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Abstract: Laboratory medicine is a digital science. Every large hospital produces a wealth of data
each day - from simple numerical results from e.g. sodium measurements to highly complex output
of “-omics” analyses, as well as quality control results and meta-data. Processing, connecting, stor-
ing, and ordering extensive parts of these individual data requires Big Data techniques. Whereas
novel technologies such as artificial intelligence and machine learning have exciting application for
the augmentation of laboratory medicine, the Big Data concept remains fundamental for any so-
phisticated data analysis in large databases. To make laboratory medicine data optimally usable for
clinical and research purposes, they need to be FAIR: findable, accessible, interoperable, and reusa-
ble. This can be achieved for example by automated recording, connection of devices, efficient ETL
(Extract, Transform, Load) processes, careful data governance, and modern data security solutions.
Enriched with clinical data, laboratory medicine data allow a gain in pathophysiological insights,
can improve patient care, or they can be used to develop reference intervals for diagnostic purposes.
Nevertheless, Big Data in laboratory medicine do not come without challenges: The growing num-
ber of analyses and data derived from them is a demanding task to be taken care of. Laboratory
medicine experts are and will be needed to drive this development, take an active role in the ongoing
digitalization, and provide guidance for their clinical colleagues engaging with the laboratory data
in research.
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1. Introduction

Laboratory medicine has always been one of the medical disciplines with the highest
degree of digitalisation. Since its emergence, automation, electronic transmission of re-
sults and electronic reporting have become increasingly prevalent[1]. In addition, medical
laboratories maintain extensive databases, not only with test results, but also with results
from quality controls. Furthermore, they are usually equipped with elaborate quality
management systems. It is therefore not surprising that laboratory medicine represents a
paradigm discipline for the digitalisation of medicine. In contrast, the latest developments
in the data science field, such as artificial intelligence (AI) and machine learning (ML),
have not yet found their way into laboratory medicine across the board. Nevertheless, the
time is now. Three key ingredients for augmenting laboratory medicine have become
available to researchers on a wider scale: Learning and training algorithms, necessary
computational power to run said algorithms, and high-volume data[2]. These latest and
future developments of Al and ML in laboratory medicine, however, do not constitute the
main focus of this experience-based opinion article, several recently published reviews
can offer an excellent overview[1-5]. We will instead highlight the principles required for
high quality, clinical, “big” data. Without solid data as a foundation, even the most refined
algorithms will fail to draw reliable conclusions: “Ex falso sequitur quodlibet”, or put more
coarsely, “garbage in, garbage out”. The manifold requirements and pitfalls for Big Data
analysis in laboratory medicine shall be reviewed below.
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Figure 1. Patients” data is entered into the patient data management system (PDMS) predominantly
manually, while information about samples collected as well as about analyses conducted is entered
into the laboratory information system (LIS) either manually or automatically. PDMS and LIS are
connected and exchange parts of their stored data. Both systems feed a “data lake” comprising var-
ious types of data, which can be provided to researchers for Big Data applications.

2. Definitions surrounding Big Data

Since the terminology “Big Data” has gained traction in the late 1990’s, driven by
need to address the increasing data collection both in the private and public sector, there
has never been a generally agreed upon understanding of the term[6]. Initial depictions
of Big Data were observing the phenomena and stating the emergence of a new discipline
without a cohesive clarifications on what the Big Data term encompasses[7]. A more for-
mal definition, proposed recently, suggests three main V’s (Volume, Velocity and Variety)
as key dimensions of Big Data with the added requirement for specially designed tech-
nologies and analytics to translate data into value[8]. Subsequently, different scientific
disciplines have attributed and highlighted other dimensionalities to Big Data (e.g. Value
or Veracity[9,10]) while neglecting previously mentioned dimensionalities, making a ho-
listic semantic definition rather difficult[11,12]. Ultimately, the strength of the “Big Data”
conceptualization lays in its analytics, where Big Data is translated into clinical merit.

Big Data analysis is the assessment of massive amounts of information from multiple
electronic sources in unison, by sophisticated analytic tools to reveal otherwise unrecog-
nized patterns[13]. If we consider “standard” laboratory analyses, e.g. clinical chemistry,
haematology or hemostaseology, the lion’s share of analysis results consists of numerical
results, possibly enriched with reference ranges. Notably, in terms of size - not compre-
hensibility from the point of view of a human observer though - all laboratory results of a
medium-sized university laboratory fit on a standard hard disk. The situation is different
with "-omics" data, which, depending on the technology, can comprise of several hundred
megabytes to several gigabytes, be it NGS (Next Generation Sequencing) data or proteome
or metabolome data [14]. A distinction must also be made between the usually very ex-
tensive, often proprietary raw data, and pre-processed data, which are often available in
tabular form and correspond to standard multiplex laboratory analyses in terms of vol-
ume. Other fields with extensive data volumes are diagnostic diagrams, whose infor-
mation content may be limited, but who require large storage capacities, when saved in
the form of graphs; and diagnostic image data, e.g. from microscopy or MRI (magnetic
resonance imaging). Another Big Data resource not to be underestimated is also non-pa-
tient-related data, i.e. calibration and quality control data, which are often stored and ad-
ministrated in specialised databases.
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Laboratory data are best suited to the Big Data concept if they are enriched with clin-
ical data from the hospital's various IT systems.

3. Transforming Laboratory Medicine into Big Data Science
Requirements

Even though laboratory medicine databases constitute a rich source of data, fre-
quently these are ill-suited for the application of data science techniques. Created to fit
regulatory requirements instead of research purposes, most databases store data ineffi-
ciently and only for the minimally required retention period. Providing insufficient data
quality for most research questions, databases are transformed into mere data dumps. So,
what are the prerequisites for optimally usable laboratory medical data[15]? Central at-
tributes data needs to have to be optimally suited for research use are summarized by the
key word “FAIR”: Finable, Accessible, Interoperable, Reusable[16]. (cf. Table 1)

Findable data must be stored in a way that enables easy retrieval. For "standard"
examinations, this is usually realised though a patient identifier (PID) and date, so indi-
vidual results can be assigned to the respective patients and collection times. Depending
on the organisation of the laboratory, this is easier said than done. Potential pitfalls are for
example, that the same PIDs might be assigned to different patients in different branch
laboratories, or that analyses conducted for unidentified emergency patients, cannot be
attributed to the correct person when their identity has been clarified. Additionally, re-
sults of different patients might be combined under a "collective" PID for research pur-
poses. Also, data can be confusing when samples are registered with the planned collec-
tion date instead of the actual collection data resulting in analysis time points prior to
collection. Equipment for special examinations poses particular challenges to findability,
as they are frequently not connected to the laboratory information system (LIS). Here, the
patient ID may be entered manually into the evaluation files in a way that does not con-
form to the standard, which can lead to confusion and incomplete entries. An example of
this are "-omics" analyses: Analytical devices routinely produce and output files too large
for transfer and storage in the central LIS. Therefore, they need to be linked, preferably in
a searchable manner to enable offline findability. Likewise, findability has to be addressed
in the sharing of machine-actionable (meta-)data online. Good meta-data makes data find-
able. In web 1.0/2.0 approaches, this was addressed by the Linked Data Principles, a set of
best practices when publishing structured data to the web[17]. These principles were how-
ever proposed before the emergence of FAIR, meaning that little emphasis was put on
standardisation and a variety of inherently different schemas were proposed[18]. One of
the most recent effort for making semantic artefacts FAIR has been launched by the
FAIRsFAIR project, where the authors list recommendations for findable (meta-)data,
highlighting the need for GUPRIs (Globally Unique, Persistent and Resolvable Identifi-
ers), highly enriched and searchable (meta-)data descriptions and, especially relevant for
clinical laboratory sciences, the need to publish data and metadata separately[19]. Finda-
bility remains one of the most important aspects of the FAIRification of Big Data analysis,
as a lack of appropriate metadata standards affects the availability of research data in the
long term. A recent study observed decreased findability of UK health datasets over
time[20], a trend also observed in a greater context of data-driven science both in terms of
the findability of datasets and the reachability of the responsible authors[21].

The accessibility of laboratory data can also be a challenge. LISs usually do not have
freely accessible query functionalities because of regulatory requirements. Therefore, LISs
that are not connected to central clinical data warehouses, must be accessed through the
laboratory IT personnel. This often leads to an enormous amount of additional work, since
laboratory data are highly attractive for a variety of research projects[22]. For use in clini-
cal data warehouses, the LISs must be electronically connected, and the data prepared via
ETL processes (Extract, Transform, Load). This requires the use of universal web stand-
ards including HTTP (Hypertext Transfer Protocol), standardized data exchange formats
(e.g. FHIR[23] and the semantic-based Resource Description Framework (RDF)[24,25])
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and tools which allow querying respective data (e.g. SPARQL[26]). Additionally, data
models in particular OMOP[27,28] or i2b2[29] are in common use. In true FAIR fashion,
LISs must present standard API (Application Programming Interface) with secure access
protocols (SSL) for data management and retrieval[19]. Generally, not the entire content
of the databases is transferred, but a limited subset of data (e.g. data records that can be
clearly assigned to patients) is identified and transmitted. A special challenge in this con-
text is posed by legacy systems that are solely operated in read-only mode and where the
effort for the technical connection must be weighed against the benefit of the further use
of the data contained. Moreover, as the available data for researchers grows there need to
be mechanism in place to enable privacy protection with the use of de-identification or
anonymization algorithms. While textbook method, for instance k-anonymity[30] or 1-di-
versity[31], are often cited they do not come without their limitations[32-34]. In this con-
text, the question arises as to who is allowed to access the laboratory data and under what
conditions. For example, data relating to infection serologies or staff medical service is
particularly sensitive and requires careful data governance[35]. Another important aspect
is the question of patient consent for research projects access needs to be restricted accord-
ing to regulatory requirements[36]. The use of patient data in research in Switzerland is
governed by the Federal Act on Data Protection (FADP 1992, art. 3¢c) and the Human Re-
search Act (HRA RS 810.30). Notably, the governance of Big Data is not different from
“regular” research data: A request on the disposal and use of sensitive data must be sub-
mitted to a cantonal REC (Research Ethics Committee). Big Data research proposes novel
ethical concerns[37], mostly surrounding the notions of privacy (hindrance of individual
reidentification) and consent (possibility to later revoke consent), where traditional ethics
oversight practice is often unaware of the direct societal impact of their decisions[38]. A
recent study in Switzerland showed, that members of the seven Swiss RECs had broadly
differing views in regards to the opportunities and challenges of Big Data citing insuffi-
cient expertise in big data analytics or computer science to adequately judge the use of Big
Data in clinical research[39]. This can become especially cumbersome for researchers
when data from different institutions are merged - in this case, modern systems that work
with secure multiparty computing and homomorphic encryption, such as the MedCo sys-
tem, can be a promising approach[40]. Wirth et al. offer a great overview regarding pri-
vacy-preserving data sharing infrastructures for medical research[41].

The next big and perhaps most important aspect for Big Data in laboratory medicine
is the necessary semantic interoperability. This means that the individual data items must
be clearly assigned semantically, ideally by means of standardised coding along the lines
of LOINC (Logical Observation Identifiers Names and Code). This represents an enor-
mous challenge, which has been addressed in Switzerland, for example, by the LACHLAB
project[42]. It is not enough to identify laboratory analyses only by their trivial name (e.g.
"potassium") - the necessary granularity is defined by the requirements of the research
projects based on it. Thus, a creatinine measurement of any kind may be sufficient as a
"safety lab measurement", but completely insufficient for a method comparison study or
the establishment of reference intervals. It should be noted that currently there is no uni-
versal standard, as even LOINC does not specify e.g. device manufacturer and kit version,
which need to be coded additionally. Unique identifiers for medical devices, e.g. from the
GUDID[43] or EUDAMED database[44], or type identifiers, e.g. from medical device no-
menclatures like GMDNJ[45] or EMDNJ[46], may enrich the LOINC system and increase
its acceptance. Extensive preparatory work to address this issue has been done by the
Swiss Personalized Health Network (SPHN), which established corresponding "con-
cepts"[47]. Particular difficulties arise from historically grown LISs, which are often not
structured according to the 1:1 principles of a LOINC nomenclature and prevent a clean
assignment of laboratory analyses to unambiguous codes. This must be considered espe-
cially when replacing and updating LISs, so that the master data remains future-proof and
interoperable[14]. The use of advanced data models like RDF is beneficial here as it allows
a data scheme to evolve over time without the need to change the original data[25]. In the
university environment, the latest test technology might be employed, using analyses
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which do not yet have a LOINC code assigned, making it necessary to deviate accordingly.
For the consolidation of large amounts of data from different sources, a high semantic
granularity, which is necessary for individual questions, can be problematic, equivalent
analyses must be defined as such in order to enable comprehensive evaluations. Here,
Minimum Information Checklists (MICs), stating the minimum requirements for quality
and quantity to make data descriptions accurate and useful, could offer a needed stand-
ardisation to track data quality from various sources. It is essential that a core vocabulary
features support for descriptions to be machine readable RDF[48], closely linking the com-
monly used semantics in laboratory medicine with machine-actionable descriptions. The
use of semantic web technologies, such as RDF, in the laboratory environment could also
help to establish the common use of Electronic Lab Notebooks (ELNs)[49]. Notably, the
application of suitable data formats facilitates, but by itself does not guarantee actual in-
teroperability of data sets from different data providers. Seemingly trivial details includ-
ing spelling, cardinalities, datatypes, consistent use of GUPRIs or measurement units
must be carefully assessed. In the context of RDF, the Shapes Constraint Language
(SHACL) allows the testing and validating of data against a set of predefined require-
ments[50]. These conditions (SHACL rules) constitute a “shape graph” against which the
actual data (as “data graph”) is matched. The expression of complex constraints is facili-
tated by SHACL-extensions supporting SPARQL and JavaScript[51,52]. Despite the rise
of user-friendly validation tools semantic standards alone are not a “silver bullet” against
data mayhem. In fact, even with maximum semantic care, the competence of experts in
laboratory medicine remains in high demand. Different automated approaches for resolv-
ing the semantic heterogeneity when mapping different ontologies have been launched
but still require human oversight[53,54]. For many researchers who come from non-ana-
lytical subjects, the differences in the meaning of the analysis codes are not obvious at first
glance. Considerable misinterpretations can occur, e.g. calculation of eGFR from urine
creatinine. Here the laboratory holds responsibility since it has the necessary competence
to avoid such errors.

The reusability of laboratory medical data depends to a large extent on the existence
and level of detail of the associated metadata. This includes - as already mentioned - anal-
ysis-related data (mapped in the dimensions of LOINC), but also, batch numbers, quality
management data and, if applicable, SPRECs (Sample PREanalytical Codes)[55] codes - in
essence, everything that is or could be of importance for optimal replicability of the meas-
urement results. It can be problematic that the metadata are stored in separate databases
and cannot be provided automatically via the ETL processes, so that they can neither be
exported nor viewed. Not only the (meta-)data needs to be reusable but also the algo-
rithms and data processing scripts. With “FAIRly big”, a functional framework for retrac-
ing and verifying the computational processing of large-scale data based on machine-ac-
tionable provenance records, high performance could be observed regarding data sharing,
transparency and scalability, despite ignoring explicit metadata standards[56]. Reusabil-
ity can also refer to the efficient use of statistical models that may arise using Machine
Learning methodology. The latter may involve a feedback process where the model is
validated and even further calibrated as information arrives through the expansion of the
database with fresh data. Potential pitfalls impairing reusability may include legislative
limitations imposed by national research acts or legal ambiguities in Data Transfer and
Use Agreements (DTUA) of multicentre cohort studies involving several data providers.
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Table 1. Recommendations for the FAIRification of laboratory data.

Requirement Implementation

- Assign PIDs meaningfully.
Fin dability e Each PID should uniquely identify a single patient, this needs to be consistent
between branch laboratories with parallel systems.
e Develop solutions for unknown emergency patients, that allows correct as-
signment of test results when personal data is identified later on.
e Develop solutions for analyses conducted for research purposes. Avoid cumu-
lative PIDs.
- Record actual sampling time instead of planned sampling time
- Connect all analytical devices to lab IT system to avoid manual entries.
- Connect the lab IT system to the hospitals central IT system to enable searches by

clinicians and researchers.

- Protect lab data adequately with
Accessibili ty e secure data storage solutions
e careful data governance
- Design ETL processes efficiently.
- Consider general consent status of patients and allow access to data accordingly.
- Employ modern technical solutions such as multiparty computing and homomorphic

encryption for merging data from different sites.

- Code analyses in a standardized manner, e.g. with LOINC codes.

I - - Additionally, code device manufacturer and kit version in a standardized way
nteroperability

- Code newly developed analyses in a homogenous way, even if no standardized codes

are available yet.

- Enable consolidation of data from different labs.

- Provide detailed meta-data to maximize reproducibility, including
Reusability *  LOINCcodes

e batch numbers

e quality management data

e SPREC codes

Offer your laboratory medicine expertise to clinicians and researchers, as no one knows

+ the intricacies of your laboratory data better than you.

abbreviations: ETL: extract — transform — load, lab: laboratory, LOINC: Logical Observation Identifiers Names and Code,

PID: patient identifier, SPREC: Standard Preanalytical Code

Risks

The use of laboratory medical data for Big Data analytics does not only have ad-
vantages, but it is also associated with a considerable number of risks: as all health data,
laboratory values are worthy of special protection. As with all information compiled in
large databases, there is an imminent risk of data leaks, especially if the data are accessible
from the outside. Structured laboratory data can also be copied easily and quickly due to
their small file size, so there is a considerable risk of unauthorized data duplication.
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Similarly, data governance must be ensured, which requires a comprehensive authorisa-
tion framework - this is easier to implement in closed LISs. Another essential aspect is
data integrity, which must be ensured in particular through the ETL process pipelines and
also for further processing. LISs, as medical products, usually fulfil the necessary stand-
ards, but with self-written transformation scripts this may be different and enforce a me-
ticulous quality control. However, this has the advantage that non-data transfer-related
errors can also be detected and deleted. In any case, certification of the IT processes is both
sensible and costly. Post-analytics can also cause difficulties — the IT systems of the receiv-
ers (clinicians or researchers) must be able to handle the data formats supplied and must
not alter or falsify their presentation. Another enormously problematic aspect is change
tracking. In the LISs, laboratory tests are often identified by means of their internal anal-
ysis numbers - if changes occur here, e.g. due to the inclusion of new analyses, changes
must be reported to the peripheral systems - preferably automatically and with confirma-
tion of knowledge - otherwise serious analysis mix-ups can occur. Finally, when individ-
ual laboratory data are queried, the framework of the findings is no longer guaranteed -
the analyses lose their context and thus their interpretability.

Chances

The introduction of "Big Data" technologies holds great potential for laboratory med-
icine, and some aspects will be specifically addressed here:

Setting up ETL processes inevitably leads to the detection of inadequacies in the
structure and content of the laboratory's master data. Frequently, LISs have grown over
years and - although continuously maintained - are not organised in a fundamentally con-
sistent manner. Before one can begin with the extraction and processing of laboratory
data, the data organisation, structure, and meta-information must already be disclosed in
the source system. A thorough review of this data is recommended to be carried out in
the mother database because tidying up is in any case necessary, and quite obviously bet-
ter done in the source system than in subordinate databases. Another important aspect is
the necessary introduction of clear semantics - this is a laborious process that initially rep-
resents a large workload but is subsequently relatively easy to maintain. Many laborato-
ries are reluctant to take on this effort - here the diagnostics manufacturers are asked to
supply the necessary codes (e.g.: extended LOINC codes, see above) for the analyses they
offer, e.g. in tabular form, which makes bulk import considerably easier and a matter of a
few days. For researchers in particular, it is also extremely helpful to have a data catalogue
created in this context. Laboratory catalogues are often available electronically, but are
often organized around request profiles, rather than individual analyses that are often of
importance for research questions. The IT teams of the data warehouses will also be very
grateful for appropriate documentation. This also offers the opportunity to make exten-
sive metadata accessible and usable for interested researchers. Together with the intro-
duction of semantics and data catalogues, transparent change tracking should be inte-
grated so queries in the data warehouses can be adapted accordingly if, for example, anal-
yses have changed, or new kits have been used. Change tracking is also clearly to be ad-
vocated from a good laboratory practice (GLP) point of view.

Another aspect of outstanding importance for laboratory medicine as a scientific sub-
ject is the visibility and documentability of the contribution of laboratory medicine to re-
search projects. In the vast majority of clinical studies, laboratory data play an extremely
important role, be it as outcome variables, as safety values, as quality and compliance
indicators, or as covariates. With a transparent database and query structure, the use and
publication impact of laboratory data can be shown more clearly and the position of the
laboratory in the university environment as an essential collaboration and research part-
ner can be strengthened. Other aspects include the improved use of patient data for re-
search purposes - turning laboratory databases from graveyards of findings into fertile
ground for research, an aspect that is certainly in the interest of patients in the context of
improvement of treatment options. The improved indexability of laboratory data in large
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"data lakes" would also allow to link them to clinical data. Conversely, this also opens up
completely new research possibilities for laboratory scientists, as the laboratory values no
longer stand alone, but can be analysed in a clinical context. Last but not least, a cleanly
curated database is an essential foundation for Al applications: It's like in most data sci-
ence projects: 80% of the effort is data tidying, and 20% is the "fun part" of the analysis.
Here the laboratories have to point out their very important, but little prestigious and
extremely tedious role. - They are essential partners in the vast majority of research col-
laborations.

Fields of application

Big Data with its technological environment does not yet represent a translation into
medical fields of application, but it should be regarded as a basis and facilitator for a large
number of potential uses. Mainly applications come into consideration that already re-
quire a large amount of information to be processed and thus bring the human part of the
evaluation pipeline to a processing limit. These include, of course, data-intensive "-omics"
technologies including pattern recognition in specialised metabolic diagnostics and new-
born screening, but also technical and medical validation and quality management. Fur-
ther applications can be population-based evaluations such as the creation of reference
value intervals. In the following, some of the potential fields of application are described.

An obvious field for Big Data technologies in laboratory medicine are "-omics" appli-
cations [57-59]: These have been developed for nucleic acid-based techniques as e.g. ge-
nomics[60,61], transcriptomics[62], and epigenomics[63], as well as for mass spectrome-
try-based methodologies such as proteomics[64,65] , metabolomics[66,67], lipidomics[68]
and others. The particular challenges in this field include connecting the analysis systems
to the corresponding data lakes - it is no longer possible to work with traditional database
technologies and new approaches for example hadoop[69] become necessary. Even more
than in the case of highly standardised routine procedures in classical laboratory medi-
cine, metadata play an outstanding role in evaluability, comparability, and replicability.
In addition, the raw data generated with these procedures are often formatted in a pro-
prietary manner, and also of enormous size - comparable only with the data sets of the
imaging disciplines. For retrieval, indexing and linking to the respective patient must be
ensured; this can be achieved, for example, by linking tables of processed results instead
of raw data output. The extent to which transformation and evaluation steps already make
sense in the ETL process depends on the respective question, but following the FAIR prin-
ciples, open file formats should be made available in addition to raw data, even if the
transformation process is often accompanied by a loss of information (e.g. in mass spec-
trometry).

Also in other diagnostic fields where a large number of different analyses have to be
medically validated synoptically, Big Data technologies offer a good basis for the devel-
opment of pattern recognition and Al algorithms that not only help to automate work-
flows efficiently but can also recognise conspicuous patterns without fatigue and thus
lead to a reduced false negative rate. New-born screening is a prime example of this[70],
but complex metabolic diagnostics will also benefit from data that is machine learning-
ready - there is still considerable potential for development[71]. For algorithms to be reg-
istered as “medical devices”, the hurdles to be taken are fairly high, including proper as-
sessment of potential risks, detailed software design specifications, traceability, data se-
curity, etc. just to name a few obligations to be compliant with the new “Medical Device
Regulation” (MDR) of the European Union[72]. Moreover, to be used in hospital settings,
data collection requires strict quality management systems certified in accordance with
ISO 13485[73]. Currently, European notified bodies or other authorities like the U.S. Food
and Drug Administration (FDA) or the UK Medicines and Healthcare products Regula-
tory Agency (MHRA) have started to adapt guidelines for Good Machine Learning Prac-
tice (GMLP) for the development of Al and ML applications as medical devices or over-
hauled its existing regulations [74-76]. We are now witnessing the clearance of the first Al-
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based algorithms for prediction and diagnostics for use with patients. The “IDx-DR”-al-
gorithm which detects diabetic retinopathy from retinal images is an inspiring exam-
ple[77]. It was the first medical device using artificial intelligence to be approved by the
FDA in April 2018 and for use on the European market in April 2019.[78,79] Data from a
multi-centre study with 900 patients enrolled at ten different sites was a cornerstone for
the approval of the “IDx-DR”-algorithm — a masterpiece, unthinkable without proper “Big
Data”-management[77].

Besides laboratory diagnostics itself, there are a large number of other fields of appli-
cation for Big Data in laboratory medicine. For example, the field of quality management.
Mark Cervinski notes that "modelling of Big Data allowed us to develop protocols to rap-
idly detect analytical shifts" - additionally administrative and process-oriented aspects,
such as optimising turnaround time (TAT), can also benefit from Big Data[13].

Clinical decision support systems are more oriented towards clinical needs and are
essentially based on laboratory data. This can be in the context of integrated devices[80]
or more or less complex algorithms that enable the integration of multimodal information
and allow clinicians to quickly and reliably make statements about the diagnostic value
of constellations of findings. An example of this is the prediction of the growth of bacteria
in urine culture based on urine flow cytometric data[81].

Perhaps the most exciting field of application for Big Data in laboratory medicine,
however, is predictive and pre-emptive diagnostics. With the help of laboratory data,
probabilities for a variety of patient-related events can be calculated and, in the best case,
therapeutic countermeasures can be initiated so that the events do not occur in the first
place. This can range from the prediction of in-house mortality in the sense of an alarm
triage[82,83] to the prediction of derailments in the blood glucose levels of diabetic pa-
tients[84] - the possible applications are almost unlimited.

4. Conclusion and Outlook

Laboratory medicine has always been a data-driven discipline - more so than ever
with the advent of multi-parametric and "-omics" technologies. On the other hand, the
discipline has been largely fossilised by a way of working that has remained almost un-
changed for decades and by specific requirements of clinicians and regulatory bodies for
reporting findings[85]. This is especially true for routine clinical diagnostics, so opening
up to "Big Data" represents a challenge that should not be underestimated. Yet this open-
ness represents the basis for modern technologies in particular deep learning or artificial
intelligence which can bring diverse advantages for diagnostics, but also for laboratory
medicine as an academic and research-based medical discipline. Many steps that are re-
quired in the transformation of laboratory medicine data into "Big Data"[22] that can be
used for research make sense anyway for lean, efficient, sustainable, and complete data
management and can lead to a cleansing and "aggiornamento” of laboratory data. If labor-
atory medicine shies away from these developments, it will be degraded to a pure number
generator in the foreseeable future or disappear completely as an academic subject in in-
tegrated diagnostic devices. On the other hand, the importance of comprehensive, quality-
assured laboratory medical data and metadata for clinical research can hardly be under-
estimated. It is important to set standards in openness, willingness to collaborate, and
FAIlRification of medical data. After all, health data is the new blood[86] - which can also
revitalise laboratory medicine not only in a figurative sense.
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