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Abstract: Laboratory medicine is a digital science. Every large hospital produces a wealth of data 

each day - from simple numerical results from e.g. sodium measurements to highly complex output 

of “-omics” analyses, as well as quality control results and meta-data. Processing, connecting, stor-

ing, and ordering extensive parts of these individual data requires Big Data techniques. Whereas 

novel technologies such as artificial intelligence and machine learning have exciting application for 

the augmentation of laboratory medicine, the Big Data concept remains fundamental for any so-

phisticated data analysis in large databases. To make laboratory medicine data optimally usable for 

clinical and research purposes, they need to be FAIR: findable, accessible, interoperable, and reusa-

ble. This can be achieved for example by automated recording, connection of devices, efficient ETL 

(Extract, Transform, Load) processes, careful data governance, and modern data security solutions. 

Enriched with clinical data, laboratory medicine data allow a gain in pathophysiological insights, 

can improve patient care, or they can be used to develop reference intervals for diagnostic purposes. 

Nevertheless, Big Data in laboratory medicine do not come without challenges: The growing num-

ber of analyses and data derived from them is a demanding task to be taken care of. Laboratory 

medicine experts are and will be needed to drive this development, take an active role in the ongoing 

digitalization, and provide guidance for their clinical colleagues engaging with the laboratory data 

in research. 
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1. Introduction 

Laboratory medicine has always been one of the medical disciplines with the highest 

degree of digitalisation. Since its emergence, automation, electronic transmission of re-

sults and electronic reporting have become increasingly prevalent[1]. In addition, medical 

laboratories maintain extensive databases, not only with test results, but also with results 

from quality controls. Furthermore, they are usually equipped with elaborate quality 

management systems. It is therefore not surprising that laboratory medicine represents a 

paradigm discipline for the digitalisation of medicine. In contrast, the latest developments 

in the data science field, such as artificial intelligence (AI) and machine learning (ML), 

have not yet found their way into laboratory medicine across the board. Nevertheless, the 

time is now. Three key ingredients for augmenting laboratory medicine have become 

available to researchers on a wider scale: Learning and training algorithms, necessary 

computational power to run said algorithms, and high-volume data[2]. These latest and 

future developments of AI and ML in laboratory medicine, however, do not constitute the 

main focus of this experience-based opinion article, several recently published reviews 

can offer an excellent overview[1–5]. We will instead highlight the principles required for 

high quality, clinical, “big” data. Without solid data as a foundation, even the most refined 

algorithms will fail to draw reliable conclusions: “Ex falso sequitur quodlibet”, or put more 

coarsely, “garbage in, garbage out”. The manifold requirements and pitfalls for Big Data 

analysis in laboratory medicine shall be reviewed below. 
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Figure 1. Patients´ data is entered into the patient data management system (PDMS) predominantly 

manually, while information about samples collected as well as about analyses conducted is entered 

into the laboratory information system (LIS) either manually or automatically. PDMS and LIS are 

connected and exchange parts of their stored data. Both systems feed a “data lake” comprising var-

ious types of data, which can be provided to researchers for Big Data applications. 

2. Definitions surrounding Big Data 

Since the terminology “Big Data” has gained traction in the late 1990’s, driven by 

need to address the increasing data collection both in the private and public sector, there 

has never been a generally agreed upon understanding of the term[6]. Initial depictions 

of Big Data were observing the phenomena and stating the emergence of a new discipline 

without a cohesive clarifications on what the Big Data term encompasses[7]. A more for-

mal definition, proposed recently, suggests three main V’s (Volume, Velocity and Variety) 

as key dimensions of Big Data with the added requirement for specially designed tech-

nologies and analytics to translate data into value[8]. Subsequently, different scientific 

disciplines have attributed and highlighted other dimensionalities to Big Data (e.g. Value 

or Veracity[9,10]) while neglecting previously mentioned dimensionalities, making a ho-

listic semantic definition rather difficult[11,12]. Ultimately, the strength of the “Big Data” 

conceptualization lays in its analytics, where Big Data is translated into clinical merit. 

Big Data analysis is the assessment of massive amounts of information from multiple 

electronic sources in unison, by sophisticated analytic tools to reveal otherwise unrecog-

nized patterns[13]. If we consider “standard” laboratory analyses, e.g. clinical chemistry, 

haematology or hemostaseology, the lion´s share of analysis results consists of numerical 

results, possibly enriched with reference ranges. Notably, in terms of size - not compre-

hensibility from the point of view of a human observer though - all laboratory results of a 

medium-sized university laboratory fit on a standard hard disk. The situation is different 

with "-omics" data, which, depending on the technology, can comprise of several hundred 

megabytes to several gigabytes, be it NGS (Next Generation Sequencing) data or proteome 

or metabolome data [14]. A distinction must also be made between the usually very ex-

tensive, often proprietary raw data, and pre-processed data, which are often available in 

tabular form and correspond to standard multiplex laboratory analyses in terms of vol-

ume. Other fields with extensive data volumes are diagnostic diagrams, whose infor-

mation content may be limited, but who require large storage capacities, when saved in 

the form of graphs; and diagnostic image data, e.g. from microscopy or MRI (magnetic 

resonance imaging). Another Big Data resource not to be underestimated is also non-pa-

tient-related data, i.e. calibration and quality control data, which are often stored and ad-

ministrated in specialised databases. 
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Laboratory data are best suited to the Big Data concept if they are enriched with clin-

ical data from the hospital's various IT systems. 

3. Transforming Laboratory Medicine into Big Data Science 

Requirements 

Even though laboratory medicine databases constitute a rich source of data, fre-

quently these are ill-suited for the application of data science techniques. Created to fit 

regulatory requirements instead of research purposes, most databases store data ineffi-

ciently and only for the minimally required retention period. Providing insufficient data 

quality for most research questions, databases are transformed into mere data dumps. So, 

what are the prerequisites for optimally usable laboratory medical data[15]? Central at-

tributes data needs to have to be optimally suited for research use are summarized by the 

key word “FAIR”: Finable, Accessible, Interoperable, Reusable[16]. (cf. Table 1) 

Findable data must be stored in a way that enables easy retrieval. For "standard" 

examinations, this is usually realised though a patient identifier (PID) and date, so indi-

vidual results can be assigned to the respective patients and collection times. Depending 

on the organisation of the laboratory, this is easier said than done. Potential pitfalls are for 

example, that the same PIDs might be assigned to different patients in different branch 

laboratories, or that analyses conducted for unidentified emergency patients, cannot be 

attributed to the correct person when their identity has been clarified. Additionally, re-

sults of different patients might be combined under a "collective" PID for research pur-

poses. Also, data can be confusing when samples are registered with the planned collec-

tion date instead of the actual collection data resulting in analysis time points prior to 

collection. Equipment for special examinations poses particular challenges to findability, 

as they are frequently not connected to the laboratory information system (LIS). Here, the 

patient ID may be entered manually into the evaluation files in a way that does not con-

form to the standard, which can lead to confusion and incomplete entries. An example of 

this are "-omics" analyses: Analytical devices routinely produce and output files too large 

for transfer and storage in the central LIS. Therefore, they need to be linked, preferably in 

a searchable manner to enable offline findability. Likewise, findability has to be addressed 

in the sharing of machine-actionable (meta-)data online. Good meta-data makes data find-

able. In web 1.0/2.0 approaches, this was addressed by the Linked Data Principles, a set of 

best practices when publishing structured data to the web[17]. These principles were how-

ever proposed before the emergence of FAIR, meaning that little emphasis was put on 

standardisation and a variety of inherently different schemas were proposed[18]. One of 

the most recent effort for making semantic artefacts FAIR has been launched by the 

FAIRsFAIR project, where the authors list recommendations for findable (meta-)data, 

highlighting the need for GUPRIs (Globally Unique, Persistent and Resolvable Identifi-

ers), highly enriched and searchable (meta-)data descriptions and, especially relevant for 

clinical laboratory sciences, the need to publish data and metadata separately[19]. Finda-

bility remains one of the most important aspects of the FAIRification of Big Data analysis, 

as a lack of appropriate metadata standards affects the availability of research data in the 

long term. A recent study observed decreased findability of UK health datasets over 

time[20], a trend also observed in a greater context of data-driven science both in terms of 

the findability of datasets and the reachability of the responsible authors[21]. 

The accessibility of laboratory data can also be a challenge. LISs usually do not have 

freely accessible query functionalities because of regulatory requirements. Therefore, LISs 

that are not connected to central clinical data warehouses, must be accessed through the 

laboratory IT personnel. This often leads to an enormous amount of additional work, since 

laboratory data are highly attractive for a variety of research projects[22]. For use in clini-

cal data warehouses, the LISs must be electronically connected, and the data prepared via 

ETL processes (Extract, Transform, Load). This requires the use of universal web stand-

ards including HTTP (Hypertext Transfer Protocol), standardized data exchange formats 

(e.g. FHIR[23] and the semantic-based Resource Description Framework (RDF)[24,25]) 
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and tools which allow querying respective data (e.g. SPARQL[26]). Additionally, data 

models in particular OMOP[27,28] or i2b2[29] are in common use. In true FAIR fashion, 

LISs must present standard API (Application Programming Interface) with secure access 

protocols (SSL) for data management and retrieval[19]. Generally, not the entire content 

of the databases is transferred, but a limited subset of data (e.g. data records that can be 

clearly assigned to patients) is identified and transmitted. A special challenge in this con-

text is posed by legacy systems that are solely operated in read-only mode and where the 

effort for the technical connection must be weighed against the benefit of the further use 

of the data contained. Moreover, as the available data for researchers grows there need to 

be mechanism in place to enable privacy protection with the use of de-identification or 

anonymization algorithms. While textbook method, for instance k-anonymity[30] or l-di-

versity[31], are often cited they do not come without their limitations[32–34]. In this con-

text, the question arises as to who is allowed to access the laboratory data and under what 

conditions. For example, data relating to infection serologies or staff medical service is 

particularly sensitive and requires careful data governance[35]. Another important aspect 

is the question of patient consent for research projects access needs to be restricted accord-

ing to regulatory requirements[36]. The use of patient data in research in Switzerland is 

governed by the Federal Act on Data Protection (FADP 1992, art. 3c) and the Human Re-

search Act (HRA RS 810.30). Notably, the governance of Big Data is not different from 

“regular” research data: A request on the disposal and use of sensitive data must be sub-

mitted to a cantonal REC (Research Ethics Committee). Big Data research proposes novel 

ethical concerns[37], mostly surrounding the notions of privacy (hindrance of individual 

reidentification) and consent (possibility to later revoke consent), where traditional ethics 

oversight practice is often unaware of the direct societal impact of their decisions[38]. A 

recent study in Switzerland showed, that members of the seven Swiss RECs had broadly 

differing views in regards to the opportunities and challenges of Big Data citing insuffi-

cient expertise in big data analytics or computer science to adequately judge the use of Big 

Data in clinical research[39]. This can become especially cumbersome for researchers 

when data from different institutions are merged - in this case, modern systems that work 

with secure multiparty computing and homomorphic encryption, such as the MedCo sys-

tem, can be a promising approach[40]. Wirth et al. offer a great overview regarding pri-

vacy-preserving data sharing infrastructures for medical research[41]. 

The next big and perhaps most important aspect for Big Data in laboratory medicine 

is the necessary semantic interoperability. This means that the individual data items must 

be clearly assigned semantically, ideally by means of standardised coding along the lines 

of LOINC (Logical Observation Identifiers Names and Code). This represents an enor-

mous challenge, which has been addressed in Switzerland, for example, by the L4CHLAB 

project[42]. It is not enough to identify laboratory analyses only by their trivial name (e.g. 

"potassium") - the necessary granularity is defined by the requirements of the research 

projects based on it. Thus, a creatinine measurement of any kind may be sufficient as a 

"safety lab measurement", but completely insufficient for a method comparison study or 

the establishment of reference intervals. It should be noted that currently there is no uni-

versal standard, as even LOINC does not specify e.g. device manufacturer and kit version, 

which need to be coded additionally. Unique identifiers for medical devices, e.g. from the 

GUDID[43] or EUDAMED database[44], or type identifiers, e.g. from medical device no-

menclatures like GMDN[45] or EMDN[46], may enrich the LOINC system and increase 

its acceptance. Extensive preparatory work to address this issue has been done by the 

Swiss Personalized Health Network (SPHN), which established corresponding "con-

cepts"[47]. Particular difficulties arise from historically grown LISs, which are often not 

structured according to the 1:1 principles of a LOINC nomenclature and prevent a clean 

assignment of laboratory analyses to unambiguous codes. This must be considered espe-

cially when replacing and updating LISs, so that the master data remains future-proof and 

interoperable[14]. The use of advanced data models like RDF is beneficial here as it allows 

a data scheme to evolve over time without the need to change the original data[25]. In the 

university environment, the latest test technology might be employed, using analyses 
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which do not yet have a LOINC code assigned, making it necessary to deviate accordingly. 

For the consolidation of large amounts of data from different sources, a high semantic 

granularity, which is necessary for individual questions, can be problematic, equivalent 

analyses must be defined as such in order to enable comprehensive evaluations. Here, 

Minimum Information Checklists (MICs), stating the minimum requirements for quality 

and quantity to make data descriptions accurate and useful, could offer a needed stand-

ardisation to track data quality from various sources. It is essential that a core vocabulary 

features support for descriptions to be machine readable RDF[48], closely linking the com-

monly used semantics in laboratory medicine with machine-actionable descriptions. The 

use of semantic web technologies, such as RDF, in the laboratory environment could also 

help to establish the common use of Electronic Lab Notebooks (ELNs)[49]. Notably, the 

application of suitable data formats facilitates, but by itself does not guarantee actual in-

teroperability of data sets from different data providers. Seemingly trivial details includ-

ing spelling, cardinalities, datatypes, consistent use of GUPRIs or measurement units 

must be carefully assessed. In the context of RDF, the Shapes Constraint Language 

(SHACL) allows the testing and validating of data against a set of predefined require-

ments[50]. These conditions (SHACL rules) constitute a “shape graph” against which the 

actual data (as “data graph”) is matched. The expression of complex constraints is facili-

tated by SHACL-extensions supporting SPARQL and JavaScript[51,52]. Despite the rise 

of user-friendly validation tools semantic standards alone are not a “silver bullet” against 

data mayhem. In fact, even with maximum semantic care, the competence of experts in 

laboratory medicine remains in high demand. Different automated approaches for resolv-

ing the semantic heterogeneity when mapping different ontologies have been launched 

but still require human oversight[53,54]. For many researchers who come from non-ana-

lytical subjects, the differences in the meaning of the analysis codes are not obvious at first 

glance. Considerable misinterpretations can occur, e.g. calculation of eGFR from urine 

creatinine. Here the laboratory holds responsibility since it has the necessary competence 

to avoid such errors. 

The reusability of laboratory medical data depends to a large extent on the existence 

and level of detail of the associated metadata. This includes - as already mentioned - anal-

ysis-related data (mapped in the dimensions of LOINC), but also, batch numbers, quality 

management data and, if applicable, SPRECs (Sample PREanalytical Codes)[55] codes - in 

essence, everything that is or could be of importance for optimal replicability of the meas-

urement results. It can be problematic that the metadata are stored in separate databases 

and cannot be provided automatically via the ETL processes, so that they can neither be 

exported nor viewed. Not only the (meta-)data needs to be reusable but also the algo-

rithms and data processing scripts. With “FAIRly big”, a functional framework for retrac-

ing and verifying the computational processing of large-scale data based on machine-ac-

tionable provenance records, high performance could be observed regarding data sharing, 

transparency and scalability, despite ignoring explicit metadata standards[56]. Reusabil-

ity can also refer to the efficient use of statistical models that may arise using Machine 

Learning methodology. The latter may involve a feedback process where the model is 

validated and even further calibrated as information arrives through the expansion of the 

database with fresh data. Potential pitfalls impairing reusability may include legislative 

limitations imposed by national research acts or legal ambiguities in Data Transfer and 

Use Agreements (DTUA) of multicentre cohort studies involving several data providers. 
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Table 1. Recommendations for the FAIRification of laboratory data. 

Requirement Implementation 

 

Findability 

- Assign PIDs meaningfully. 

 Each PID should uniquely identify a single patient, this needs to be consistent 

between branch laboratories with parallel systems. 

 Develop solutions for unknown emergency patients, that allows correct as-

signment of test results when personal data is identified later on.  

 Develop solutions for analyses conducted for research purposes. Avoid cumu-

lative PIDs. 

- Record actual sampling time instead of planned sampling time 

- Connect all analytical devices to lab IT system to avoid manual entries. 

- Connect the lab IT system to the hospitals central IT system to enable searches by 

clinicians and researchers. 

Accessibility 

- Protect lab data adequately with  

 secure data storage solutions 

 careful data governance 

- Design ETL processes efficiently. 

- Consider general consent status of patients and allow access to data accordingly. 

- Employ modern technical solutions such as multiparty computing and homomorphic 

encryption for merging data from different sites. 

Interoperability 

- Code analyses in a standardized manner, e.g. with LOINC codes. 

- Additionally, code device manufacturer and kit version in a standardized way 

- Code newly developed analyses in a homogenous way, even if no standardized codes 

are available yet. 

- Enable consolidation of data from different labs. 

Reusability 

- Provide detailed meta-data to maximize reproducibility, including 

 LOINC codes 

 batch numbers 

 quality management data 

 SPREC codes 

+ 
Offer your laboratory medicine expertise to clinicians and researchers, as no one knows 

the intricacies of your laboratory data better than you. 

abbreviations: ETL: extract – transform – load, lab: laboratory, LOINC: Logical Observation Identifiers Names and Code, 

PID: patient identifier, SPREC: Standard Preanalytical Code 

Risks 

The use of laboratory medical data for Big Data analytics does not only have ad-

vantages, but it is also associated with a considerable number of risks: as all health data, 

laboratory values are worthy of special protection. As with all information compiled in 

large databases, there is an imminent risk of data leaks, especially if the data are accessible 

from the outside. Structured laboratory data can also be copied easily and quickly due to 

their small file size, so there is a considerable risk of unauthorized data duplication. 
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Similarly, data governance must be ensured, which requires a comprehensive authorisa-

tion framework - this is easier to implement in closed LISs. Another essential aspect is 

data integrity, which must be ensured in particular through the ETL process pipelines and 

also for further processing. LISs, as medical products, usually fulfil the necessary stand-

ards, but with self-written transformation scripts this may be different and enforce a me-

ticulous quality control. However, this has the advantage that non-data transfer-related 

errors can also be detected and deleted. In any case, certification of the IT processes is both 

sensible and costly. Post-analytics can also cause difficulties – the IT systems of the receiv-

ers (clinicians or researchers) must be able to handle the data formats supplied and must 

not alter or falsify their presentation. Another enormously problematic aspect is change 

tracking. In the LISs, laboratory tests are often identified by means of their internal anal-

ysis numbers - if changes occur here, e.g. due to the inclusion of new analyses, changes 

must be reported to the peripheral systems - preferably automatically and with confirma-

tion of knowledge - otherwise serious analysis mix-ups can occur. Finally, when individ-

ual laboratory data are queried, the framework of the findings is no longer guaranteed - 

the analyses lose their context and thus their interpretability. 

Chances 

The introduction of "Big Data" technologies holds great potential for laboratory med-

icine, and some aspects will be specifically addressed here: 

Setting up ETL processes inevitably leads to the detection of inadequacies in the 

structure and content of the laboratory's master data. Frequently, LISs have grown over 

years and - although continuously maintained - are not organised in a fundamentally con-

sistent manner. Before one can begin with the extraction and processing of laboratory 

data, the data organisation, structure, and meta-information must already be disclosed in 

the source system. A thorough review of this data is recommended to be carried out in 

the mother database because tidying up is in any case necessary, and quite obviously bet-

ter done in the source system than in subordinate databases. Another important aspect is 

the necessary introduction of clear semantics - this is a laborious process that initially rep-

resents a large workload but is subsequently relatively easy to maintain. Many laborato-

ries are reluctant to take on this effort - here the diagnostics manufacturers are asked to 

supply the necessary codes (e.g.: extended LOINC codes, see above) for the analyses they 

offer, e.g. in tabular form, which makes bulk import considerably easier and a matter of a 

few days. For researchers in particular, it is also extremely helpful to have a data catalogue 

created in this context. Laboratory catalogues are often available electronically, but are 

often organized around request profiles, rather than individual analyses that are often of 

importance for research questions. The IT teams of the data warehouses will also be very 

grateful for appropriate documentation. This also offers the opportunity to make exten-

sive metadata accessible and usable for interested researchers. Together with the intro-

duction of semantics and data catalogues, transparent change tracking should be inte-

grated so queries in the data warehouses can be adapted accordingly if, for example, anal-

yses have changed, or new kits have been used. Change tracking is also clearly to be ad-

vocated from a good laboratory practice (GLP) point of view. 

Another aspect of outstanding importance for laboratory medicine as a scientific sub-

ject is the visibility and documentability of the contribution of laboratory medicine to re-

search projects. In the vast majority of clinical studies, laboratory data play an extremely 

important role, be it as outcome variables, as safety values, as quality and compliance 

indicators, or as covariates. With a transparent database and query structure, the use and 

publication impact of laboratory data can be shown more clearly and the position of the 

laboratory in the university environment as an essential collaboration and research part-

ner can be strengthened. Other aspects include the improved use of patient data for re-

search purposes - turning laboratory databases from graveyards of findings into fertile 

ground for research, an aspect that is certainly in the interest of patients in the context of 

improvement of treatment options. The improved indexability of laboratory data in large 
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"data lakes" would also allow to link them to clinical data. Conversely, this also opens up 

completely new research possibilities for laboratory scientists, as the laboratory values no 

longer stand alone, but can be analysed in a clinical context. Last but not least, a cleanly 

curated database is an essential foundation for AI applications: It's like in most data sci-

ence projects: 80% of the effort is data tidying, and 20% is the "fun part" of the analysis. 

Here the laboratories have to point out their very important, but little prestigious and 

extremely tedious role. - They are essential partners in the vast majority of research col-

laborations. 

Fields of application 

Big Data with its technological environment does not yet represent a translation into 

medical fields of application, but it should be regarded as a basis and facilitator for a large 

number of potential uses. Mainly applications come into consideration that already re-

quire a large amount of information to be processed and thus bring the human part of the 

evaluation pipeline to a processing limit. These include, of course, data-intensive "-omics" 

technologies including pattern recognition in specialised metabolic diagnostics and new-

born screening, but also technical and medical validation and quality management. Fur-

ther applications can be population-based evaluations such as the creation of reference 

value intervals. In the following, some of the potential fields of application are described. 

An obvious field for Big Data technologies in laboratory medicine are "-omics" appli-

cations [57–59]: These have been developed for nucleic acid-based techniques as e.g. ge-

nomics[60,61], transcriptomics[62], and epigenomics[63], as well as for mass spectrome-

try-based methodologies such as proteomics[64,65] , metabolomics[66,67], lipidomics[68] 

and others. The particular challenges in this field include connecting the analysis systems 

to the corresponding data lakes - it is no longer possible to work with traditional database 

technologies and new approaches for example hadoop[69] become necessary. Even more 

than in the case of highly standardised routine procedures in classical laboratory medi-

cine, metadata play an outstanding role in evaluability, comparability, and replicability. 

In addition, the raw data generated with these procedures are often formatted in a pro-

prietary manner, and also of enormous size - comparable only with the data sets of the 

imaging disciplines. For retrieval, indexing and linking to the respective patient must be 

ensured; this can be achieved, for example, by linking tables of processed results instead 

of raw data output. The extent to which transformation and evaluation steps already make 

sense in the ETL process depends on the respective question, but following the FAIR prin-

ciples, open file formats should be made available in addition to raw data, even if the 

transformation process is often accompanied by a loss of information (e.g. in mass spec-

trometry). 

Also in other diagnostic fields where a large number of different analyses have to be 

medically validated synoptically, Big Data technologies offer a good basis for the devel-

opment of pattern recognition and AI algorithms that not only help to automate work-

flows efficiently but can also recognise conspicuous patterns without fatigue and thus 

lead to a reduced false negative rate. New-born screening is a prime example of this[70], 

but complex metabolic diagnostics will also benefit from data that is machine learning-

ready - there is still considerable potential for development[71]. For algorithms to be reg-

istered as “medical devices”, the hurdles to be taken are fairly high, including proper as-

sessment of potential risks, detailed software design specifications, traceability, data se-

curity, etc. just to name a few obligations to be compliant with the new “Medical Device 

Regulation” (MDR) of the European Union[72]. Moreover, to be used in hospital settings, 

data collection requires strict quality management systems certified in accordance with 

ISO 13485[73]. Currently, European notified bodies or other authorities like the U.S. Food 

and Drug Administration (FDA) or the UK Medicines and Healthcare products Regula-

tory Agency (MHRA) have started to adapt guidelines for Good Machine Learning Prac-

tice (GMLP) for the development of AI and ML applications as medical devices or over-

hauled its existing regulations [74–76].We are now witnessing the clearance of the first AI-
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based algorithms for prediction and diagnostics for use with patients. The “IDx-DR”-al-

gorithm which detects diabetic retinopathy from retinal images is an inspiring exam-

ple[77]. It was the first medical device using artificial intelligence to be approved by the 

FDA in April 2018 and for use on the European market in April 2019.[78,79] Data from a 

multi-centre study with 900 patients enrolled at ten different sites was a cornerstone for 

the approval of the “IDx-DR”-algorithm – a masterpiece, unthinkable without proper “Big 

Data”-management[77]. 

Besides laboratory diagnostics itself, there are a large number of other fields of appli-

cation for Big Data in laboratory medicine. For example, the field of quality management. 

Mark Cervinski notes that "modelling of Big Data allowed us to develop protocols to rap-

idly detect analytical shifts" - additionally administrative and process-oriented aspects, 

such as optimising turnaround time (TAT), can also benefit from Big Data[13]. 

Clinical decision support systems are more oriented towards clinical needs and are 

essentially based on laboratory data. This can be in the context of integrated devices[80] 

or more or less complex algorithms that enable the integration of multimodal information 

and allow clinicians to quickly and reliably make statements about the diagnostic value 

of constellations of findings. An example of this is the prediction of the growth of bacteria 

in urine culture based on urine flow cytometric data[81]. 

Perhaps the most exciting field of application for Big Data in laboratory medicine, 

however, is predictive and pre-emptive diagnostics. With the help of laboratory data, 

probabilities for a variety of patient-related events can be calculated and, in the best case, 

therapeutic countermeasures can be initiated so that the events do not occur in the first 

place. This can range from the prediction of in-house mortality in the sense of an alarm 

triage[82,83] to the prediction of derailments in the blood glucose levels of diabetic pa-

tients[84] - the possible applications are almost unlimited. 

4. Conclusion and Outlook 

Laboratory medicine has always been a data-driven discipline - more so than ever 

with the advent of multi-parametric and "-omics" technologies. On the other hand, the 

discipline has been largely fossilised by a way of working that has remained almost un-

changed for decades and by specific requirements of clinicians and regulatory bodies for 

reporting findings[85]. This is especially true for routine clinical diagnostics, so opening 

up to "Big Data" represents a challenge that should not be underestimated. Yet this open-

ness represents the basis for modern technologies in particular deep learning or artificial 

intelligence which can bring diverse advantages for diagnostics, but also for laboratory 

medicine as an academic and research-based medical discipline. Many steps that are re-

quired in the transformation of laboratory medicine data into "Big Data"[22] that can be 

used for research make sense anyway for lean, efficient, sustainable, and complete data 

management and can lead to a cleansing and "aggiornamento" of laboratory data. If labor-

atory medicine shies away from these developments, it will be degraded to a pure number 

generator in the foreseeable future or disappear completely as an academic subject in in-

tegrated diagnostic devices. On the other hand, the importance of comprehensive, quality-

assured laboratory medical data and metadata for clinical research can hardly be under-

estimated. It is important to set standards in openness, willingness to collaborate, and 

FAIRification of medical data. After all, health data is the new blood[86] - which can also 

revitalise laboratory medicine not only in a figurative sense. 
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