Article # The Effect of Negative Mass in Gravitating System #### **Edward Bormashenko** Ariel University, Ariel, 407000, Israel, Engineering Faculty, Department of Chemical Engineering, Biotechnology and Materials, edward@ariel.ac.il **Abstract:** The effect of the negative effective mass emerging in the gravitating core-spring-shell system is considered. The effect appears when the entire system is exerted to the external harmonic force and the frequency of external force approaches to the critical frequency ω_0 from above. The critical frequency ω_0 depends on the density of the self-gravitating system only. The scaling law predicting the value of ω_0 for condensed phases is derived as: $\omega_0 = A^{\frac{1}{5}}\widetilde{\omega}$, where A is the atomic weight and $\widetilde{\omega}$ is the fundamental frequency. The generalization of the effect for the Coulomb-like forces is reported. Keywords: core-spring-shell system; gravitating system; negative mass; Coulomb-like forces ## 1. Introduction The broadly discussed effect of the "negative effective" mass emerges when the core-spring-shell system is substituted by the single effective mass m_{eff} [1]. Pseudo-negative mass introduced in Ref. 1 is quite different from the hypothetic "negative mass" suggested for the solutions of equations of general relativity [2-6] and enabling reasonable, however debatable, explanation for the "dark matter" problem [7]. The negative effective mass emerging in the core-spring-shell system, depicted in **Figure 1A** reflects the fact that the acceleration of the shell at certain conditions (to be discussed in detail below) is in the opposite direction to the applied force [1, 8-10]. Consequently, the chain of the core-spring-shell elements, depicted in Figure 1A demonstrates the paradoxical effective negative density [8, 11-14]. The effect of the negative effective density, in turn, opens the new pathways for the development of novel acoustic metamaterials [15]. Acoustic metamaterials are defined as engineered, artificial, periodic composites enabling altering mechanic properties of materials; thus, allowing properties that are not registered naturally [16]. In particular, metamaterials with controllable and negative bulk modulus were demonstrated, exploiting the effect of the negative mass [10, 11-13, 17]. A number of experimental exemplifications of the "negative mass effect" were already demonstrated [11-13, 18-19]. Use of the plasma oscillations of the free electron gas for the realization of the negative mass effect was suggested [20-21]. We demonstrate, how the gravitating system gives rise to the effect of the negative effective mass. **Figure 1**. **A**. Mechanical scheme giving rise to the effect of the negative mass. The core-shell system, in which the core mass m is connected to the shell M via ideal Hookean spring k. **B**. Drilled gravitating ball R is depicted; density of the ball ρ is constant; the point mass m is located within the drilled channel r; $r \ll R$ is adopted. Both of systems are exerted to the harmonic external force $F(t) \sim e^{-j\omega t}$. # 2. The effect of the negative effective mass in the gravitating system Let us acquaint the contra-intuitive effect of the "negative mass". Consider the core-ideal-spring-shell units, shown in **Figure 1A**. The spring is supposed to be Hookean and massless. This system, as demonstrated in refs. 1, 8-9, gives rise to the "negative effective mass behavior". Assume that the mass of the shell is M, the mass of the core is m and the constant of the linear spring is k. When the core-shell system, depicted in **Figure 1A**, is subjected to the complex harmonic force $\hat{F} = \hat{F}_0 e^{-j\omega t}$ the entire system may be substituted with a single mass m_{eff} defined according to Eq. 1, as suggested in refs 1, 8-9. $$m_{eff} = M + \frac{m\omega_0^2}{\omega_0^2 - \omega^2} \tag{1}$$ where $\omega_0 = \sqrt{\frac{k}{m}}$. It is easily seen from Eq. 1 that, when the frequency ω approaches ω_0 from above the effective mass m_{eff} will be negative [11-16]. Eq. 1 arises from the Eq. 2, which enables to present the entire complex moment \hat{P} of the core-spring-shell system, as follows (see Ref. 1): $$\hat{P} = m_{eff} \hat{V} \quad , \tag{2}$$ where \hat{V} is the complex velocity of the shell M, and m_{eff} is given by Eq. 1. Huang et~al. in ref. 8 noted that actually there is no, of course, the "negative mass", and the negativity of the effective mass is the result of the attempt to use a single mass to respresent a complex core-spring-shell system. Consider now the drilled gravitating ball R, shown in **Figure 1B**, in which cylindrical channel r goes through the center of the ball and $r \ll R$ takes place. Assume that the density of the ball is constant $\rho =$ const, the mass of the ball is M. Small spherical mass m is placed in the channel, as shown in **Figure 1B**. We demonstrate that the aforemetioned system, depicted in **Figure 1B** is mechanically equivivalent to the core-spring-shell system shown in **Figure 1A**. Indeed, the gravitational force acting within the channel on the mass \vec{F}_{gr} is given by Eq. 3: $$\vec{F}_{gr}(r) = m\vec{g}(r), \tag{3}$$ where \vec{g} is the gravitational field within the field. The Gauss's law for gravity is supplied by Eq. 4 (see ref. 22): $$\iint_{S} \vec{g}(r) \cdot d\vec{S} = -4\pi GM,\tag{4}$$ where $G \cong 6.67 \times 10^{-11} \, m^3 s^{-2} kg^{-1}$ is the gravitational constant. Considering $r \ll R$ (keeping the spherical symmetry of the mass distrubution with the ball R); $M = \frac{4}{3} \pi \rho R^3$ and integration of Eq. 4 yields: $$g(r) = -\frac{4}{3}\pi\rho Gr \tag{5}$$ Thus, the gravitational force $\vec{F}_{gr}(r)$ acting on the point mass m is given by Eq. 6: $$\vec{F}_{gr}(r) = -\frac{4}{3}\pi\rho G m r \hat{r} \quad , \tag{6}$$ where \hat{r} is the unit radius-vector. Eq. 6 represents the Hookean linear elastic force, $F_{el} = -kr$, where k is the stiffness coefficient, emerging immediately from Eq. 6: $$k = \frac{4}{3}\pi\rho Gm\tag{7}$$ Hence, the point mass m oscillates within the channel according to the law: $r \sim r_0 e^{-j\omega_0 t}$, where the "critical frequency" ω_0 is given by Eq. 8: $$\omega_0 = \sqrt{\frac{4}{3}\pi\rho G} \tag{8}$$ Thus, the gravitating system, presented in **Figure 1B**, is mechanically equivalent to the core-spring-shell system, shown in **Figure 1A**, in which the spring stiffness k and the frequency of oscillations ω_0 are given by Eq. 7 and Eq. 8. It should be emphasized that the frequency of oscillations ω_0 is independent of the mass m, thus, illustrating the Einstein Equivalency Principle, postulating the equivalence of gravitational and inertial mass [23-24]. It is also noteworthy that the frequency of oscillations ω_0 is independent of the radius of the ball, being dependent on its density ρ only. Thus, we conclude that the critical frequency ω_0 depends on the intensive parameters of the self-gravitating system only. Combining Eq. 1 and Eq. 8 yields for the effective mass of the gravitating system, shown in Figure 1B the following equation: $$m_{eff} = M + \frac{\frac{4}{3}\pi\rho Gm}{\frac{4}{3}\pi\rho G - \omega^2} \tag{9}$$ It will be instructive to calculate the explicit value of ω_0 arising from Eq. 8. Assuming $\rho \cong 1.0 \times 10^3 \frac{kg}{m^3}$ yields $\omega_0 \cong 5.0 \times 10^{-4} s^{-1}$. It is noteworthy, that the densities of condensed phases of different material are close, and they are confined within a relatively narrow range, as demonstrated in ref. 25. Victor Weisskopf in ref. 25 suggested the following expression for estimation of the density of the condensed phases: $$\rho = \frac{A^{\frac{2}{5}m_{pr}}}{1.53^{\frac{4\pi}{3}}a_0^3} \,, \tag{10}$$ where A is the atomic or molecular weight, a_0 is the Bohr radius and m_{pr} is the mass of the proton. Substitution of Eq. 10 into Eq. 8 yields: $$\omega_0 = A^{\frac{1}{5}} \sqrt{\frac{m_{pr}G}{(1.5a_0)^3}} = A^{\frac{1}{5}} \widetilde{\omega} , \qquad (11)$$ where $\widetilde{\omega} = \sqrt{\frac{m_{pr}G}{(1.5 \, a_0)^3}} \cong 4.4 \times 10^{-4} s$ is the fundamental frequency, which is built of the fundamental physical constants only. It is useful to supply the following explicit expression for the fundamental frequency $\widetilde{\omega}$: $$\widetilde{\omega} = \sqrt{\frac{m_{pr}m_e^3c^3\alpha^3G}{(1.5\,\hbar)^3}} \tag{12}$$ where m_e , c, α and \hbar are the mass of electron, the speed of the light in vacuum, the fine structure constant and the reduced Planck constant correspondingly. Scaling Eq. 11 deserves the close inspection; indeed, it predicts a very weak dependence of the critical frequency ω_0 on the atomic weight, namely $\omega_0 \sim A^{\frac{1}{5}}$. In other words, the values of the critical frequency ω_0 are well-expected to be very close for very different condensed materials. # 3. The effect of negative mass for homogeneous Coulomb-like spherically symmetrical systems The aforementioned considerations are true for the similar systems governed by the Coulomblike forces, which scale according to $F(r) \sim \frac{1}{r^2}$. Let us exemplify this fact with the electrically charged ball R drilled through it center, as shown in **Figure 2B**. The mass of the ball is M. Assume that the ball is homogeneously electrically charged with a volume density $\rho_{el} = const$; $[\rho_{el}] = \frac{c}{m^3}$. The point electrical charge q is placed within the cylindrical channel r as shown in **Figure 2B**; the mass of the charge carrier is m. Again, we adopt that the condition $r \ll R$ takes place, which keeps the spherical symmetry of the electrical charge distribution within the ball. The electrical force $\vec{F}_{el}(r)$ acting on the point charge q is given by Eq. 13: $$\vec{F}_{el}(r) = q\vec{E}(r),\tag{13}$$ where $\overrightarrow{E}(r)$ is an electrical field within the homogeneously charged ball R. The electrical field within the ball emerges from the Gauss theorem, and it is given by Eq. 14: $$\vec{E}(r) = -\frac{\pi}{3\varepsilon_0} \rho_{el} r \hat{r},\tag{14}$$ where $\varepsilon_0 = 8.854 \frac{c}{vm}$ is the vacuum permittivity. Thus, the Hookean linear electrical force acting on the charge is supplied by Eq. 15: $$\vec{F}_{el}(r) = -\frac{\pi}{3\varepsilon_0} q \rho_{el} r \hat{r} \tag{15}$$ The stiffness coefficient k is now given by Eq. 16: $$k = \frac{\pi}{3\varepsilon_0} q \rho_{el} \tag{16}$$ Thus, the frequency ω_0 is supplied by Eq. 17: $$\omega_0 = \sqrt{\frac{\pi}{3\varepsilon_0} \frac{q\rho_{el}}{m}} \tag{17}$$ It is noteworthy, that the critical frequency ω_0 depends on the q/m ratio. The mechanical equivalence of the systems depicted in **Figures 2A** and **2B** is easily recognized, if the stiffness of the spring is given by Eq. 16. Now we exert the system shown in Figure 2B to the complex harmonic force $\hat{F} = \hat{F}_0 e^{-j\omega t}$. The effective mass of the system is given by Eq. 18: $$m_{eff} = M + \frac{\frac{\pi}{3\varepsilon_0} q \rho_{el}}{\frac{\pi}{3\varepsilon_0} \frac{q \rho_{el}}{m} - \omega^2}$$ (18) And, again, the effective mass of the system becomes negative when the frequency of the external force ω approaches the critical frequency $\omega_0 = \sqrt{\frac{\pi}{3\varepsilon_0} \frac{q\rho_{el}}{m}}$ from above and in principle in the frictionless system it is unrestricted. Figure 2. A. Equivalence of the system governed by Coulomb Borce to the core-spring-shell system is illustrated. The core-shell system, in which the core mass m connected to the shell M via ideal Hookean spring k is shown **B**. Drilled through it center electrically charged ball R is depicted; density of the electrical charge $\rho_{el} = const$; the point charge q is located within the drilled channel r; $r \ll R$ is assumed. Both of systems are exerted to the harmonic external force $F(t) \sim e^{-j\omega t}$. ## 4. Conclusions The broadly discussed effect of the "negative effective mass" emerges in the core-spring-shell systems exerted to harmonic excitation [1, 8-10]. We addressed the effect of the negative effective mass emerging in the gravitating system, which is mechanically equivalent to the core-spring-shell system. The effect appears when the entire gravitating system is exerted to the external harmonic force and the frequency of external force approaches to the critical frequency ω_0 from above. The critical frequency $\omega_0 = \sqrt{\frac{4}{3}\pi\rho G}$ depends on the density of the self-gravitating system ρ only. The scaling law predicting the value of ω_0 for condensed phases is derived as: $\omega_0 = A^{\frac{1}{5}}\widetilde{\omega}$, where A is the atomic weight and $\widetilde{\omega} = \sqrt{\frac{m_{pr}G}{(1.5 \, a_0)^3}}$ is the fundamental frequency, built of the fundamental physical constants. The values of the critical frequency ω_0 are close for different condensed materials. The generalization of the effect for the Coulomb-like forces is reported. In this case, the effective mass becomes negative, when ω approached to $\omega_0 = \sqrt{\frac{\pi}{3\varepsilon_0}} \frac{q\rho_{el}}{m}$ from above, and in principle, it is unrestricted. # References - [1] G. W. Milton, J. R. Willis, J. R. On modifications of Newton's second law and linear continuum elastodynamics. Proc. R. Soc. A 463 (2007) 855–880. - [2] H. Bondi, Negative Mass in General Relativity, Rev. Mod. Phys. 29 (1957) 423-429. - [3] W. B. Bonnor, Negative mass in general relativity. Gen. Relat. Gravit. 21 (1989) 1143–1157. - [4] G. Manfredi, J.-L. Rouet, B. Miller, G. Chardin, Cosmological structure formation with negative mass, Phys. Rev. D 98 (2018) 023514. - [5] S. Nájera, A. Gamboa, A. Aguilar-Nieto, C. Escamilla-Rivera, On negative mass cosmology in General Relativity, Astronomy & Astrophysics, 651(2021) L13. - [6] V. Veselý, M. Žofka. Pinball spring model, Phys. Rev. D 104 (2021) 104033. - [7] H. Socas-Navarro, Can a negative-mass cosmology explain dark matter and dark energy, Astronomy & Astrophysics 626 (2019) A5. - [8] H. H. Huang, C. N. Sun, G. L Huang, G. L. On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47 (2009) 610-617. - [9] C. T. Chan, J. Li, K. H. Fung, On extending the concept of double negativity to acoustic waves. JZUS A 7 (2006) 24-28. - [10] P. Sarathi, N. K. Pathak, Application of exact solution of complex Morse potential to investigate physical systems with complex and negative masses. J. Phys. Commun. 5 (2021) 065006. - [11] X. N. Liu, G. K. Hu, G. L. Huang, C. T. Sun, C. T. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98 (2011) 251907. - [12] S. Sang, A. Mhannawee, Z. Wang, A design of active elastic metamaterials with negative mass density and tunable bulk modulus. Acta Mech. 230 (2019) 1003–1008. - [13] X.N. Liu, G. K. Hu, G.L Huang, C. T. Sun, An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98 (2011) 251907. - [14] M. Jaberzadeh, B. Li, K. T. Tan, Wave propagation in an elastic metamaterial with anisotropic effective mass density, Wave Motion, 89 (2019) 131-141. - [15] Z.-H. He, Y.-Z. Wang, Y.-S. Wang, Active feedback control of effective mass density and sound transmission on elastic wave metamaterials, Int. J. Mech. Sci. 195 (2021) 106221. - [16] C. Ding, Y. Dong, Y. Wang, J. Shi, S. Zhai, X. Zhao, Acoustic metamaterials and metasurfaces composed of meta-atoms and meta-molecules, J. Phys. D: Appl. Phys. 55 (2022) 253002. - [17] F. Liu, Z. Wang, M. Ke, Z. Liu, Metafluids beyond the Bulk Modulus, Phys. Rev. Lett. 125 (2020 185502. - [18] J. Lončar, B. Igrec, D. Babić, Negative-Inertia Converters: Devices Manifesting Negative Mass and Negative Moment of Inertia, Symmetry, 14(3) (2022) 529. - [19] G. Hong, J. Li, J. Dong, Y. Ning, J. Pan, Frequency-dependent characteristics of grain-beam system: Negative mass and jump behavior, Int. J. Mech. Sci. 209 (2021) 106706. - [20] Ed. Bormashenko, I. Legchenkova, I. Negative effective mass in plasmonic systems. Materials 13 (8) (2020) 1890. - [21] Ed. Bormashenko, I. Legchenkova, M. Frenkel, Negative Effective Mass in Plasmonic Systems II: Elucidating the Optical and Acoustical Branches of Vibrations and the Possibility of Anti-Resonance Propagation. Materials 13(16) (2020) 3512. - [22] G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 5th ed, Academic Press, San Diego, USA, 2001. - [23] P. G. Roll, R. Krotkov, R. H. Dicke, R.H. The equivalence of inertial and passive gravitational mass. Ann. Phys. 26 (1964) 442–517. - [24] Ohanian, H. What is the principle of equivalence? Am. J. Phys. 45 (1977) 903. 8 of 8 [25] V. F. Weisskopf, Of Atoms, Mountains, and Stars: A Study in Qualitative Physics, Am. J. Phys. 187 (4177) (1975) 605-612