∇z′vzi · ∇z′vzn dz −
∫

U

n−1

∑
i=1

vzi∇z′γzi · ∇z′vzn dz

+
∫

U
vzn∇z′σ0(z′)∇z′vzn dz −

∫
B′

δ(0)
∇z′((φg − φνw)

√
σ0(z′)) · ∇z′v dz′. (53)

Consider the expression

∫
U
−

n−1

∑
i=1

γzi vznzi ∆z′v dz =
∫

U

n−1

∑
i=1

γzi vzn ∆z′vzi +
n−1

∑
i=1

γzizi vzn ∆z′v dz

= −
∫

U

n−1

∑
i,k=1

γzi vznzk vzizk dz +
∫

U

n−1

∑
i=1

γzizi vzn ∆z′v dz −
∫

U

n−1

∑
i=1

γzizk vzn vzizk dz (54)

Using (52)-(54) in (51), we obtain

∫
U

n−1

∑
k,l=1

|vzkzl |
2 +

n−1

∑
k=1

σ0|vznzk |
2 − 2Re

n−1

∑
l,k=1

γzl vznzk vzl zk + λ|∇z′v|2 dz = ( f0,−∆z′v)0

−
∫

U

n−1

∑
i=1

γzizi vzn ∆z′v dz +
∫

U

n−1

∑
i=1

γzizk vzn vzizk dz +
∫

U

n−1

∑
i=1

vzi∇z′γzi · ∇z′vzn dz−∫
U

vzn∇z′σ0∇z′vzn dz −
∫

B′
δ(0)

(∇z′((φg − φνw)
√

σ0) · ∇z′v dz′. (55)
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As is easily seen, the inequality

n−1

∑
k,l=1

|vzkzl |
2 +

n−1

∑
k=1

σ0|vznzk |
2 − 2Re

n−1

∑
l,k=1

γzl vznzk vzlzk ≥ c3(
n−1

∑
k,l=1

|vzkzl |
2 +

n−1

∑
k=1

|vznzk |
2),

is valid for some constant c3 > 0. Next, we infer

|
∫

B′
δ(0)

∇z′(φνw
√

σ0) · ∇z′v| dz′ ≤ c∥∇z′(φνw
√

σ0)∥(W1/2
2,0 (B′

δ(0)))
′∥∇z′v∥W1/2

2,0 (B′
δ(0))

≤ c1∥w∥W1/2
2 (B′

δ(0))
∥∇z′v∥W1/2

2 (B′
δ(0))

≤ ε∥∇z′v∥2
W1

2 (U)
+ c(ε)∥w∥2

W1
2 (U)

,

where W1/2
2,0 (B′

δ(0)) is the space with the norm ∥v∥2 = ∥v∥2
W1/2

2 (B′
δ(0))

+
∫

B′
δ(0)

|v|2 dz′
ρ(z′) ,

ρ(z′) = ρ(z′, ∂B′
δ(0)), ε > 0 is arbitrary, and the last summand is estimated by c∥g∥L2(Γ) (see

(46)). Here we rely on the conventional theorems on pointwise multipliers and Proposition
12.1 of Ch. 1 in [39]. Next, we repeat the arguments of the proof of the estimate (46). We
conclude that∫

U

n−1

∑
k,l=1

|vzkzl |
2 +

n−1

∑
k=1

|vznzk |
2 + |λ||∇z′v|2 dz ≤ c0(∥g∥2

W1
2 (Xb)

+ ∥g∥2
L2(Γ)

)|λ|−1/2+2ε7 ,

To establish (37), it suffices to prove the estimate

∥∇z′v∥2
Wα

2 (Γ)
+ ∥v∥2

Wα
2 (Γ)

≤ c1(∥g∥W1
2 (Xb)

+ ∥g∥L2(Γ))|λ|
α/2−1/2+ε7 , α ∈ (0, 1/2),

which is justified by repeating of the proof of (35). To validate the second part of the claim,
we first demonstrate the smoothness of a solution w. Take an arbitrary point b ∈ Kj and the
set Yb. Construct a function φ(y) ∈ C∞

0 (Rn) such that supp φ ⊂ Uδ. The function w0 = wφ
is a solution to the equation (48) from the space W2

2 (Yb ∩ G) satisfying (49) on Γ ∩ Yb and

−∆w0 = −
n

∑
i=1

aiw0xi − a0w0 − 2∇w∇φ − ∆φw ∈ W1
2 (Yb),

∂w0

∂ν
|Γ = −σw0 − φνw + gφ ∈ W3/2

2 (Γ ∩ Yb).

Using the conventional theorems on extension of boundary data inside the domain [29] 112

and Theorem §3 of Ch. 4 in [42], we conclude that w0 ∈ W3
2 (Yb ∩ G). 113

Consider the equation (50). Multiply (50) by ∆2
z′v and integrate the result over U. The 114

same arguments as those of the proof of the estimate (36) can be applied to justify (37), (39). 115

The calculations are rather cumbersome and we omit them. 116

Assume that the conditions (5) and (15) hold. In this case, for every j and b ∈ Kj, we 117

can consruct the balls Bj = Bδj(bj) and Bb
j = Bδj(b

b
j ). Let Yb,ε = {y ∈ Yb : |y′| ≤ ε} (ε ≤ δ). 118

Lemma 5. Let the conditions (5) and (15) hold. Then, for every j = 1, 2, . . . , r, there exists a 119

function φj ∈ C∞
0 (Rn) and constants ε0, ρ ∈ (0, δ/8) such that φj(x) = 1 for x ∈ Uρ = 120

Bδj+ρ(bj) ∪ ∪b∈Kj
Yb,ε0/2+ρ, φj(x) = 0 for x /∈ U3ρ, and ρ(supp |∇φj| ∩ G, Bb

j ) > 0 for all 121

b ∈ Kj. 122

Proof. In view of (15), it is not difficult to establish that there exists a parameter ε0 < δ/8
such that ρ(Bj \ ∪b∈Kj

Yb,δ, Γ) = δ0(δ) > 0 for all δ ≤ ε0 and Bb
j ∩ ∪b∈Kj

(Yb,ε0 ∩ Γ) = {b}
for all b ∈ Kj. Put δ0 = minδ∈[ε0/2,ε0]

δ0(δ). Obviously, δ0 > 0. Take ρ = min(ε0/8, δ0/8).
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Construct a nonnegative function ω(ξ) ∈ C∞
0 (Rn) such that supp ω ⊂ B1(0),

∫
Rn ω(ξ) dξ =

1 and the averaged function

φj(x) =
1
ρn

∫
Rn

ω(
ξ − x

ρ
)χU2ρ

(ξ) dξ,

where χU2ρ
(ξ) is the characteristic function of the set U2ρ. By construction, φj(x) = 1 for 123

x ∈ Uρ and φj(x) = 0 for x /∈ U3ρ. This function satisfies our conditions. 124

Let

u0(x) ∈ W1
2 (G), e−λt f ∈ L2(Q), e−λtαi ∈ W1/4

2 (0, T), Φi(x) ∈ W1/2
2 (Γ). (56)

The following theorem results from Theorem 7.11 for G = Rn
+ and Theorems 8.2 in 125

the case of the domain with compact boundary in [37]. 126

Theorem 3. Assume that T = ∞ and ai(x) ∈ L∞(G) (i = 0, 1, . . . , n). Then there exists a
constant λ0 ≥ 0 such that if λ ≥ λ0 and the condition (56) holds then there exists a unique solution
to the problem (1)-(2) such that e−λtu ∈ W1,2

2 (Q) and

∥e−λtu∥W1,2
2 (Q)

≤ C0(∥u0∥W1
2 (G) + ∥e−λt f ∥L2(Q) + ∥e−λtg∥W1/4,1/2

p (S)). (57)

Let E be a Hilbert space. Denote by W̃s
2,γ0

(0, ∞; E) the space of functions u defined on
(0, ∞) whose zero extensions ũ(t) to the negative semiaxis belong to Ws

2,loc(R; E) and∥∥e−γ0tũ(t)
∥∥

Ws
2(R;E) =

∥∥u(t)
∥∥

s,γ0
< ∞.

The Laplace transform L is an isomorphism of this space W̃s
2,γ0

(R+; E) onto the space Es,γ0

of analytic functions in the domain Re p > γ0 ≥ 0 such that

∥∥U(p)
∥∥2

s,γ0
= sup

γ>γ0

∫ ∞

−∞

∥∥U(γ + iτ)
∥∥2

E

(
1 + |γ + iτ|2s) dτ < ∞.

If E = C or E = L2(G) or E = Ws
2(G) (G is a domain in Rn) then these properties of 127

the Laplace transform can be found in [35] (see Theorem 7.1 and §8). For T < ∞, we 128

similarly define the space W̃s
2(0, T) as the subspace of functions in Ws

2(0, T) admitting the 129

zero extensions for t < 0 of the same class. This space coincides with Ws
2(0, T) for s < 1/2 130

and with the space of functions u ∈ Ws
2(0, T) such that u(0) = 0 for s > 1/2. For s = 1/2, 131

it coincides with the space of functions in W1/2
2 (0, T) such that ut−1/2 ∈ L2(0, T) [35]. 132

2. Basic results 133

We assume here that the conditions (5), (15), (17) are fulfilled. Let Ψ be the matrix with

entries Ψji = ∑b∈Kj
Φi(b)e

−φj(b)

Ij(b)
(i, j = 1, 2, . . . , r). We assume that

det Ψ ̸= 0, Φi(x) ∈ W1/2
2 (Γ), (58)

Φi(x) ∈ W1
2 (Xb) for n = 2, Φi(x) ∈ W2

2 (Xb) for n = 3, b ∈ ∪r
j=1Kj. (59)

Fix a parameter λ0 > 0 greater than the maximum of the parameters defined in
Theorem 1 with δ0 = π/2, Theorem 2 with p = 2, and Theorem 3. We assume that

u0(x) ∈ W1
2 (G), e−γ0t f ∈ L2(Q). (60)
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By Theorem 3, if the condition (60) holds for some γ0 ≥ λ0 then there exists a unique
solution w0 to the problem (1)-(2), where g = 0, such that e−γ0tw0 ∈ W1,2

2 (Q). Consider the
problem (1)-(3). Changing the variables w = u − w0, we obtain the simpler problem

wt + Lw = 0, Bw|S = g(t, x), w|t=0 = 0, (61)

w(bj, t) = ψj(t)− w0(t, bj) = ψ̃j(t), j = 1, 2, . . . , r. (62)

We assume that ψ̃j(t) ∈ L2(0, T) and

ψ̃j(t) =
∫ t

0
Vδj(t − τ)ψ0j(τ)dτ, ψ0je−γ0t ∈ W̃n/4

2 (0, T) (n = 2, 3), (63)

where Vγ(t) = e−γ2/4t

4πt for n = 2 and Vγ = γe−γ2/4t

2
√

πt3/2 for n = 3. For T = ∞, the condition (63)
can be rewritten as

sup
σ>γ0

∫ ∞

−∞
|σ + is|n/2eRe

√
pδj |L(ψ̃j)(σ + is)|2 ds < ∞, p = σ + is. (64)

For a finite T, the condition (63) can be stated as follows: there exists an extension of ψ̃j on 134

(0, ∞) satisfying (64). We have V̂γ(λ) =
i
4 H(1)

0 (i
√

λγ) = 1
2
√

2πγλ1/4 e−
√

λγ
(

1 + O
(

1√
|λ|

))
135

for n = 2 and V̂γ(λ) = e−
√

λγ for n = 3. Here H(1)
0 is the Hankel function. The latter 136

equality is derived in Lemma 1.6.7 in [43]. The former can be easily obtained if we use 137

the Poisson formula for a solution to the Cauchy problem for the heat equation with the 138

right-hand side equal to the Dirac delta function. 139

Theorem 4. Assume that T = ∞ and the conditions (5), (15), (58), (59), and (38) for n = 3 140

hold. Then there exists λ1 ≥ λ0 such that if Re λ = γ0 ≥ λ1 and the conditions (60), (63) are 141

fulfilled then there exists a unique solution to the problem (1)-(3) such that e−γ0tu ∈ W1,2
2 (Q), 142

e−γ0tαi(t) ∈ W1/4
2 (0, T) (i = 1, 2, . . . , r). 143

Proof. Consider the equivalent problem (61)-(62). Assuming that w ∈ W1,2
2 (Q) and apply-

ing the Laplace transform to (61), we arrive at the problem

L0ŵ = λŵ + Lŵ = 0, Bŵ|Γ =
r

∑
i=1

α̂iΦi(x) = ĝ, (65)

ŵ(bj) =
ˆ̃ψj, j = 1, 2, . . . , r. (66)

Next, we use the functions vj, vb
j constructed before Lemma 3. Theorem 1 yields vj ∈

W2
2 (Gj(ε)), Gj(ε) = {x ∈ G : |x − bj| ≥ ε} for all j = 1, . . . , r, ε > 0. Construct the

functions wj = φj(vj + ∑b∈Kj
vb

j Dj), Dj =
I∗j (b)e

φb
j (b)−φj(b)

Ij(b)
, where the functions φj are defined

in Lemma 5. The properties of the functions vb
j imply that φj ∑b∈Kj

vb
j Dj ∈ W2

2 (G). Lemma
1 imply that

r

∑
i=1

α̂i

∫
Γ

Φi(x)wj dΓ =
∫

Γ
ŵ(

∂wj

∂ν
+ σ∗wj) dΓ − 2

∫
G

ŵ∇φj∇wj dx

+
∫

G
−ŵ

n

∑
i=1

ai φjxi wj dx −
∫

G
ŵ∆φjwj dx + ˆ̃ψj = Aj(ŵ) + ˆ̃ψj, (67)
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where the function ŵ is a solution to the problem (65). Consider the case of n = 3. The case
of n = 2 is considered by analogy. For the integral on the left-hand side, we have

∫
Γ

Φi(x)wj dΓ =
∫

Γ
Φi(x)φj(vj + ∑

b∈Kj

vb
j Dj) dΓ = ∑

b′∈Kj

∫
Xb′

Φi(x)φj(vj + ∑
b∈Kj

vb
j Dj) dΓ.

However, only two summands with vj and vb′
j are essential on the set Xb′ . Indeed, in view

of (16), for b ̸= b′ and b ∈ Kj, we infer

|
√

λvb
j eδj

√
λ|+ |eδj

√
λ|∇vb

j || ≤ c1e−q0
√

|λ| ∀x ∈ Xb′ ,

where q0 > 0 is a constant independent of λ. This inequality implies that the remaining
integrals decay exponentially. By Lemma 3, we have

eδj
√

λ
√

λ
∫

Γ
Φi(x)wj dΓ = ∑

b′∈Kj

Φi(b′)e
−φj(b′)

Ij(b′)
(1 + O(|λ|−β)) = Ψji(1 + O(|λ|−β)). (68)

Consider the right-hand side in (67). The integrals over the domain are estimated by means
of Lemma 5. On the support of |∇φj|, Theorem 1 and Lemma 5 ensure the estimate

|eδj
√

λ|(|vj|+ |∇vj|+ ∑
b∈Kj

(|vb
j |+ |∇vb

j |) ≤ c2e−ε13
√

|λ|,

where the constants c2, ε13 > 0 are independent of λ. The Hölder inequality yields

eδjRe
√

λ
∣∣∣−2

∫
G

ŵ∇φj∇(vj + ∑
b∈Kj

vb
j Dj) dx −

∫
G

ŵ
n

∑
i=1

ai φjxi (vj + ∑
b∈Kj

vb
j Dj) dx

−
∫

G
ŵ∆φj(vj + ∑

b∈Kj

vb
j Dj) dx

∣∣∣ ≤ c3∥ŵ∥L2(G)e
−ε13

√
|λ|/2. (69)

Examine the integrals over Γ in the right-hand side of (67). We have

∫
Γ

ŵ(
∂wj

∂ν
+ σ∗wj) dΓ = ∑

b∈Kj

( ∫
Xb

ŵφj
∂

∂ν
(vj + vb

j Dj) dΓ +
∫

Xb

ŵ
∂φj

∂ν
(vj + vb

j Dj) dΓ+

∫
Xb

ŵσ∗φj(vj + vb
j Dj) dΓ +

∫
Xb

ŵ ∑
b′∈Kj ,b′ ̸=b

∂(φjvb
j Dj)

∂ν
dΓ +

∫
Xb

ŵσ∗φj ∑
b′∈Kj ,b′ ̸=b

vb
j Dj dΓ

)
.

(70)

As in the estimate (69), the last two integrals are estimated by

∣∣∣∫
Xb

ŵ ∑
b′∈Kj ,b′ ̸=b

∂(φjvb
j Dj)

∂ν
dΓ+

∫
Xb

ŵσ∗φj ∑
b′∈Kj ,b′ ̸=b

vb
j Dj dΓ

)∣∣∣ ≤ c4∥ŵ∥L2(Γ)e
−ε12

√
|λ|/2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2022                   doi:10.20944/preprints202204.0102.v1

https://doi.org/10.20944/preprints202204.0102.v1


Version April 8, 2022 submitted to Mathematics 17 of 23

in view of (16). Estimate the second and third integrals. In view of Theorem 3 and estimates
of Lemma 5 (see (27)), they admit the estimates

∣∣∣∫
Xb

ŵ
∂φj

∂ν
(vj + vb

j Dj) dΓ +
∫

Xb

ŵσ∗φj(vj + vb
j Dj) dΓ

∣∣∣ ≤
c5∥w(x(z′, 0))∥L∞(B′

δ/2(0))
ce−δj

√
Re λ

∫
B′

δ(0)
e−Re

√
λ(|y−bj |−δj) + e−Re

√
λ(|y−bb

j |−δj)dy′ ≤

c6∥ŵ(xb(z))∥L∞(B′
δ/2(0))

e−δjRe
√

λ/
√
|λ|,

where x = xb(z) is the straightening of the boundary in Xb. It remains to consider the first
integral

Ib =
∫

Xb

ŵφj
∂(vj + vb

j Dj)

∂ν
dΓ = ŵφj(b)

∫
Xb

∂(vj + vb
j Dj)

∂ν
dΓ+

∫
Xb

(ŵφj(x)− ŵφj(b))
∂(vj + vb

j Dj)

∂ν
dΓ (71)

Note that φj(b) = 1. Lemma 5 ensures the following representation for the first integral I1
on the right-hand side of (71):

I1 = e
√

λδj
(∫

Xb

∂vj

∂ν
dΓ +

∫
Xb

∂vb
j Dj

∂ν
dΓ

)
=

−e−φj(b)

2Ij(b)
(1 + O(|λ|−1/4)) + Dj

e−φb
j (b)

2I∗j (b)
(1 + O(|λ|−1/4)) = O(

1
|λ|1/4 ).

The second integral on the right-hand side of (71) in view of Lemma 5, (28), and (32) is
estimated as follows:

∣∣∣∫
Xb

(ŵφj(y)− ŵφj(b))
∂(vj + vb

j Dj)

∂ν
dΓ

∣∣∣ ≤
c1∥ŵ(xb(z))∥C1(B′

δ/2(0))

∫
X̃b

|y′|
√
|λ|(e−Re

√
λ(|y−b|+δj) + e−Re

√
λ(|y−bb

j |+δj))dy′ ≤

c2∥ŵ(xb(z))∥C1(B′
δ/2(0))

|λ|−1/4. (72)

Thus, in view of (70)-(72), we have the inequality

|e
√

λδj Aj(ŵ)| ≤ c3( ∑
b∈Kj

(∥ŵ(xb(z))∥C1(B′
δ/2(0))

|λ|−1/4 + (∥w∥L2(G) + ∥w∥L2(Γ)), e−ε14Re
√

λ)

with some constant ε14 > 0. Next, we employ Lemma 4. The embedding theorems for
n = 3 and Lemma 4 imply that

∥ŵ(xb(z))∥C1(B′
δ/2(0))

≤ c∥ŵ(xb(z))∥W2
2 (B′

δ/2(0))
≤ (∥g∥W2

2 (B′
δ)
+ ∥g∥L2(Γ))λ|

−1/2+ε,

where ε is an arbitrarily small constant. Similarly, Lemma 4 ensures that

∥ŵ∥L2(G) + ∥ŵ∥L2(Γ) ≤ c|λ|−1/2+ε∥g∥L2(Γ).

In view of the conditions on the functions Φj, there exists a constant c2 such that

∥g∥W2
2 (B′

δ)
+ ∥g∥L2(Γ) ≤ c2 |⃗α̂|.
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Therefore, we have the estimate

|e
√

λδj Aj(ŵ)| ≤ c3 |⃗α̂|λ|−1/4−1/2+ε, (73)

where ε > 0 is an arbitrarily small constant. We can rewrite (67) in the form

e
√

λδj
√

λ
r

∑
i=1

α̂i

∫
Γ

Φi(x)vj dΓ = e
√

λδj
√

λAj(ŵ) + ˆ̃ψje
√

λδj
√

λ, j = 1, 2, . . . , r.

The left-hand side of this equality is written as Ψ̃(λ)⃗α̂, where the entries the matrix Ψ̃(λ)
are of the form Ψij(1 + O(|λ|−β)). The right-hand side is written in the form

A(λ)⃗α̂ = β⃗ + S0 (⃗α̂), ⃗̂α = (α̂1, . . . , α̂r), (74)

where the coordinates of the vectors β⃗, S0 (⃗α̂) are as follows:

β j =
√

λeδj
√

λ ˆ̃ψj, S0j =
√

λeδj
√

λ Aj(ŵ), j = 1, . . . , r.

It is more convenient to rewrite the system (74) in the form

⃗̂α = A(λ)−1 β⃗ + A(λ)−1S0 (⃗α̂). (75)

Choose λ1 ≥ λ0 so that the matrix A(λ) is invertible for Reλ ≥ λ1 ≥ λ0 and the norm of
the operator A−1 : Rr → Rr is bounded by a constant c0 for all Re λ ≥ λ1. Estimate the
norm of the operator A(λ)−1S0 (⃗α̂). In view of (73), we have the estimate

|A(λ)−1S0 (⃗α̂)| ≤ c0

r

∑
j=1

|S0j| ≤ c1 |⃗α̂||λ|−1/4+ε. (76)

Thus, for ε < 1/4, increasing the parameter λ1 if necessary, we can assume that c1|λ|−1/4+ε ≤
1/2 for Re λ ≥ λ1. The norm of the operator A(λ)−1S0 (⃗α̂) : Cr → Cr is less than 1/2 in
this case and, thereby, the equation (75) has a unique solution. Constructing a solution ⃗̂α to
the equation (75), we can find a solution ŵ ∈ W2

2 (G) to the problem (61), where Re λ ≥ λ1.
In view of our conditions, the estimates of Lemma 4 holds. Let Re λ ≥ λ1. In view of the
equation (75), a solution ⃗̂α meets the estimates |⃗α̂| ≤ 2c0|β⃗|. Hence, we infer

r

∑
j=1

|α̂i|2 ≤
r

∑
i=1

|λ||e2δj
√

λ| ˆ̃ψj|2,

where the constant c1 is independent of λ. The properties of Laplace transform validate the

equality ˆ̃ψj = V̂δj(λ)
ˆ̃ψ0j = e−

√
λδj ψ̂0j and the previous inequality yields

sup
γ>λ

∫ ∞

−∞

r

∑
i=1

|γ + iξ|1/2|α̂i(γ + iξ)|2 dξ ≤

C sup
γ>λ

∫ ∞

−∞

r

∑
i=1

|γ + iξ|3/2∥ψ̂0j(γ + iξ)∥2 dξ ≤ C
r

∑
j=1

∥e−λtψ0j∥2
W3/4

2 (0,∞)
< ∞. (77)

This inequality ensures that the inverse Laplace transform is defined for the functions α̂i,
αi(t)e−λt ∈ W1/4

2 (0, ∞), and

r

∑
i=1

∥αie−λt∥2
W1/4

2 (0,T)
≤ C

r

∑
j=1

∥e−λtψ0j∥2
W3/4

2 (0,∞)
< ∞. (78)
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Note that the additional smoothness of the functions ψ̃i ensures the additional smoothness 144

of the functions αi. Consider the problem (61) with the above constructed functions α⃗. 145

By Theorem 3, there exists a unique solution to this problem such that e−λtw ∈ W1,2
2 (Q). 146

Demonstrate that this function satisfies (62). Indeed, applying the Laplace transform, we 147

obtain that ŵ is a solution to the problem (65). Multiplying the equation in (65) by wj and 148

integrating by parts we obtain (67) with ŵ(bj) rather than ˆ̃ψj. Since α̂j satisfy (67) with the 149

functions ˆ̃ψj on the right-hand side, we obtain ˆ̃ψj = ŵ(bj). 150

Consider the case of n = 2. The arguments are the same. However, in view of another
asymtotics of the function V̂δj the inequality (78) can be rewritten as

r

∑
i=1

∥αie−λt∥2
W1/4

2 (0,T)
≤ C

r

∑
j=1

∥e−λtψ0j∥2
W̃1/2

2 (0,∞)
< ∞.

In view of the above arguments, uniqueness of solutions is obvious. 151

State our theorem in the case of a finite interval (0, T). The condition (60) looks as
follows:

u0(x) ∈ W1
2 (G), f ∈ L2(Q). (79)

Theorem 5.. Assume that T < ∞ and the conditions (5), (15), (58), (59), (79), (63), and (38) for 152

n = 3 hold. Then there exists a unique solution to the problem (1)-(3) such that u ∈ W1,2
2 (Q), 153

αi(t) ∈ W1/4
2 (0, T) (1 = 1, 2, . . . , r). 154

Proof. Extend the functions ψ0j on (0, ∞) as compactly supported functions of the same
class. The conditions (63) are fulfilled for every λ. Extend the function f by zero on (0, ∞).
Theorem 4 ensures existence of a solution to the problem (1)-(3). Now we prove uniqueness
of solutions. Assume that there are two solutions of the problem from the class pointed out
in the statement of the theorem. In this case, their difference v(t, x) ∈ W1,2

2 (Q) is a solution
to the problem

vt + Lv = 0, (t, x) ∈ Q.

Bv|S = g(t, x) =
r

∑
i=1

αiΦi, v|t=0 = 0, v(bj, t) = 0, j = 1, 2, . . . , r.

Integrating the equation and the boundary condition with respect to time two times, we
obtain that the function v0 =

∫ t
0

∫ τ
0 v(ξ) dξdτ is a solution to the problem

v0t + Lv0 = 0 ((t, x) ∈ Q), Bv0|S = g0(t, x) =
r

∑
i=1

α0iΦi, (80)

v0|t=0 = 0, v0(bj, t) = 0, α0i =
∫ t

0

∫ τ

0
αi(ξ) dξdτ, j = 1, 2, . . . , r. (81)

Make the change of variables v0 = eλtw (Re λ ≥ λ0). We have

wt + Lw + λw = 0, (t, x) ∈ Q. (82)

Bw|S = e−λtg0(t, x), w|t=0 = 0, w(bj, t) = 0, j = 1, 2, . . . , r. (83)

Integrating (82) over (0, T), we obtain that

Lw̃ + λw̃ = −w(T, x), Bw̃|Γ =
∫ T

0
e−λtg0(t, x) dt, w̃(bj) = 0, w̃ =

∫ T

0
w(τ, x) dτ. (84)
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Let α̂i =
∫ T

0 e−λtα0i(t) dt. Make the change of variables w̃ = w0 + w1, with w1 a solution to
the problem (L + λ)w1 = −w(T, x) = e−λTv0(T, x), Bw1|Γ = 0, and, respectively, w0 is a
solution to the problem

Lw0 + λw0 = 0, Bw0|Γ =
r

∑
i=1

α̂iΦi(x), w0(bj) = −w1(bj). (85)

Note that w(T, x) ∈ W1
2 (G) and, thereby, w1 = −(L + λ)−1w(T, x) ∈ W2

2 (G). Since
W2

2 (G) ⊂ C(G) [29], we have the estimate (see Theorem 7.11 for G = Rn
+ and Theorem 8.2

in the case of a domain with compact boundary in [30])

|w1(bj)| ≤ c0e−Re λT∥v0(T, x)∥L2(G) ≤ c1e−Re λT . (86)

Multiply the equation (85) by the function wj defined in the proof of the previous theorem
and integrate over G. As in the proof of Theorem 4, we obtain the system (see (75))

⃗̂α = A(λ)−1 β⃗ + A(λ)−1S0 (⃗α̂), (87)

where the coordinates of β⃗ are written as β j = −
√

λe
√

λδj w1(bj). The system can be
rewritten as follows

⃗̂α = (I − A(λ)−1S0)
−1 A(λ)−1 β⃗, (88)

where the right-hand side is analytic for Re λ ≥ λ1 and we have

∥(I − A(λ)−1S0)
−1 A(λ)−1 β⃗∥Cr ≤ c2∥β⃗∥Cr ,

where c1 is independent of λ. Thus, every of the quantities α̂i is estimated by

|α̂i| ≤ c3

r

∑
j=1

√
λe

√
λδj e−Re λT , Re λ ≥ λ1. (89)

The function Si(z) =
∫ T

0 α0i(t)e−λ1te−zt dt is the Laplace transform of the function s̃i(t) =
α0i(t)e−λ1t for t ≤ T and s̃i(t) = 0 for t > T. Fix ε > 0 and define an additional function
W(z) = zez(T−ε)Si(z). It is analytic in the right half-plane and is bounded by some constant
C1 on the real semi-axis R+. Estimate this function on the on the imaginary axis. Integrating
by parts, we have

Si(z) =
−1

λ1 + z
(α0i(T)e−λ1Te−zT +

∫ T

0
α′0i(t)e

−λ1te−zt dt).

For z = iy, we thus have the estimate

|W(z)| ≤ c4(|α0i(T)|+ ∥α′0i∥L1(0,T)) = c5 ∀z = iy, y ∈ R.

In each of the sectors 0 ≤ argz ≤ π/2, −π/2 ≤ argz ≤ 0 the function W(z) admits the
estimate

|W(z)| ≤ e|z|(T−ε)c6(|α0i(T)|+ ∥α′0i∥L1(0,T)) ∀Re z ≥ 0.

Applying the Fragment-Lindelef Theorem (see theorem 5.6.1 in [40]) we obtain that in each
of the sectors 0 ≤ argz ≤ π/2, −π/2 ≤ argz ≤ 0 the function W(z) admits the estimate

|W(z)| ≤ max(C1, c5) = C2 ∀Re z ≥ 0.
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Therefore, |Si(z)| = |L(s̃i(t))(z)| ≤ C2e−(T−ε)Re z/|z| ∀Re z ≥ 0. We have equality (σ ≥
λ1, p = σ + iξ)

s̃j(t) =
1

2πi

∫ σ+i∞

σ−i∞
eptL(s̃j)(p) dp =

1
2π

∫ ∞

−∞
eσteiξtL(s̃j)(σ + iξ) dξ.

and, thereby,

s̃j(t)e−σ(t−(T−ε)) =
1

2π

∫ ∞

−∞
eiξteσ(T−ε)L(s̃j)(σ + iξ) dξ.

The Parseval identity yields

∥s̃j(t)e−σ(t−(T−ε))∥2
L2(R) =

1
2π

∞∫
−∞

e2σ(T−ε)|L(s̃i)(σ + iξ)|2 dξ ≤
C2

2
2π

∞∫
−∞

1
σ2 + ξ2 dξ ≤

C2
2

2σ
.

Since this inequality is true for all σ > λ1, s̃i(t) = 0 for t ≤ T − ε. Since the parameter ε is 155

arbitrary, α0j(t) = 0 for t ≤ T and αj(t) = 0 for t ≤ T and every j and, therefore, g(t, x) = 0 156

which implies that v = 0. 157

3. Discussion 158

We consider inverse problems of recovering surface fluxes on the boundary of a 159

domain from pointwise observations. These problems arise in many practical applications 160

but there are not theoretical results concerning with the existence and uniqueness questions. 161

The problems are ill-posed in the Hadamard sense. The results can be used in developing 162

new numerical algorithms and provide new conditions of uniqueness of solutions to these 163

problems. We consider a model case but it is clear what changes should be made in the 164

general case for validating similar results. The main conditions on the date are conventional. 165

The only distinction is the conditions on the data of measurements in the reduced problem 166

which must belong to some special class of infinitely differentiable functions. The proof 167

relies on a asymptotics of fundamental solutions to the corresponding elliptic problems 168

and the Laplace transform. 169
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