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0. Introduction
Under consideration is the parabolic equation

Mu=us+Lu= f(t,x), (t,x) € Q=1(0,T) xG, T < oo, 1)

where Lu = —Au + Y a;(x)uy, + ag(x)u, G is a domain in R” with boundary ' € C?,
and n = 2, 3. The equation (1) is furnished with the initial-boundary conditions

Buls = g(t,x) (S=(0,T) xT), ul—o = up(x), )

where Bu = g—z + o(x)u, with v the outward unit normal to I, and, respectively, with the

overdetermination conditions

u(t/bi) :lpi(t) (i:1,2,...,r), (3)

where {b;}/_, is a collection of points lying in G. The problem is to find a solution to the
equation (1) satisfying (2)-(3) and an unknown function g(t, x) = Z]r-zl a;(t)®;(x), where
the functions ®;(x) are given and «; are unknowns.

Inverse problems of recovering the boundary regimes are classical. The arise in many
different problems of mathematical physics, in particular, in the heat and mass transfer
theory, diffusion, filtration (see [1], [2]), and ecology [3]-[7].

A particular attention is payed to numerical solving the problems (1)-(3) and close to
them. Most of the methods are based on reducing the problems to optimal control problems
and minimization of the corresponding quadratic functionals (see, for instance, [8-14]). But
the problem is that these functionals can have several local minima (see Sect. 3.3 in [15]).
First, we describe some articles, where pointwise measurements are employed as additional
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data. Numerical determination of constant fluxes in the case of n = 2 is described in [9].
Similar results are presented in [16] for n = 1. The three-dimensional problem of recovering
constant fluxes of green house gases is discussed in [3]. But numerical results are presented
only in the one-dimensional case. In [4] (see also [5]) the method of recovering a constant
surface flux relying on the approach developed in [17] is described, where special solutions
to the adjoint problem are employed (see also [6,7]). The surface fluxes depending on t are
recovered in [12,18-20] in the case of n = 1, and in [11,21,22] in the case of n > 1. The flux
depending on time and spatial variables is reconstructed in [14,23].

It is sometimes the case when additional Diriclet data are given on a part of the
boundary and the flux is reconstructed with the use of this data on another part of the
boundary (see [24]). The article [13] is devoted to recovering of the flux h(t, x)f(x) (the
function f(x) is unknown) with the use of final or integral overdetermination data. The
existence and uniqueness theorems for solutions to the inverse problems of recovering the
surface flux with the use of integral data are presented in [25,26].

There is a limited number of theoretical results devoted to the problem (1)-(3). We
refer the reader to the article [27] (see also [28]), where, in the case of Mu = u; — Au, r =1,
and by € I, the existence and uniqueness theorems of classical solutions to the problem
(1)-(3) are established. In contrast to our case, the problem is well-posed in the Hadamard
sense. If the points {b;}}_, are interior points of G then the problem becomes ill-posed and
this fact was observed in many articles. In this article we describe a new approach to the
existence theory of solutions to this problem and establish the corresponding existence and
uniqueness theorems. We hope that these results can be used in developing new numerical
algorithms for solving the problem.

1. Preliminaries

Let E be a Banach space. By L,(G;E) (G is a domain in R"), we mean the space
of E-valued measurable functions such that || H”(X)HEHLP(G) < 00 [29]. The symbols
W, (G;E) and W;(Q; E) stand for the Sobolev spaces (see the definitions in [29], [30]).
If E = Ror E = R” then the latter spaces is denoted by W;(Q). The definitions of

the Holder spaces C*#(Q), C%#(S) can be found in [31]. By the norm of a vector, we
mean the sum of the norms of coordinates. Given an interval | = (0, T), put W,"(Q) =
W (J; Lp(G)) N Ly(J; W5(G)) and, respectively, W' (S) = W;(J; Lp(T)) N Lp(J; WH(T)).
Denote by (1,0)g = [ u(x)o(x)dx the inner product in L,(G). Let p(Y, X) designate the
distance between the sets X, Y. In this case, p(x,I') is the distance from a point x to T.
Denote by Bs(x) the ball of radius J centered at x.

We say that a boundary I' of a domain G belongs to C°, s > 1 (see the definition in [31,
Ch.1]) if, for each point xg € I, there exists a neighborhood Yy, about xg and a coordinate
system y (the local coordinate system) obtained from the initial one by the translation of
the origin and rotation such that the axis y, is directed as the interior normal to I" at xp and
the equation of the part Yy, N T of the boundary is of the form y, = y(y'), v(0) =0,y =
(Y1,---,Yn—1); moreover, y € C°(B}(0)) (B5(0) = {y' : || <d}), GNYy, ={y: V]| <
3,0 <yn—79) <&}, and R*"\G)NYy, ={y: || <9,—01 <yn—7) <0}. The
smoothness of I'y C I', with I'y an open subset of I, is defined similarly. The numbers J,
for a given G are fixed and we can assume without loss of generality that &, > (2M + 1)J,
with M the Lipschitz constant of the function . We employ the straightening of the
boundary, i. e., the transformation z, = y, — v(y'), 2’ = ¥/, y = y(x), with y the local
coordinate system at a given point b.

Below, we assume that G = R’} = {x € R": x,; > 0} or G is a domain with compact
boundary of the class C2. The coefficients of the equation (1) are assumed to be real. We
consider an elliptic operator L, i. e., there exists a constant 6y > 0 such that

n
2 a;iGiGj > 50|E]> V& € R", Vx € G.
ij=1


https://doi.org/10.20944/preprints202204.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 April 2022 d0i:10.20944/preprints202204.0102.v1

30f23

Assignd = (a1,a;) forn =2 and @ = (a1, a,,a3) for n = 3. The symbol (-, -) stands for an
inner product in R". Let

9i(x 2/ a(bj +T(x — b)), (x — b)) dT @)
and assume that
a; € WL(G) (i=1,...,n), Vg, Ap; (j=1,...,7),a0 € Lu(G), c € C/(T). (5

Moreover, we suppose that the functions a; admits extensions to the whole R" such that
the condition (5) is valid in G = R". If G is a domain with compact boundary of the class
C? such an extension always exists (see, Theorem 1 in Subsect. 4.3.6 of Sect. Remarks in
[32]). Consider the equation

L*u—l—Xu:é(x—bj), xeR"(n=23),j=12,...,r1, (6)

where the operator L* is a formally adjoint to L. Its coefficients also satisfy (5). Let
bj = (b},...,b]’-‘). Introduce the functions A* = |A[%8A% |arg A| < 7. Tt follows from
Theorems 3.5 and 3.1 in [33] and Theorem 3.3 in [34] that

Theorem 1. Assume that G = R" (n = 2,3) and the conditions (5) hold. Fix éy € (0, 7t). Then
there exists a number Ay > 0 such that, for all A with |arg (A — A1)| < 11— &y, there exist a
unique solution u,(x) (n = 2,3) to the equation (6) decreasing at oo such that u, € W; (G) for
allp e (1,n/(n—1)),and u, € W3(Ge) foralle >0, Ge = {x € G: |x —bj| > ¢}. In every
domain 0 < & < [x — bj| < R a solution u, admits the representation

1 —; VA|x—bj|
uy(x) = e 9= 1+0 (7)
2, /27|x — bj|AL/4 ( (\/W))
A4 0 ()= VAx=bi|  x; —bl 1
Min(x): ‘ (|xl_b| O(\/T)), ®)
2\/2m|x — b;| Al

_ 1 gVl
us(x) = 47t|x—bj|e ! (1+O(\/W>) ©
_ﬁe—%(x)—ﬁ\x—bj\ X —bl 1
X - O . 10
U3, (x) 47'£|x—b]-| (|x—b| (\/W)) (10)

In what follows, we denote by v;(x) a solution u, obtained in Theorem 1 for a given j.
Consider the problem

Lw+Aw = f(x) (x€ G), Bw|s=g,, (11)

where G = R" or G = R". or G is a domain with compact boundary of the class C2.

Theorem 2. Let a; € Loo(G) (i = 0,1,...,1n), f € L,(G), 0 € C(T), and g € W2 l/p(l")
(p > 1). Then there exists a number Ay > 0 such that, for all A with ReA > Ay, there exists a
unique solution w € W;(G) to the problem (11).

The theorem results from Theorem 5.7 for G = R", Theorem 7.11 for G = R’} and
Theorem 8.2 in the case of a domain with compact boundary in [30].
The following Green formula holds.
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Lemma 1. Let the conditions (5) hold and let Re A > A, where A is chosen so that Theorem 2 is
valid for p = 2. If w € W2(G) is a solution to the problem (11) with f = 0 from the class specified
in Theorem 2 then

/(—a—w—Uw)i—kw(%—f—a*v-)—f—w(b) =0,0"=0+ ia-v- (12)
r ov / v ] I ’ =t

If p(x) € C§(R") and ¢ = 1 in some neighborhood about bj, then

ow o 9¢u; . "
/(—a—v —aw)(pv]-—f—w(a—v + o*gv;) +w(b;) = / ZV(vaj—i—Agvv]-—i—Zai(pxivdx. (13)
r G i=1

Proof. The proof is conventional. It suffices to approximate the functions w, v; by sequences
of smooth functions in the corresponding norms, to write out the above formulas (12), (13)
for these approximations, and pass to the limit. [

Assume that G = R or G is a domain with compact boundary of the class C2. Given
a collection of points b; € G (j = 1,2,...,r), construct points b € I such that J; = p(b;, ') =
|b — bj|. Denote by K; the set of these points. Let b € K;. Take n = 3. There exists a local
coordinate system y such that the axes y1,y, agree with the principal directions on the
surface I' at y = 0, in this case, 212,]':1 Yy (0)YiYj = Ty (0)¥3 + V212 (0093, Yy, (0) =0,
where k; = 7y,,(0) are the principal curvatures of the surface y3 = y(y') (v = (v1,2)) at
0. In the case of n = 2, the equation of the boundary in some neighborhood about b is of
the form y, = y(y1) and x = 7" (0) is the curvature of the curve 1y at b.

Lemma 2. Assume that, for every j =1,2,...,r, the set K; consists of finitely many points and,
for every b € K;, we have

max(x1,%p) < 1/6;, where n =3, xk <1/;, where n =2, (14)

where «; are principal curvatures of I at b* for n = 3 and « is the curvature of I' for n = 2. Then
there are constants co,c; > 0,0 < &1 < & such that co|x — b|*> < |x — b;| — 6 <cplx— b|? for
every b € Kjand all x € Be,(b)NT,j=1,2,...,r.

Remark 1. For n = 3, the condition (14) can be reformulated as follows. There exists a constant
qo € (0,1) such that Y5 ;1 vy, (O)yiys < qoly'|/6; ¥y € R?, j =1,2,...,r, where y is a
local coordinate system at b € K;. The claim follows from the fact that there exists an orthogonal
transformation of coordinates such that the new axes i1, i, agree with the principal directions on
the surface I at y = 0.

Proof. Take b € K;. We prove the claim in the case of n = 3. If n = 2 then the proof
is simpler and we omit it. Let y be a local coordinate system at b. Since y = y(x) is a
superposition of an orthogonal transformation and a translation, the distances between
points and their images are the same. We have b = 0, b; = (0,0,y3;), x = (', y(v')) (v’ =

(y1,y2), [x = bl = V1Y > +92(), |bj — b| = |ysj| = 6, |x —bj| = \/Iy/l2 +1r(v') —y3l°

and

2 2
TR ey WD A k3 - B
J ] |x—bj|+5]- |xfb]'|+(5]‘ ’

Remark 1 implies that

1 n—1
YY) =5 1 oy Oy +o(ly' 1) < qoly' /265 + o(ly' )
ij=1
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in some neighborhood about 0. Fix a parameter ¢y > 0 such that g9 + g9 < 1. In this case
there exists 41 < 4 such that

qoly'[>/26; + o(|y'[*) < (e0 + q0) |y 7 /26

for |y'| < &1. Therefore, we obtain

[ > WP = (g0 +e0) +

2
X b to > colx —bJ%, co > 0.
] ]

The converse inequality follows directly from the definition of the quantity J.
Below, we preserve the notations of Lemma 2. Take b € K;. We can define the transfor-

mations y = y(x) and x = x(y). For n = 3, put ¢;(b) =1/, /1 — &jx, dj(b) = 1/, /1 = djxa,
Ii(b) = cj(b)d;(b), c]’f(b) = 1/,/1+djx1, d}‘(b) = 1/,/1+djxa, I]f*(b) = c;f(b)d]’f(b),
Bia(b) = {x € T : y2(x)/3(b) + B(x)/B(b) < [V}, Bu(b) = {y € R :
/() + y3/d3(b) < A7V}, By (b) = {x € T : 3(x)/c2(b) + y3(x)/d2(b) <
AT}, B (b) = {y € B2+ 43/c2(b) + 3/d2(b) < [A|7V/2H0), where the pa-
rameter g € (0,1/4) is chosen below. The map y = y(x) takes B, (b) onto B, (b).
Similar notations are used in the case of n = 2, i. e, I;(b) = c¢j(b) = 1/,/1—Jx,
I[F(b) = c;(b) = 1/, /146, Bin(b) = {x € T : [y1(x)[/¢j(b) < [A[7V/#T%0/2}, By (b) =
{y1 € R+ |nl/cj(b) < |A|7V/*90/2}, By (b) = {x € T« |y1(x)]/¢;(b) < [A|71/ 40072,

B;‘A(b) ={nn € R: [nl/cj(0) < |A|71/4+%0/2} " Below, we assume that, for every
j=12,...,r, theset K]- consists of finitely many points and

Vi=12,...,r, Vb€ K; \Ki|(5j <1(i=12)forn=3, |K|(5j <1forn=2, (15)

where «; are the curvatures of I for n = 3 and, respectively, « is the curvature of I for n = 2.
Let v; be a solution to the equation (6). Given b € Kj, construct the point b]b lying

on the straight line joining b; and b and such that é; = |b; — b| = [b — b;-’|, |b; — b;-’| = 24;.
The point bﬁ.’ is symmetric to b; with respect to the surface I'. Let v;’ be a solution to the
equation (6), where the point b; is replaced with b;’ . Denote by qo? the functions defined by
the equality (4), where b; is replaced with b]l-7 . In what follows, we assume that the closures
of coordinate neighborhoods about the points b € K; are disjoint, otherwise, we can always
decrease them. Fix a point b € K;. The quantity minc K; b/ b |/ — b]b| — d; is positive (it
depends on §; and the angles between the vectors IE; and lﬁ;). Let X, = Y, NT (Y} is the

coordinate neighborhood about b). Without loss of generality, we can also assume that
the constant miny ¢ K; b/ b (X, b}’ ) — ¢; is positive for all b € K; and all j, otherwise, we

decrease the parameter & of the coordinate neighborhoods Y;. Denote by ¢’ > 0 a constant
smaller than the minimum of these constants. Theorem 1 for b # b’ and b € K; yields

VAR + [Vl < cre=VIN2 Wx € Xy, (16)

where ¢; > 0 and go € (0,1) are constants independent of j, b € K;, and A such that
Re A > Aq (see Theorem 1). [

Lemma 3. Assume that the conditions (5) and (15) hold, b € K; (j = 1,2,...,r), and

d(x) € C(X,), X, =Y, NT (17)
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for some wy € (0,1]. Then there exists a number Ay > 0 such that, for Re A > Ay, we have the

representation
@ = VAV [ @(x)o;( )dr—M(HO(Mrﬁ)) =ap/4,  (18)
i = VAe . x)v;j(x =20 , B=wo/4,
¢4 (0)
s OVA b _ ®(b)e” -B
@ = VA XbCID(x)vj(x)dl"— TH (1+O0(|A|7P), (19)
—i(b) e 9i(0)
i [ gar= 27 O(|A|71/4)), VA = (140(A
N T = Sy O / 3 &= S 1+ OIAY),
(20)
—¢b(b) —¢b(b)

oA [ ghar =

oot
(+0(A[ 4, V8 | har = ¢
X, OV

i — 14+ O0(|A|7V4)).
X, 2I; (b)VA 215 (b) (L+00A™)
(21)
Proof. Consider the case of n = 3. We have
1= ®@)o(x)dr = / O (x)0;(x) dT + / @ (x)0;(x) d. 22)
X, By (

Theorem 1 implies that

1
oj(x) = amlx—b)|

e i VAXbil(1 4 O(——)), x €T,

1
VIA|
where Re A > A1. We can assume that |O( \/»)| < 1/2 for all such A and j. Estimate the
second integral J, on the right-hand side of (22) from above. We derive that

e <e [ e lglar<a [ e R o)
Xp\B)(b) Xp\B,(b)
In view of the definitions, there exists a constant e; > 0 such that |x — b;| —J; > 2|A| —1/2+%
for all x € X;, \ By(b) and, thereby,
[Jae¥ 2] < cqemss1I (24)

for some constant ¢4 > 0. For the first summand J; on the right-hand side of (22), we have
VA = VA9 [/ (e %P (x) — e_"’f(b)@(b))eq’f(x)vj(x) dr'+

B, (b)
d(b)e i) /

9i(x)7,
e (x )dr} (25)
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Consider the last integral in (25) multiplied by ¢V% . This quantity is written as

o~ VA(x=bj|=5;) 1

+O(W

Jo = ®(b)e 7" ))dl' =

By(b)  47|x — byl

®(b) *%(b)/ e VMbilep
e ~

14+ |V (y)2(1+O(

Bo(b) 4mtly — by ./
cD(b)ei(pj(b) —VA(ly=bj|—=3;) 7.,/
47‘[5]‘ /B/\(b) ¢ n d]/ +
7 1
d(bh)e= ) e*\ﬁ\(\y*b;’\ﬂ%) O(—— ) dy/ +
wen® [ (1O dy
—o; —VA(ly=b:|—5; 1+ [V 2
@(E)e ) [ e (i) — o0 ', o) = A FUE, 2o
A

where E is the point b; written in the coordinate system y. Consider the integral Iy =

I5.0 By( VAly=bl-5; )dy’ . We can assume that the axes of the local coordinate system y are
dlrected as the principal directions on I at b. In this case (see Lemma 2) we obtain that

yi(1—x18) + y3(1 —:28) +o(ly' ) yi(1 —x16)) N y3(1 —x20;)

|]/_b]'|_5j: |x(y)—bj|+5j = 2; 2; +o(ly'[%),

where o(]y’|?) is a C?-function in some neighborhood about 0. Make the change of variables
Yi = Tiy/20;/ (1 — x;0;) in Iy. We obtain that

26;
- —VA(TR+o(T]?) x| ~1/4+e/2 '
o ¢j(0)d;(8) Jyrj<r, dt, ro = [A| /\/275].

Introducing the polar coordinate system, we arrive at the expression

2 pro
e 7] —\/Xq’o(fﬂl’) — 2 2
Iy c]-(b)d (b)/o /0 e rdrdy, ¢o(r, ) =1~ +o(r).

Integrating by parts yields

o

Iy = — / ~VAgo(ry) dl[)+

fC]( 9007(” P) Ir=
26;

27 !
fc]d Tl () v =
2(57T 26;

— / e VAgorop) "0
\/ch<b>dj(b) VAcj(b)d ‘( )/0 ’ por (10, ) W
27 VA oy (T .
\Fc, b)/ / ool ((p(),(r q))) drdy.

The last integral here admits the estimate

21 1o ! 21T 1o
—Agorp) (T drdw| < / / —Reﬁcorzd A < celA|~1/4
|/0 /0 ‘ (%r(nllf)) Myl e Jy © rdp < cg|A|
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The second integral on the right-hand side is estimated as
. 2
‘ 2; / T e~ VApo(roy) 10 dip| < coe~ M,
VAcj(b)d;(b) Jo Por(ro, )
where ¢5 is a positive constant. Thus, we establish the representation
261
lp= ——————(1+0(]A|7%). (27)

VAcj(b)d;(b)

Consider the integral

I = /E; " |y’|/308—R€\/X(|y_l~7j|_‘5j)dy’ < CO/| |T|ﬁoe*R6ﬂ(\T\2+o(|T|2)) dr.
A

T|<rg

Introducing the polar coordinate system, we infer
ha [ R IRONA S drig, go(r,p) = 7 +o(r).
Making the change of variables r = t/|Re v/A|!/2, we obtain the estimate
Iy < co|Re VA| "1 7Po/2 /OM /omlReﬁl/z PO L) g, dtdyp < ¢q|A|1/2Fo/4,

This inequality and (24) imply that
Ig < cy|A|TETRO, (28)

where the constant ¢ is independent of A. In this case the last integral I on the right-hand
side of (26) admits the estimate

)< fouen® [ e VM goty) - go(0))dy

<

C10/~ g‘Reﬁ(|y—Ej|_‘5j)|y’|2 dy/ < Clll/\|_1-
Ba(b)

In view of (28), the previous integral I, in (26) (Bp = 1) is estimated as follows: |I| <
c12/|A|. Finally, the second summand on the right-hand side of (25) is representable as

CID(b)e*‘Pf(b)

_ —1/4
= 2 O 29)

2

In view of our conditions on the coefficients, ¢; € W2 (K) for every compact set K € G and,
thereby, |¢;(x) — ¢;(b)| < c|x —b| = c\/Ty'P + [v(y)[* < c1]y/|. Involving the condition
of the lemma and (28), we can estimate the integral J3 = eV fBA(h) (®(x) — @(b))vj(x) +
D(b)(1 — e i) Fe(%) )v;(x) dT on the right-hand side of (25) by

|]3| < C2/~ o |yl|aoe—Reﬁ(‘y—l}/"—&)dy/ < C4|/\|_1/2_a0/4. (30)
By

The representation (29) and the estimate (30) validate the equality (18). The equality (19) is
proven by analogy and the former equalities in (20), (21) are consequences of (18) and (19).
The proof in the case of n = 2 is simpler. Display the asymptotics of the main integral

=) %0, Iy = eﬁ‘sf/ e‘Pi(x)vj(x) dr,

Xp
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where X, = {x(y) € T : |y1| < 6}, y = (y1,y2) is the local coordinate system at b, and
y2 = v(y1) is the equation of the curve I'. To reduce arguments, we take 6 < &1, where the
parameter ¢ is defined in lemma 2. Theorem 1 implies that

AT1/4 —VA(|x—b;|—0; 1
I = —— (e=bjl=0)) = _(q + dlr =
0= 3z I o+ O )
/\1/4/ f|yb|5)\/1+('y y1)) y+
‘y b‘l/z
ly — [/ \/IAI

2(1—x8:)—28: (v —rK1? 2
As before, we have |y — bj| —¢; = n K(S’)z 2500 Zy‘/2)+7 (
\/y1+(7—5j) +9;

the asymptotic formula (see §1, Ch. 2 in [41])

x = x(b) = 7v"(0)). We have

[P0 = |1 o) + O/ A

where xg € (a,b) is a point in which S reaches its maximum. Applying this formula to the
first integral on the right-hand side of (31) and estimating the second integral by c/|A|3/4,

we obtain the formula
A~ 1/2

2,/1*1((5]'—’_

All other arguments are similar. The proof in the case of G = R’} is even simpler and we
omit it.

It remains to prove the latter inequalities in (19), (20). As before, take n = 3. The
asymptotics from Theorem 1, ensures that

VA5 90 _ —\/Xeq’f("(y))e*{X(‘y’hf‘*éf) [(J/— bj,v) oA,
ov |y — bjl ly — bjl

Iy = O(1/[AP/%).

= \/ﬁ(wl"ﬁz' —1).If y, = v(y’) then we have

—b;v + — +6; N
WZBi) i e YWES g oy ), B = (00,5,

ly — bl ly — bjl
Thus, we obtain that
9T ,
W51 = — AN Tx () (1+O(ly' ) + O(IAV/2)). (32)

This equality and the previous arguments validate the claim. [
Remark 2. Let G = Bg(xo). Then the condition (15) holds if b; # x for all j.
Consider the problem (11), where f = 0, i. e., the problem
Lw+Aw =0, x €G, (33)

Bw|s =g, (34)

and obtain some estimates of its solution. Fix j and take b € K;. In Lemma 4 below,
we use functions ¢(y) € CF(R") such that ¢(y) = 1 on the set Uzs;s = {y : |y/| <
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35/4,|yn] < M6 +35/4} and suppe C Us = {y : |y| < 6, |yn] < (M +1)é}. The
condition 6; > (2M + 1)§ ensures the inclusion Us C Yj,. The map z, = yn — 7(y'),
z' =y takes a neighborhood Y, N G onto the set U = {z : |z/| < §,0 < z, < &1 }. Denote
B5(0) = {2/ : || <4} and T's = (U]_; Upex; Yp) NT.

Lemma 4. Assume that the conditions (5) hold, b € K; (j = 1,2,...,7),and g € W21/2(1") N
Wzl(Xb). Then there exists a number Ay > 0 such that, for Re A > Ay, there exists a unique a
solution to the problem (33), (34) from the space W2(G) satisfying the estimates

/ [Vwl? + [Al[w] dx < collgllF ) 1A%,

lollwg(r) < cillgllyml A2, a € (0,1/2). (35)

If v = @w, with ¢ from the above-described class of functions, then there exist constants cy,cz > 0
such that

/ 5 [on +2|vznzk|2+|A||vz/v|2dx<c2<||g|| (%)

+lgllZ, ) )A|712H2,(36)
kl 1

b
ollwges o < (8w + I8l N225, w e 0,172), @)

where e7 > 0 is arbitrarily small constant. If additionally g € W3 (X,) and
a9 € Woo(Upei, (Y, N G)), Ts € C°, 0 € C/2H(Ty) (e > 0), (38)

then gw € W3 (Y, N G) for any ¢ and there exist constants cy, c5 > 0 such that

2 , |UZZZk| + 2 , |UZZan|2+ |)\| 2 , UZZk|2dx < C4(||g||w2 X + ||g|| )|)\| 287
(Xp)
,],k 1 k,i=1 ik=1

(39)
lolhz o 10y < 58 lnzy + 182725, e (01/2). @0)
Proof. Theorem 2 for p = 2 ensures the existence and uniqueness of solutions provided

that Re A > Ag for some Ay > 0. Multiply the equation (33) by a function w and integrate
the result over G. Integrating by parts, we infer

1Vl oG Al = [ g efafar, i) = L acey + aoe

i=

Separating the real and imaginery parts, we obtain
/G |Vw|? + ReA|w|? dx = Re /rgw — o|w>dT — Re /G lo(w)w dx. (41)
ImA/G |w|?dx = Im /rgw— olw|?dT — Im /Glo(w)wdx.
The last equality yields
|Im Al /G [w|?dx < |Im /rgW—(7|w|2dF| + |Im /Glowwdx‘. (42)
Summing (42) and (41) and estimating the modules of the right-hand sides

/G |Vw|? + |A]w|?dx < c0(|/rgw— olw|*dT| + |/G lo(w)wdx|). (43)
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Below, we use the inequality
lab| < elal?/p+e1Pb|7/q, p € (1,00), g=p/(p—1), e >0.
The last integral is estimated by
_ 1
| [ b@@dx] < [Vl ol + 1wk, < 31700k, +alvl,e. @

Similarly, we have

| [ 87— oo ar| < ligllym Ilm) + callwlif ) <

c(@) 117,y |AI /227 + el A2 |7, ) + 2wl ),

where ¢ and ¢7 are arbitrary positive constants. The embedding theorems and interpolation
inequalities (see [29]) imply that

A2 ol ) < s lAP2 27l iy ) <
es|A 272 [l ol T 7 < IVl + esllwllf, ) AL
Similarly,
allwl ) < 1901 +erllwl?, ) (45)

Estimating the right-hand side of (43) with the use of (44)-(45), we arrive at the inequality
L I9P 4+ AP dx < collgl ) A1 Y/2%7+
ecs|All|wlf, ) + (e +1/2)[[VaollZ, ) + collwll )
Choosing sufficiently small € and increasing Ay, if necessary, we derive that
1Vl + Wl dx < cllglR A2+, (46)

where the constant cg is independent of A with ReA > Ag and €7 > 0 can be taken arbitrarily
small). Using (46) and interpolation inequalities we obtain that

1/2 1/2- -
el 22 < enl A2 gy

[0l ) < ellwlgyaraey < crollwligis

Rewriting (33) in the coordinate system y, we obtain the problem
n
—Aw+ Y dwy, +agw + Aw = 0, Bw|r = g. (47)
i=1
Multiply the equation (47) by ¢(y). The result is the problem

n n
—Av+ Z divy, +agv + Av = —2VwVe — whAe + Z aipy;w = fo, v =we.  (48)
i=1 i=1

Bo|r = ¢ — ¢yw. (49)
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Introduce the coordinate system z, with z’ = v/, z, = y, — 7(y/). In this case, the function
v = wg is a solution to the problem

n—1 n
7AZ”U +2 Z ,Yzivznzi - Uo(Z/)Uznzn + Zcivzi +apv + Av = fo’ O-O(Z,) = (1 + |VZ/')/|2)‘
i=1 i=1
(50)
n—1

—02,00(2") + Y vz7z + 0(x(2))00(2')0]z,—0 = (98 — Puw) |z, —000(2).
i=1

Multiplying the equation (50) by —A,/v and integrating the result over U, we obtain that

)3

-1
V2,02 + 00(2) vz, ) Ayo—

n—1
/ A0 — Z V202,820 + 0z, (—
u i=1 1

n
i
n —

() civz, + agv) Ao + MV 0l dz = (fo, —Ayv)o.  (51)
i=1
Integrating by parts, we rewrite the first summand in the form
n—1
/ |Ayv)? dz = Y / 02,2, | dz. (52)
u ki=17U

Note that v € W?(G) and integrating by parts we obtain the integrals containing third
order derivatives. However, the result of integration is easily justified if we employ smooth
approximations of functions in W3 (G). Similar arguments can be found, for instance, in
the proof of Lemma 7.1 of Ch. 3 in [38]. We also have

n—1

n—1 _
/uazn(— Z V2,02, + 000z, ) Apvdz = — /Uaznvz,(— Z Yz,0z; + 000z, )V yvdz =
i=1 i=1

n—1 n—1
i

/ V(= Y} 20z +000z,) - Vorvz, dz+ // (Vo (= ) vz0 + 00vz,) - Vyvdd =
G =1 B;(0) i=1

n—1 n—1
/ (14 Vo)) Vv, |? dz —/ Y vz Vv, - Vv, dz — / Y 0, Vs, - Vv, dz
u Uiz Uiz
+ [ o VeV dz = [ Val(pg = )o@ - Vwdz. 63)
d

Consider the expression

n—1 n—1 n—1
/u — Z V2, V2,2, D0 dz = /u Z V2, Uz, Dy 0z, + E V2,202, D0 dz
i=1 i=1 i=1

n—1 n—1 n—1
== / 2 ')’zivznzkvzizk dz + / 2 ')’z,»zivzn AZ”Udz - / 2 ’)/Zl‘Zk’UZn vZ[Zk dz (54)
Uik=1 Ui=1 Uiz

Using (52)-(54) in (51), we obtain

n—1 n—1 n—1
/ Z |vZkZl|2 + Z ‘70|v7~n2k|2 —2Re Z V2 V2,2 V22 T )‘|vz’v|2dZ = (fo, —A0)o
Ui=1 k=1 Lk=1

n—1 n—1 n—1
_ / Y Y2z 02,804z +/ Y V22,02, T2z Az +/ Y 0V, - Vavs, dz—
Uiz Uiz Uiz

/u 02, V0oV 0z, dz — /B’ (0)(Vzl((q)g — @yw)\/0p) - Vyovdz. (55)
3
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As is easily seen, the inequality

2 |Uzkzl| + Z 0'0|Uznzk| —2Re Z Yz, V2,24 V)2 > C3 Z |Uzkzl|2+ Z |Uznzk| )
kl1=1 Lk=1 k=1

is valid for some constant c3 > 0. Next, we infer

| B (0) Vzl(quw\/(?o) : vz’v‘ dz' < C”Vzl(¢Vw@)||(wé/éz(gé(o)))/HVZ’U||W21/62(B:5(O))

< C1||w‘|w21/2(33(0))Hvz’vazl/Z(Bg(o)) < €||vzlv||€v21(u) + C(f)Hw”%\G(u)

where W21,62(Bg(0)) is the space with the norm ||v||> = |jv ||W1/2(B/ o) + fBg(o) \v|2%,

p(z') = p(2,0B5(0)), e > 0is arbitrary, and the last summand is estimated by c||g]|1,(r) (see
(46)). Here we rely on the conventional theorems on pointwise multipliers and Proposition
12.1 of Ch. 1in [39]. Next, we repeat the arguments of the proof of the estimate (46). We
conclude that

/ klzl [0z, 2 + Z [z + V20l dz < oI5y, + 8117, (ry) A2,

To establish (37), it suffices to prove the estimate
V20l (ry + Mgy < exlllgling ) + 181l A2 71247, e (0,1/2),

which is justified by repeating of the proof of (35). To validate the second part of the claim,
we first demonstrate the smoothness of a solution w. Take an arbitrary point b € K; and the
set Y. Construct a function ¢(y) € C5°(R") such that supp ¢ C Us. The function wy = we
is a solution to the equation (48) from the space WZZ(Yb N G) satisfying (49) on ' NY, and

n
—Awy = — Y a;woy; — agwy — 2Vw Ve — Agw € Wi (Yp),

awo
v
Using the conventional theorems on extension of boundary data inside the domain [29]
and Theorem §3 of Ch. 4 in [42], we conclude that wy € W3 (Y, N G).
Consider the equation (50). Multiply (50) by Ag/v and integrate the result over U. The
same arguments as those of the proof of the estimate (36) can be applied to justify (37), (39).
The calculations are rather cumbersome and we omit them. [

Assume that the conditions (5) and (15) hold. In this case, for every jand b € K, we
can consruct the balls B; = Bs, (b;) and Bb Bs, (bb) LetY,. ={yeY,: |y| <e} (e <9).

Lemma 5. Let the conditions (5) and (15) hold. Then, for every j = 1,2,...,r, there exists a
function ¢; € CF°(R") and constants eo,p € (0,6/8) such that ¢;(x) = 1 for x € Up =
Bs+p(bj) U Upek, Yoeo /240, 9j(x) = 0 for x & Usp, and p(supp [Vej| NG, B]l.’) > 0 for all
b eK,

]

Proof. In view of (15), it is not difficult to establish that there exists a parameter gy < /8
such that p(B; \ UbeKij,5/r> = Jp(6) > 0 forall & < gy and B]’? N UbEK/-(Yb,sO NT) = {b}
forall b € Kj. Put §g = minsc[e,/2,¢,] d0(6). Obviously, 5 > 0. Take p = min(e/8,0/8).
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Construct a nonnegative function w(&) € C§°(R") such that supp w C B1(0), [p, w(&) dE =
1 and the averaged function

1 ¢—x

00 = o [ (=, @)z,
p” R P

where xu,, (¢) is the characteristic function of the set Us,. By construction, ¢;(x) =1 for

x € Uy and ¢;j(x) = 0 for x ¢ Us,. This function satisfies our conditions. [

Let
up(x) € W(G), e Mf € Ly(Q), e Ma; € W3/*(0,T), @;(x) € W)/2(T). (56)

The following theorem results from Theorem 7.11 for G = R’} and Theorems 8.2 in
the case of the domain with compact boundary in [37].

Theorem 3. Assume that T = oo and a;(x) € Leo(G) (i = 0,1,...,n). Then there exists a
constant Ay > 0 such that if A > Ao and the condition (56) holds then there exists a unique solution
to the problem (1)-(2) such that e~ Mu € W,*(Q) and

le ullyyzg) < Colllmollwye) + e Flliae) + e gllygpranzs))- 7

Let E be a Hilbert space. Denote by Wzs,yo (0, 00; E) the space of functions u defined on

(0, 00) whose zero extensions 7(#) to the negative semiaxis belong to W5, (R; E) and

He_wtﬁ(t)HWE(R;E) - Hu(t)HS/“m <o

The Laplace transform £ is an isomorphism of this space Wi,m (R4; E) onto the space Es .,
of analytic functions in the domain Re p > g > 0 such that

lu)?, = Sgp/ Uy +i0) |2 (1 + |y +it]%) dr < .
Y>v0 7 —®

If E=CorE = Ly(G) or E= W;(G) (G is a domain in R") then these properties of
the Laplace transform can be found in [35] (see Theorem 7.1 and §8). For T < oo, we
similarly define the space W5 (0, T) as the subspace of functions in W5 (0, T) admitting the
zero extensions for t < 0 of the same class. This space coincides with W5 (0, T) fors < 1/2
and with the space of functions u € W5(0, T) such that u(0) = 0 fors > 1/2. Fors =1/2,

it coincides with the space of functions in Wzl/ 2(0,T) such that ut~1/2 € L,(0, T) [35].

2. Basic results

We assume here that the conditions (5), (15), (17) are fulfilled. Let ¥ be the matrix with

entries ¥; = Y. y(0)e 10 (i,j=1,2 r). We assume that
ji beK; 1;(b) /] rereees ).

det¥ # 0, @;(x) € W)/2(T), (58)

®@;(x) € WH(X,) for n =2, ®;(x) € Wa(X;) for n =3, b € Ui Kj. (59)

Fix a parameter Ay > 0 greater than the maximum of the parameters defined in
Theorem 1 with §y = 7r/2, Theorem 2 with p = 2, and Theorem 3. We assume that

uo(x) € Wy(G), e ™' f € Ly(Q). (60)
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By Theorem 3, if the condition (60) holds for some 7y > Ap then there exists a unique
solution wy to the problem (1)-(2), where g = 0, such that e~ 70w, € Wzl'z(Q). Consider the
problem (1)-(3). Changing the variables w = u — wp, we obtain the simpler problem

wy + Lw =0, Bw|s = g(t,x), w|i—9 =0, (61)

w(b], t) = l/J](t) — wo(t, b]) = l[NJ](i‘), i=12,...,r (62)
We assume that ¢;(t) € L»(0, T) and

_ /O Vi (= 7)oy (DT, poje 0 € WA, T) (n = 2,3), 63)

where V,, (t) = ¢ 47”; forn=2and V, = szvt;/z for n = 3. For T = oo, the condition (63)

can be rewritten as

sup |0+ is|"/ 2R VP L () (0 +is) [P ds < o0, p = o + s (64)

o>y J —0

For a finite T, the condition (63) can be stated as follows: there exists an extension of 1,5 on

(0, ) satisfying (64). We have V, (1) = ZH0 (\f'y) 2\/ﬁ/\we —VAy (1+O(m))

forn = 2 and V,(A) = e~ VA for n = 3. Here H(() ) is the Hankel function. The latter
equality is derived in Lemma 1.6.7 in [43]. The former can be easily obtained if we use
the Poisson formula for a solution to the Cauchy problem for the heat equation with the
right-hand side equal to the Dirac delta function.

Theorem 4. Assume that T = oo and the conditions (5), (15), (58), (59), and (38) forn = 3
hold. Then there exists Ay > Aq such that if ReA = o > Ay and the conditions (60), (63) are
fulfilled then there exists a unique solution to the problem (1)-(3) such that e~ "'y € Wzl’z(Q),
e~ 1l (1) € Wa/(0,T) (i =1,2,...,7).

Proof. Consider the equivalent problem (61)-(62). Assuming that w € W,?(Q) and apply-
ing the Laplace transform to (61), we arrive at the problem

.
Lo = A + L = 0, Bd|r = )_ &;®;(x) = §, (65)
i=1

(b)) =, j=1,2,...,1. (66)

Next, we use the functions vj, v;-’ constructed before Lemma 3. Theorem 1 yields vj €
sz(Gj(e)), Gi(e) ={x € G: |[x—bj| > e}forallj=1,...,r,e > 0. Construct the
e o (b)=gj(0)
functions w; = @;(v; + Ljpe K U?D ), Dj = W, where the functions ¢; are defined
j
in Lemma 5. The properties of the functions v;’ imply that ¢; } ¢ K v;? D;e W2(G). Lemma

1 imply that

thl/cb xX)w; dl = / ]+a*w] dr — 2/ WV ¢;Vw; dx

+ /G —w Z aiqojxiﬁjdx — /G YAAJAQDJW]dX + l[CJ] = A](Z’l\)) + IIQJ], (67)
i=1
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where the function @ is a solution to the problem (65). Consider the case of n = 3. The case
of n = 2 is considered by analogy. For the integral on the left-hand side, we have

/rcpi( @7 dl’ = /cp )i (0 —l—ZUD dr_Z/ )gj(0j+ 3. o/Dj)dr
bEK]‘

b’eK

However, only two summands with v; and v}’/ are essential on the set X;/. Indeed, in view
of (16), for b # b’ and b € Kj, we infer

]\/Xv;-’e‘sfﬂ| + |e‘5f\/X|Vv;-’|| < eV vy € Xy,

where qg > 0 is a constant independent of A. This inequality implies that the remaining
integrals decay exponentially. By Lemma 3, we have

(=2
eéfﬂﬁ/cbi(x)ﬁjdr: ) %<1+O(leﬁ>>=‘1’ﬁ<1+0<|A|”5>>' (68)
r beK; ](b)

Consider the right-hand side in (67). The integrals over the domain are estimated by means
of Lemma 5. On the support of [V ¢;|, Theorem 1 and Lemma 5 ensure the estimate

%2 (foj] + Vo5l + X ([of] + [Vo?]) < cpe—em VI,
beKk;

where the constants ¢y, £13 > 0 are independent of A. The Holder inequality yields

‘SRe‘f‘ 2/ ®Ve;V(vj+ ) v'D; dx—/ Zal(p]x v; + vaD)dx
beK;

—/GLTJAgoj(Uj+ Y v;?Dj) dx‘ < C3||u7||L2(G)e_813m/2. (69)
bEKj

Examine the integrals over I' in the right-hand side of (67). We have

0w S — dp————
/rw( 5 TC w;)dl = & /waq)]a (vj +v;/Dj)dl + waa (vj + 07 D;) dT+
[ w0 g+ oEDpar+ [ W’um/ tre Y )
X, Pj\vj T Ul 5 ¢ "D )

Kb peK b b €K b #b

(70)

As in the estimate (69), the last two integrals are estimated by

A(gj?Dy) -
J,2 X i]d”/ otg; Y. olDydr)| <yl pyqrye VI
b b eK;b

v Ve £
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in view of (16). Estimate the second and third integrals. In view of Theorem 3 and estimates
of Lemma 5 (see (27)), they admit the estimates

a(p]

‘X 3 (v]—i—vbD dr+/ wo (p](v]—i—vD)dF
b

ce VR [ R VR bl) g R VA By <

el (x5(2)) 31 0V /4 1AL

where x = x;(z) is the straightening of the boundary in Xj,. It remains to consider the first
integral

cs[lw(x(z',0))ll1u(8) ,(0))

vj +7; D) X a(vj—i-v;?D]')
I, = / w(p] 3 dl' = g;(b) . TdF—I—
b
A o (b d(vj + v bD)
[, (@91() — 2gi(0) === dr 7

Note that ¢;(b) = 1. Lemma 5 ensures the following representation for the first integral I
on the right-hand side of (71):

0v; ovY
_ VA j / i~
I =e ]( X v dar + X, p)
_e9i(b) AQ 1

ey (1 O™+ Dy 55 1+ O %) = O( 7).

The second integral on the right-hand side of (71) in view of Lemma 5, (28), and (32) is
estimated as follows:

9(v; + v; D
(@g;(y) - wgo,-w»T dr| <

)/ M /‘Al(efRE\/X(\yfbHéj)_'_efRe\/X(‘]/*bf’Héj))dylS
Xp

CZHZT’(xh(Z))||c1(B‘g/2(o))|)‘|71/4~ (72)

/s
a1l (xs(2) s, 0

Thus, in view of (70)-(72), we have the inequality

0% A45(@)] < es X (10(x0(2)) s oy o I+ () + ol ey ) e~ V9)
bEK]‘

with some constant €14 > 0. Next, we employ Lemma 4. The embedding theorems for
n = 3 and Lemma 4 imply that

ey (2)ller g, 00) < NP gy o) < lwziany + I8 lar)Al /27,
where ¢ is an arbitrarily small constant. Similarly, Lemma 4 ensures that

11 y(6) + @l Lyry < A28l Ly

In view of the conditions on the functions D), there exists a constant ¢, such that

181wz sy + 18llLo(r) < cal&|.
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Therefore, we have the estimate
eV A (@) < cal 4|14 12, (73)

where € > 0 is an arbitrarily small constant. We can rewrite (67) in the form
fﬁfZal/d)l(xvdF—ef‘S\fA( )+1,bef‘5f i=12,..

The left-hand side of this equality is written as ¥ (A)&, where the entries the matrix ¥(A)
are of the form ¥;;(1+ O(|A| ~P)). The right-hand side is written in the form

—

AN =B+ So(R), & = (dy,...,d)), (74)

where the coordinates of the vectors B, So(&) are as follows:
,3] - \/Xeéj\/xlz]', S()]‘ = \/Xe(sfﬁA]‘(Z’l\}), ] = 1,. .o, r

It is more convenient to rewrite the system (74) in the form

Pt

= AN 1B+ A(V) 1S (R). (75)

Choose A1 > Ag so that the matrix A(A) is invertible for ReA > A1 > Ay and the norm of
the operator A~! : R” — R" is bounded by a constant ¢ for all Re A > A;. Estimate the
norm of the operator A(A)~1Sy(&). In view of (73), we have the estimate

r
[AM)1So(®)] < co ) S0l < eaaf|A| 74, (76)
j=1

Thus, for e < 1/4, increasing the parameter A, if necessary, we can assume that c1|A|~1/4+¢ <
1/2 for ReA > Aq. The norm of the operator A(A)~1Sy(&) : C" — C is less than 1/2 in

this case and, thereby, the equation (75) has a unique solution. Constructing a solution & to

the equation (75), we can find a solution @ € W3(G) to the problem (61), where Re A > A;.
In view of our conditions, the estimates of Lemma 4 holds. Let Re A > A;. In view of the

equation (75), a solution & meets the estimates |&| < 2co| E |. Hence, we infer

r r .
Y Jail? < Y2 A1 g 2,
j=1 i=1

where the constant ¢; is independent of A. The properties of Laplace transform validate the

equality IIQJ]' = V(gj(/\)li)o]‘ = e Vg o; and the previous inequality yields

sup [ Y|+ gV 2a(y + i0) 2 de <
®i=1

Y>AY T

csup [~ 2|v+z§|3/2||¢o,< +l’§)||2dg<CZHf?_MlIJo]HWm <o ()

A 0,00)
This inequality ensures that the inverse Laplace transform is defined for the functions #;,

a;(t)e=M € Wh/%(0,0), and

Z o e—/\t||Wl/4 0T) <C 2 ||37M‘P0]||W3/4 (0,00) < & (78)
j=
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Note that the additional smoothness of the functions ¢; ensures the additional smoothness
of the functions ;. Consider the problem (61) with the above constructed functions .
By Theorem 3, there exists a unique solution to this problem such that e~ *w € Wzl’z(Q).
Demonstrate that this function satisfies (62). Indeed, applying the Laplace transform, we
obtain that @ is a solution to the problem (65). Multiplying the equation in (65) by w; and
mtegratmg by parts we obtain (67) with @(b;) rather than 1/3]‘. Since &; satisfy (67) with the

functions IP] on the right-hand side, we obtain IIJ] = w(bj).
Consider the case of n = 2. The arguments are the same. However, in view of another
asymtotics of the function \75]. the inequality (78) can be rewritten as

;
Z a; 6_/\t||wl/4 01) <C Z ||e_)\flp0j||€vzl/2(000) < 0
j=1 '

In view of the above arguments, uniqueness of solutions is obvious. O

State our theorem in the case of a finite interval (0, T). The condition (60) looks as
follows:

uo(x) € W5 (G), f € L2(Q). (79)

Theorem 5.. Assume that T < oo and the conditions (5), (15), (58), (59), (79), (63), and (38) for
n = 3 hold. Then there exists a unique solution to the problem (1)-(3) such that u € W21’2(Q),
a;(t) € W40, T) (1=1,2,...,7).

Proof. Extend the functions ¢y; on (0, %) as compactly supported functions of the same
class. The conditions (63) are fulfilled for every A. Extend the function f by zero on (0, o).
Theorem 4 ensures existence of a solution to the problem (1)-(3). Now we prove uniqueness
of solutions. Assume that there are two solutions of the problem from the class pointed out
in the statement of the theorem. In this case, their difference v(t, x) € Wzl’2 (Q) is a solution
to the problem

v+ Lv=0, (t,x) € Q.

;
Bolg = g(t,x) = ) a;®;, v|—9 =0, v(b;,t)=0,j=12,...,7
i=1
Integrating the equation and the boundary condition with respect to time two times, we
obtain that the function vy = fot fOT v(¢) dédt is a solution to the problem

vor + Lvg =0 ((t,x) € Q), Bugls = go(t, x) Z“Oz I (80)

voli—0 = 0, vo(bj,t) = 0, ag; = /Ot /()Toci(é) dedt, j=1,2,...,r. (81)

Make the change of variables vy = eMw (ReA > Ag). We have
wi+ Lw+Aw =0, (t,x) € Q. (82)
Bw|s = e*’”go(t,x), wi—o =0, w(b]-, H=0,j=12,...,r (83)

Integrating (82) over (0, T), we obtain that

T T
L + A® = —w(T, %), Bd|r :/ e Mgt x) dt, w(b;) =0, @ :/ w(t,x)dt.  (84)
0 0
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Leta&; = fo Muo;(t) dt. Make the change of variables @ = wy + wq, with w; a solution to
the problem (L + A)wl = —w(T,x) = e *uvy(T,x), Bwi|r = 0, and, respectively, wy is a
solution to the problem

’
Lwy +Awo =0, Bth" = Z&iCDi(x), ZU()(b]) = —un (b]) (85)
i=1

Note that w(T,x) € Wi(G) and, thereby, w; = —(L + A)~'w(T,x) € W2(G). Since
W3(G) C C(G) [29], we have the estimate (see Theorem 7.11 for G = R” and Theorem 8.2
in the case of a domain with compact boundary in [30])

w1 (b:)] < coe R ||oo (T, x ) < cre ~ReAT, (86)
Ly (G

Multiply the equation (85) by the function w; defined in the proof of the previous theorem
and integrate over G. As in the proof of Theorem 4, we obtain the system (see (75))

i=AR) B+ AW 1S(@®), (87)
where the coordinates of f are written as Bi = —VAe \F‘sfwl( b;). The system can be
rewritten as follows

&= (I-AM)1S) AN B, (88)

where the right-hand side is analytic for ReA > A; and we have

(= A(A)7'50) 1 A() T Bller < ol Bllers

where ¢ is independent of A. Thus, every of the quantities &; is estimated by

.
;] < 3 Y VAeVMie ReAT Red > A, (89)

The function S;(z) = fo ;i (t e *! dt is the Laplace transform of the function §;(t) =
agi(t)e~™M! for t < T and &(t ) = 0for t > T. Fix ¢ > 0 and define an additional function
W(z) = ze*(T=9)S;(2). Tt is analytic in the right half-plane and is bounded by some constant
C1 on the real semi-axis R". Estimate this function on the on the imaginary axis. Integrating
by parts, we have

-1 _ _ T At -
Si(z) = /\1+Z(“0i(T)e MT, ZT—i—/O ah; (e Mte 2 dt).

For z = iy, we thus have the estimate

[W(z)| < ca(laoi(T)] + llagill, o) = 5 V2 =iy, y € R.

In each of the sectors 0 < argz < /2, —/2 < argz < 0 the function W(z) admits the
estimate
W) < e T cq(fagi(T)] + llayll, o)) YRz > 0.

Applying the Fragment-Lindelef Theorem (see theorem 5.6.1 in [40]) we obtain that in each
of the sectors 0 < argz < 7/2, —mt/2 < argz < 0 the function W(z) admits the estimate

|[W(z)| < max(Cy,c5) = Cy VYRez > 0.
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Therefore, [S;(z)| = |L(5;(t))(z)| < Cpe~(T-9Rez/|z| YRez > 0. We have equality (o >
A, p=0+1G)

1 o+ico 1 ) . )
50 =5 [ L@ (pdp =5 [ L) 0+ id) de.

o—ico
and, thereby,
si(e)e =T = L [ et T L) (0 + i) de.

27 J—o
The Parseval identity yields

17 2T o 2
z. —o(t—(T—¢)) |12 _ 20(T—¢€) |7 (5. : 7|2 ~2 o 2
Is;(t)e I = 3 [ @GN riPar < 52 [ o< o2
Since this inequality is true for all ¢ > Ay, 5;(t) = 0 for t < T — e. Since the parameter ¢ is
arbitrary, ag;(t) = 0 for t < T and a;(t) = 0 for t < T and every j and, therefore, g(t, x) = 0
which implies thatv = 0. O

3. Discussion

We consider inverse problems of recovering surface fluxes on the boundary of a
domain from pointwise observations. These problems arise in many practical applications
but there are not theoretical results concerning with the existence and uniqueness questions.
The problems are ill-posed in the Hadamard sense. The results can be used in developing
new numerical algorithms and provide new conditions of uniqueness of solutions to these
problems. We consider a model case but it is clear what changes should be made in the
general case for validating similar results. The main conditions on the date are conventional.
The only distinction is the conditions on the data of measurements in the reduced problem
which must belong to some special class of infinitely differentiable functions. The proof
relies on a asymptotics of fundamental solutions to the corresponding elliptic problems
and the Laplace transform.
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