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Abstract: The effect of the negative effective mass emerging in the gravitating core-spring-shell system is considered. The effect 
appears when the entire system is exerted to the external harmonic force and the frequency of external force approaches to the critical 
frequency 𝜔𝜔0 from above. The critical frequency 𝜔𝜔0 depends on the density of the self-gravitating system only. The scaling law 

predicting the value of 𝜔𝜔0 for condensed phases is derived as:  𝜔𝜔0 = 𝐴𝐴
1
5𝜔𝜔�, where A is the atomic weight and 𝜔𝜔� is the fundamental 

frequency. The generalization of the effect for the Coulomb-like forces is reported.  
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1. Introduction 

The broadly discussed effect of the “negative effective” mass emerges when the core-spring-shell 

system is substituted by the single effective mass 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 [1]. Pseudo-negative mass introduced in Ref. 1 is 

quite different from the hypothetic “negative mass” suggested for the solutions of equations of general 

relativity [2-6] and enabling reasonable, however debatable, explanation for the “dark matter” problem [7]. 

The negative effective mass emerging in the core-spring-shell system, depicted in Figure 1A reflects the fact 

that the acceleration of the shell at certain conditions (to be discussed in detail below) is in the opposite 

direction to the applied force [1, 8-10]. Consequently, the chain of the core-spring-shell elements, depicted in 

Figure 1A demonstrates the paradoxical effective negative density [8, 11-14]. The effect of the negative 

effective density, in turn, opens the new pathways for the development of novel acoustic metamaterials [15]. 

Acoustic metamaterials are defined as engineered, artificial, periodic composites enabling altering mechanic 

properties of materials; thus, allowing properties that are not registered naturally [16]. In particular, 

metamaterials with controllable and negative bulk modulus were demonstrated, exploiting the effect of the 

negative mass [10, 11-13, 17]. A number of experimental exemplifications of the “negative mass effect” were 

already demonstrated [11-13, 18-19]. Use of the plasma oscillations of the free electron gas for the realization 

of the negative mass effect was suggested [20-21]. We demonstrate, how the gravitating system gives rise to 

the effect of the negative effective mass.      
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Figure 1. A. Mechanical scheme giving rise to the effect of the negative mass. The core-shell system, in 
which the core mass m is connected to the shell M via ideal Hookean spring k.  B. Drilled gravitating ball R 
is depicted; density of the ball ρ is constant; the point mass m is located within the drilled channel r; 𝑟𝑟 ≪ 𝑅𝑅 

is adopted. Both of systems are exerted to the harmonic external force 𝐹𝐹(𝑡𝑡)~𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗. 

2. The effect of the negative effective mass in the gravitating system 

Let us acquaint the contra-intuitive effect of the “negative mass”. Consider the core-ideal-spring-shell 

units, shown in Figure 1A. The spring is supposed to be Hookean and massless. This system, as demonstrated 

in refs. 1, 8-9, gives rise to the “negative effective mass behavior”. Assume that the mass of the shell is M, the 

mass of the core is m and the constant of the linear spring is k. When the core-shell system, depicted in Figure 

1A, is subjected to the complex harmonic force 𝐹𝐹� = 𝐹𝐹�0 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 the entire system may be substituted with a 

single mass 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 defined according to Eq. 1, as suggested in refs 1, 8-9.    

   𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑀𝑀 + 𝑚𝑚𝜔𝜔0
2

𝜔𝜔0
2−𝜔𝜔2                                                  (1) 

where 𝜔𝜔0 = �𝑘𝑘
𝑚𝑚

. It is easily seen from Eq. 1 that, when the frequency 𝜔𝜔 approaches 𝜔𝜔0 from above the 

effective mass 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 will be negative [11-16]. Eq. 1 arises from the Eq. 2, which enables to present the entire 

complex moment 𝑃𝑃� of the core-spring-shell system, as follows (see Ref. 1):  

         𝑃𝑃� = 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑉𝑉�  ,                                                       (2)  

where 𝑉𝑉�  is the complex velocity of the shell M, and 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 is given by Eq. 1. Huang et al. in ref. 8 noted that 

actually there is no, of course, the “negative mass”, and the negativity of the effective mass is  the result of 

the attempt to use a single mass to respresent a complex core-spring-shell system. 

 Consider now the drilled gravitating ball R, shown in Figure 1B, in which cylindrical channel r goes 

through the center of the ball and 𝑟𝑟 ≪ 𝑅𝑅 takes place.  Assume that the density of the ball is constant 𝜌𝜌 =

F(t) 
x 

M 
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the mass of the ball is M. Small spherical mass m  is placed in the channel, as shown in Figure 1B. 

We demonstrate that the aforemetioned system, depicted in Figure 1B is mechanically equivivalent to the 

core-spring-shell system shown in Figure 1A. Indeed, the gravitational force acting within the channel on the 

mass 𝐹⃗𝐹𝑔𝑔𝑔𝑔 is given by Eq. 3: 

  𝐹⃗𝐹𝑔𝑔𝑔𝑔(𝑟𝑟) = 𝑚𝑚𝑔𝑔 ���⃗ (𝑟𝑟),                                               (3) 

where 𝑔⃗𝑔 is the gravitational field within the field. The Gauss’s law for gravity is supplied by Eq. 4 (see ref. 

22):  

     ∬ 𝑔⃗𝑔𝑆𝑆 (𝑟𝑟) ∙ 𝑑𝑑𝑆𝑆 = −4𝜋𝜋𝜋𝜋𝜋𝜋,                                               (4) 

where 𝐺𝐺 ≅ 6.67 × 10−11 𝑚𝑚3𝑠𝑠−2𝑘𝑘𝑘𝑘−1  is the gravitational constant. Considering 𝑟𝑟 ≪ 𝑅𝑅  (keeping the 

spherical symmetry of the mass distrubution with the ball R); 𝑀𝑀 = 4
3
𝜋𝜋𝜋𝜋𝑅𝑅3 and integration of Eq. 4 yields: 

         𝑔𝑔(𝑟𝑟) = −4
3
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋                                                (5) 

Thus, the gravitational force 𝐹⃗𝐹𝑔𝑔𝑔𝑔(𝑟𝑟)  acting on the point mass m is given by Eq. 6:  

𝐹⃗𝐹𝑔𝑔𝑔𝑔(𝑟𝑟) = −4
3
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑟̂𝑟 ,                                       (6) 

where 𝑟̂𝑟 is the unit radius-vector. Eq. 6 represents the Hookean linear elastic force, 𝐹𝐹𝑒𝑒𝑒𝑒 = −𝑘𝑘𝑘𝑘, where k is 

the stiffness coefficient, emerging immediately from Eq. 6:  

            𝑘𝑘 = 4
3
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋                                                 (7) 

Hence, the point mass m oscillates within the channel according to the law: 𝑟𝑟~𝑟𝑟0𝑒𝑒−𝑗𝑗𝜔𝜔0𝑡𝑡, where the “critical 

frequency” 𝜔𝜔0 is given by Eq. 8: 

                  𝜔𝜔0 = �4
3
𝜋𝜋𝜋𝜋𝜋𝜋                                                 (8) 

Thus, the gravitating system, presented in Figure 1B, is mechanically equivalent to the core-spring-shell 

system, shown in Figure 1A, in which the spring stiffness k and the frequency of oscillations 𝜔𝜔0 are given 

by Eq. 7 and Eq. 8.  It should be emphasized that the frequency of oscillations 𝜔𝜔0 is independent of the 

mass m, thus, illustrating the Einstein Equivalency Principle, postulating the equivalence of gravitational and 

inertial mass [23-24]. It is also noteworthy that the frequency of oscillations 𝜔𝜔0 is independent of the radius 
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of the ball, being dependent on its density ρ only. Thus, we conclude that the critical frequency 𝜔𝜔0 depends 

on the intensive parameters of the self-gravitating system only.   

Combining Eq. 1 and Eq. 8 yields for the effective mass of the gravitating system, shown in Figure 1B 

the following equation:   

           𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑀𝑀 +
4
3𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

4
3𝜋𝜋𝜋𝜋𝜋𝜋−𝜔𝜔

2                                             (9) 

It will be instructive to calculate the explicit value of 𝜔𝜔0 arising from Eq. 8. Assuming 𝜌𝜌 ≅ 1.0 × 103 𝑘𝑘𝑘𝑘
𝑚𝑚3 

yields 𝜔𝜔0 ≅ 5.0 × 10−4𝑠𝑠−1. It is noteworthy, that the densities of condensed phases of different material are 

close, and they are confined within a relatively narrow range, as demonstrated in ref. 25. Victor Weisskopf in 

ref. 25 suggested the following expression for estimation of the density of the condensed phases: 

          𝜌𝜌 = 𝐴𝐴
2
5𝑚𝑚𝑝𝑝𝑝𝑝

1.534𝜋𝜋3 𝑎𝑎0
3 ,                                                   (10) 

where A is the atomic or molecular weight, 𝑎𝑎0  is the Bohr radius and 𝑚𝑚𝑝𝑝𝑝𝑝  is the mass of the proton. 

Substitution of Eq. 10 into Eq. 8 yields: 

             𝜔𝜔0 = 𝐴𝐴
1
5�

𝑚𝑚𝑝𝑝𝑝𝑝𝐺𝐺
(1.5𝑎𝑎0)3 = 𝐴𝐴

1
5𝜔𝜔� ,                                    (11) 

where 𝜔𝜔� = �
𝑚𝑚𝑝𝑝𝑝𝑝𝐺𝐺

(1.5 𝑎𝑎0)3 ≅ 4.4 × 10−4𝑠𝑠  is the fundamental frequency, which is built of the fundamental 

physical constants only. It is useful to supply the following explicit expression for the fundamental frequency 

𝜔𝜔�: 

                   𝜔𝜔� = �𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒
3𝑐𝑐3𝛼𝛼3𝐺𝐺

(1.5 ℏ)3  ,                                           (12) 

where 𝑚𝑚𝑒𝑒 , 𝑐𝑐,𝛼𝛼 and ℏ are the mass of electron, the speed of the light in vacuum, the fine structure constant 

and the reduced Planck constant correspondingly. Scaling Eq. 11 deserves the close inspection; indeed, it 

predicts a very weak dependence of the critical frequency 𝜔𝜔0 on the atomic weight, namely 𝜔𝜔0~𝐴𝐴
1
5. In other 

words, the values of the critical frequency 𝜔𝜔0 are well-expected to be very close for very different condensed 

materials.  

3. The effect of negative mass for homogeneous Coulomb-like spherically symmetrical  systems 

The aforementioned considerations are true for the similar systems governed by the Coulomb-

like forces, which scale according to 𝐹𝐹(𝑟𝑟)~ 1
𝑟𝑟2

. Let us exemplify this fact with the electrically charged 
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ball R drilled through it center, as shown in Figure 2B. The mass of the ball is M. Assume that the 

ball is homogeneously electrically charged with a volume density 𝜌𝜌𝑒𝑒𝑒𝑒 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  [𝜌𝜌𝑒𝑒𝑒𝑒] = 𝐶𝐶
𝑚𝑚3 . The 

point electrical charge q is placed within the cylindrical channel r as shown in Figure 2B; the mass 

of the charge carrier is m. Again, we adopt that the condition 𝑟𝑟 ≪ 𝑅𝑅 takes place, which keeps the 

spherical symmetry of the electrical charge distrubution within the ball. The electrical force 

𝐹⃗𝐹𝑒𝑒𝑒𝑒(𝑟𝑟) acting on the point charge q is given by Eq. 13: 

       𝐹⃗𝐹𝑒𝑒𝑒𝑒(𝑟𝑟) = 𝑞𝑞𝐸𝐸 ���⃗ (𝑟𝑟),                                              (13) 

where 𝐸𝐸 ���⃗ (𝑟𝑟) is an electrical field within the homogeneously charged ball R. The electrical field within the 

ball emerges from the Gauss theorem, and it is given by Eq. 14: 

    𝐸𝐸�⃗ (𝑟𝑟) = − 𝜋𝜋
3𝜀𝜀0

𝜌𝜌𝑒𝑒𝑒𝑒𝑟𝑟𝑟̂𝑟,                                         (14) 

where 𝜀𝜀0 = 8.854 𝐶𝐶
𝑉𝑉𝑉𝑉

 is the vacuum permittivity. Thus, the Hookean linear electrical force acting on the 

charge is supplied by Eq. 15:   

                    𝐹⃗𝐹𝑒𝑒𝑒𝑒(𝑟𝑟) = − 𝜋𝜋
3𝜀𝜀0

𝑞𝑞𝜌𝜌𝑒𝑒𝑒𝑒𝑟𝑟𝑟̂𝑟                                           (15) 

The stiffness coefficient k is now given by Eq. 16: 

       𝑘𝑘 = 𝜋𝜋
3𝜀𝜀0

𝑞𝑞𝜌𝜌𝑒𝑒𝑒𝑒                                                    (16) 

Thus, the frequency 𝜔𝜔0 is supplied by Eq. 17: 

        𝜔𝜔0 = �
𝜋𝜋
3𝜀𝜀0

𝑞𝑞𝜌𝜌𝑒𝑒𝑒𝑒
𝑚𝑚

                                                   (17) 

It is noteworthy, that the critical frequency 𝜔𝜔0 depends on the 𝑞𝑞 𝑚𝑚�  ratio. The mechanical equivalence of 

the systems depicted in Figures 2A and 2B is easily recognized, if the stiffness of the spring is given by Eq. 
16. Now we exert the system shown in Figure 2B to the complex harmonic force 𝐹𝐹� = 𝐹𝐹�0 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗. The effective 
mass of the system is given by Eq. 18: 

                𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑀𝑀 +
𝜋𝜋
3𝜀𝜀0

𝑞𝑞𝜌𝜌𝑒𝑒𝑒𝑒
𝜋𝜋
3𝜀𝜀0

𝑞𝑞𝜌𝜌𝑒𝑒𝑒𝑒
𝑚𝑚 −𝜔𝜔2                              (18)   

And, again, the effective mass of the system becomes negative when the frequency of the external force 𝜔𝜔 

approaches the critical frequency 𝜔𝜔0 = �
𝜋𝜋
3𝜀𝜀0

𝑞𝑞𝜌𝜌𝑒𝑒𝑒𝑒
𝑚𝑚

  from above and in principle in the frictionless system it is 

unrestricted.   
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Figure 2. A. Equivalence of the system governed by Coulomb force to the core-spring-shell system is 

illustrated. The core-shell system, in which the core mass m connected to the shell M via ideal Hookean 
spring k is shown  B. Drilled through it center electrically charged ball R is depicted; density of the 
electrical charge 𝜌𝜌𝑒𝑒𝑒𝑒 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; the  point charge q is located within the drilled channel r; 𝑟𝑟 ≪ 𝑅𝑅 is 

assumed. Both of systems are exerted to the harmonic external force 𝐹𝐹(𝑡𝑡)~𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗. 
 
4. Conclusions 

The broadly discussed effect of the “negative effective mass” emerges in the core-spring-shell systems exerted 

to harmonic excitation [1, 8-10]. We addressed the effect of the negative effective mass emerging in the 

gravitating system, which is mechanically equivalent to the core-spring-shell system. The effect appears when 

the entire gravitating system is exerted to the external harmonic force and the frequency of external force 

approaches to the critical frequency 𝜔𝜔0 from above. The critical frequency 𝜔𝜔0 = �4
3
𝜋𝜋𝜋𝜋𝜋𝜋 depends on the 

density of the self-gravitating system ρ only.   The scaling law predicting the value of 𝜔𝜔0 for condensed 

phases is derived as:  𝜔𝜔0 = 𝐴𝐴
1
5𝜔𝜔�, where A is the atomic weight and 𝜔𝜔� = �

𝑚𝑚𝑝𝑝𝑝𝑝𝐺𝐺
(1.5 𝑎𝑎0)3 is the fundamental 

frequency, built of the fundamental physical constants. The values of the critical frequency 𝜔𝜔0 are close for 

different condensed materials. The generalization of the effect for the Coulomb-like forces is reported. In this 

case, the effective mass becomes negative, when 𝜔𝜔 approached to 𝜔𝜔0 = �
𝜋𝜋
3𝜀𝜀0

𝑞𝑞𝜌𝜌𝑒𝑒𝑒𝑒
𝑚𝑚

  from above, and in 

principle, it is unrestricted.  
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