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Abstract

Wireless cellular communication technology has developed into a very resourceful commodity
worldwide. Today, people of all races can hardly live without means of voice and data cellular
communication technology. Imprecise propagation loss estimation leads to high power waste,
high co-channel interference and poor service quality in cellular communication system
networks. This paper proposes a realistic adaptive fine-tuning method for distinctive propagation
loss estimation over a microcellular communication radio links based on signal power
measurements from Long Term Evolution radio broadband networks, taking non-line of sight
(NLOS) and line of sight (LOS) environments into consideration. The methodology is verified
by measurements taken in non-line of sight and line of sight signal propagation scenarios. The
results showed that the estimated propagation losses using the proposed realistic adaptive tuning
models were more accurate than the existing Cost -231 modelling estimation approach.
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Introduction

The evolution and application of different wireless cellular communication technologies is on the
rise daily at an exciting pace worldwide. Today, people of all races can hardly live without
means of voice and data cellular communication technology. It all started when the second
generation (2G) of wireless cellular communication standard which provides easy means of
voice communication anytime and anywhere, was introduced in the mid 80’s. A key example of
such communication technology is the GSM. Since then, other cellular radio standards such as
3G and 4G, which provides better multimedia communications have been evolved. Example of
3G and 4G-based technologies includes the UMTS, WCDMA, CDMA2000, HSPA, Wimax and
LTE.

The latest of the above itemized different technologies, is the 4G LTE (Long Term Evolution). In
terms of bandwidth, data speed, quality of service differentiation, latency, spectrum efficiency,
enhancement to security, backward compatibility, etc., LTE provides considerable performance
improvements over previous mobile technologies such as GSM, UMTS and HSPA.

Imprecise propagation loss estimation during cellular network design phase or optimisation
phase, has been identified as the leading reason for high power waste, high co-channel
interference and poor service quality in LTE cellular networks.

The evolution 4G cellular communication technology such as LTE some few years ago provided
a great opportunity to enhance data speed, quality of service differentiation and spectrum
efficiency. However, some channel propagation challenges such as power outage, fading and
signal path loss are also affecting the aforementioned great opportunities. One key way to solve
some propagation challenges is by modelling, estimating and examining the behavior identified
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challenges. Prediction and estimation of channel parameters and behaviour, including
propagation loss and signal attenuation, is the primary focus in radio channel modeling [1-3].
Over the years, some efforts have been made and reported in a number of studies on to examine,
model and estimate the behavior of path loss over propagation channels. In [4], the authors
compared ray tracing models with empirical models. From the results, the authors observed a
difference of 12.6dB between the two compared models. An approach to adapt Standard
Macrocell model and Bertoni-Walfisch model for GSM radio networks design is presented in [5],
using city of Nablus, Palestine as a case study. From the results, Bertoni-Walfisch model
outperform the Standard Macrocell model by about 60%.

Similar works on measurements based propagation channel modeling are also contained in [6-13],
but none of them specifically looked into none line of sight (NLOS) and line of sight (NOS)
propagation scenarios as considered in this work. By NLOS, we mean radio frequency (RF)
propagation path between transmitter and receiver that is obscured (completely or partially) by
varied degree of obstacles like physical landscape, tall buildings, trees, etc, thus creating
difficulties for efficient radio signal transmission. For LOS, there exist direct visual
communication sight or links from the transmitter the receiver. Under this condition, the rate of
propagated signal fading is expected to quite lower than the NLOS case.

This paper proposes a realistic adaptive fine-tuning method for distinctive propagation loss
estimation over a microcellular communication radio links based on signal power measurements
from Long Term Evolution radio broadband networks. The methodology is verified by
measurements taken in non-line of sight and line of sight signal propagation scenarios. The
results showed that the estimated propagation losses using the proposed realistic adaptive tuning
model was more accurate than the existing estimation approach.

Existing Propagation Loss Models

There exist a lot of propagation models predictive path loss modelling and estimation, among
which are Hata model, Free space model, Walficsh-Betroni model, Walficsh-lkegami model, Lee
Model, Egli model and Cost-231 Hata model. One of the most frequency explored one in
literature is the COST-231 Hata model. The COST 231[ref] is a derivative of the Hata model.
This model hinge on upon four core influencing parameters for propagation loss estimation and
modelling. The parameters are frequency, receiver antenna height, transmitter height and Tx-Rx
communication distance. Cost-231 Hata model has different corrections parameters for suburban
urban and rural (flat) environments. In this work, we concentrate on COST-234 Hata model for
urban environment. It is given by:

PLcosT-234 /dB /= 43.6 + 33.9*l0g10 (fca) + (44.9 - 6.55*10g10 (bh))*log10 (d) - T (1)
T=13.82*log10 (bh) - amh- 2*(log10 (fca/28)). 2 - 5.4) (2)

where

PLcost-234= COST-234 Hata Model
bh= eNode Height in meter
mb=mobile antenna height in meter
fca=Carrier Frequency in MHz

d=Tx-Rx communication distance in meter
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Although the Cost-231 Hata model has been widely employed for propagation predictive
analysis and modelling, but its efficacy is limited when employed in residential areas and built-
up terrains environments other than which model was originally designed for [1, 8, 9, 13].

This paper proposes a realistic adaptive fine-tuning method for Cost-231 Hata model parameters
based on signal power measurements from Long Term Evolution radio broadband networks in
open and built-up residential areas.

Materials and Method

Measurements Campaign

(a) Measurement environment

Field measurements were piloted using commercial LTE cellular networks air interface,
propagating on the 2600MHz band in Benin City, Edo State, Nigeria. The building clusters in the
area are a mixture of residential/commercial bungalows, two or three story buildings
encompassed with medium density user and vehicular traffics. Precisely, the measurement routes
were selected along the main streets and sideway of the roads of the area, where the LTE
eNodeB transceivers are deployed. Four accessible LTE eNodeB cell sites at close range were
engaged in the measurements and the cell sites are designated as ‘Cell 1, Cell 2, Cell 3, and
Cell_4, in this work.

(b) Measurement tools

The tools employed for measurements consisted of two commercial user equipment (UE) Sony
Ericson handsets, one HP Laptop, RF scanner, Dongle and other relevant field test supporting
devices such as GPS, inverter and connecting cables. A real-time professional monitoring
software called TEMS, which possesses the capacity to display and record different radio
frequency data made in log files along each measurement routes. For the post processing
measured log data files, Map info, MS Excel, MATLAB 2018a were used.

(c) RF network data measured

One of the main LTE radio networks data collected during measurement is RSRP (i.e. Reference
Signal received Power). Technically, the RSRP is an indicator of signal power level at the UE
terminal in LTE networks. Generally, the stronger RSRP level received at UE, better signal
coverage quality can be achieved in the radio network. There exist sundry factors that can impact
the RSRP levels at the UE terminals, among which are transmitter-receiver (Tx-RX)
communication distance, RF channel conditions, signal propagation loss, UE location, total
radiated eNodeB power, etc. In terms of propagation loss and total radiated eNodeB power,
RSCP can be defined as:

RSRP (dBm) = Path Loss /dB/- Ptot (dB) (€))
Ptot=Gt +Pt-Gr-Cl- FI-(10*log (Nrb)-10*log (12)) 4)
where:

Ptot= total radiated eNodeB power in decibel
Gt = eNodeB antenna gain in decibel
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Cl= connector losses

Fl=feeder losses

Nrb=No of resource blocks

Gr= Receiver antenna gain in decibel

Thus, in terms of propagation loss, the expression in (1) can written as:

Path Loss /dB /= Ptot - RSRP 5)
Path Loss /dB/= Gt+Pt-Gr-CI-FI-(10*log (Nrb)-10*log (12))-RSRP (6)

Adaptive fine-tuning method for Cost-231 Hata model Parameters
In order to tune the Cost-231 model parameters, its expressions in (1) and (2) can be written as:
PLcosT-234 = 21+22*10910 (d) + z3*log10 (fca); (7)

Where z1, z> and z3 designate the adaptive coefficients. The z1, z> and z3 can be obtained be
solving the following parametric equations:

nz, + leloglo (d)+z, Zloglo (f) = ZPLCOST-234 (8)
Z, zbglo (d)+ lel()glzo (d)+z, ZIOgm (d)log,,(f.,) = ZPLcosr-m [Ioglo (d)] 9)
Zy 2100, (fo.) +2, D109, (d) 10, (o) + 2, 1095 (fo.) = D PLosroa 1095 (f)]  (10)

where n specifies the number of observations.

Results and Discussion

By exploring the non-linear regression function fitting tools in Matlab R2018a on measured
propagation loss data and the standard Hata model: PLcost-234, Table 1 display the estimated
adaptive coefficients and their descriptive statistical values. Provided in Table 2 is the measured
loss data estimation errors with COST-231 Hata model before and adaptation. The estimation
errors are computed in terms root mean square error (RMSE), mean absolute error (MAE),
percentage error (PE), standard deviation error (STD), maximum absolute error (Max.error),
Coefficient of correlation (R?) and signal error ratio (SRER). The lower the prediction errors, the
better the accuracy, except for R?and SRER wherein higher values are preferred.
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Table 1: Estimated Coefficients and Statistics for Cell_1 to Cell_4

Estimate SE tStat pValue
z, 18.66 0.61 30.13 1.18e-43
Cell 17 375 | 294 | 1212 | 23319
Z, 6.17 211 2.918 4.64e-3
Cell_2 z, 21.07 0.90 2338 | 6.36e-30
z, 31.34 4.03 7.77 2.28e-10
Z, 6.87 3.07 2.23 2.95¢-3
Cell_3 z, 16.841 | 0.62105 | 27.117 | 1.30e-43
z, 37.945 | 29505 | 12861 | 1.21e-21
z, 56388 | 21209 | 26587 | 9.37e-3
Cell_4 z, 39.76 022 | 17869 | 2.70e-133
Z, 19.222 0.99 1926 | 2.08e-36
Z, 12.35 0.75 1625 | 1.50e-30

Based on the estimated adaptive coefficients, the PLcost-234 for Cell_1 can be written as
PLcost-234 (Cell_1) = 18.66+33.75*l0g10 (d) + 6.17*log10 (fca)

PLcost-234 (Cell_1) = 21.07+31.34*l0og10 (d) + 6.87*log10 (fca)
PLcosT-234 (Cell_3) = 16.84+37.95*10g10 (d) + 5.63*l0g10 (fca)
PLcost-234 (Cell_4) = 39.76+19.22*l0g10 (d) + 12.35*l0g10 (fca)

The expressions above show that the rate of propagated signal attenuation (i.e. propagation
exponent, n) for Cell_1 to Cell_3 are 3.3, 3.1 and 3.7, all which depicts the NLOS propagation
environment. For Cell-4, which is a LOS environment, rate of propagated signal attenuation

stand at 1.9. The mean n value (i. e.,n= M) for Cell 1, Cell 2 and Cell 3 is 3.37.

This value shows that the rate of signal attenuation obtained for the NLOS is about 78% higher
than the LOS environment value, which is 1.92. This can be attributed to the varied building and
other obstructions in the LOS terrains. Similarly, taking the mean value of other estimated
parameters for Cell_1, Cell_2 and Cell_3 leads to us to obtain the proposed real-time adaptive
tuned model for NLOS environment: PLcost-232 (NLOS) = 18.86+33.7*log10 (d) + 6.22*log10
(fca) . For the LOS environment, it is PLcost234 (LOS) = 39.76+19.22*log10 (d) +
12.35*10g10 (fca)

Shown in Figures 1-4 are the resultant measured propagation loss estimation using the original
PLcosT-234 and the proposed adapted PLcost-234.
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Figure 1: Measured propagation loss estimation using the original
PLcost-234 and the proposed adapted PLcost-234 for Cell_1
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Figure 2: Measured propagation loss estimation using the original
PLcosT-232 and the proposed adapted PLcost-234 for Cell_2
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Figure 3: Measured propagation loss estimation using the original
PLcosT-234 and the proposed adapted PLcost-234 for Cell_3
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Figure 4: Measured propagation loss estimation using the original
PLcosT-234 and the proposed adapted PLcost-234 for Cell_4
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Table 2: Computed First Order Statistics for Cell_1 to Cell_4
Cell 1 | Cell 2 | Cell 3 | Cell 4

MAE 4.80 5.52 2.47 3.83

Proposed RMSE 7.06 7.12 3.19 4.84

Adaptive STD 4.02 4.50 1.94 2.96
Model R? 0.9973 | 0.9971 | 0.9995 | 0.9988

EStimat_ion Max.Error | 17.60 19.61 9.66 10.47
Statistics SRER 44.48 42.92 42.92 | 48.43
PA 99.92 99.75 99.94 | 99.87

MAE 99.63 | 87.15 | 83.74 | 77.43
Cost-231 RMSE 79.95 | 87.44 | 83.44 | 77.58
Hata Model STD 7.06 7.19 5.82 4.87
Estimation R? 0.8660 | 0.8424 | 0.8543 | 0.8692
Statistics | Max.Error | 80.15 | 88.34 | 89.38 | 78.40
SRER 27.42 | 2551 | 28.62 | 28.23
PE 86.06 | 84.23 | 85.42 | 86.92

Conclusion

Enhancing the estimation accuracy standard propagation loss models will continue to remain a vital
component for effective radio cellular network management or planning process. In this work, a
realistic adaptive fine-tuning method have been proposed and explored for adaptive propagation
loss estimation over a microcellular communication radio links based on signal power
measurements from Long Term Evolution radio broadband networks, taking non-line of sight
(NLOS) and line of sight (LOS) environments into consideration. It is shown that an adapted

propagation models provides a superior loss estimation than the existing standard empirical COST-234
Hata model.
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