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Abstract

This study develops a predictor-corrector algorithm for the numerical simulation of IVPs
involving singular generalized fractional derivatives with Mittag-LefHler kernels. The pro-
posed algorithm converts the considered IVP into a Volterra-type integral equation and
then uses Trapezoidal rule to obtain approximate solutions. Numerical approximate solu-
tions of some singular generalized fractional derivative with Mittag-LefHer kernels models
have been presented to demonstrate the efficiency and accuracy of the proposed algorithm.
The algorithm describes the influence of the fractional derivative parameters on the dy-
namics of the studied models. The suggested method is expected to be effectively employed
in the field of simulating generalized fractional derivative models.
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1. Introduction

Despite of the fact that the origin of the fractional calculus (FC) has started 326 years
back, this extension of meaning still has many new open problems in both theoretical and
applied directions. During the history of FC, several definitions of fractional operators have
been suggested and indeed many applications to real world problems have been emerged [1-
9]. Nowadays, FC is an emerging field in mathemtics and it is subjected under an internal
dynamical evolution. Despite of loosing some of the classical properties of calculus, FC
become more attractive for researchers trying to utilise it in opening the doors of the
complicated dynamical systems. Indeed it become clear that fractional calculus methods
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and techniques can be combined efficiently with artificail intelligence, big data and other
complex concepts in order to provide better description of complex systems.

In our opinion, one characteristic of the contemporary FC is that it can not be reduced
to a certain set of class of operators, and therefore we do not have a unique operator
like the classical calculus case [I0]. Besides, as emphasized in the excellent handbook of
Polyanin and Manzirov, there are plenty of integral operators that can play a potential
role for better description of complex dynamical systems. So, a logical question arises:
How can we generalize the existing well known operators such as Riemann-Liouville or
Caputo, so that we have an interesting mathematical construction but at the same time
to be able to successfully use these generalized operators for real-world applications? We
stress on the fact that the generalized integral operators were introduced for the first time
by Boltzmann in 1874 [32] and since then we can see various ways of defining a generalized
fractional operator [11-21]. A crucial step for validation of the generalised operators is to
have powerdul computational methods and techniques.

An important class of operators consists of Prabhakar [20] operators which has the
property that it contains both singular and non-singular operators as particular cases. For
the operators of Caputo type, especially where the kernel is continuous, we have to be very
careful in handling the extra conditions which assures that the problem is well defined.
For more details on this topic the reader can see page 3 in the handbook of Polyanin and
Manzirov [I1]. A natural question appears when we are dealing with the Mittag-Leffler
kernels: which fractional operator can be defined in such a way that there are no unnatural
constraints on solving the relevant fractional differential equations? As it is expected the
solution to this issue is not unique because of the properties of the Mittag-Leffler kernel.
Recently, fractional operators with Mittag-Leffler kernels [I8] have used in different fields of
science and engineering to model many real world applications. The Mittag-Leffler kernel
is nonsingular operator [18] and there are several ways to initialise these operarors properly
[21, 32]. On the other hand, the predictor-corrector method developed in [23] is one of
the most powerful, accurate and effective method that is widely used to provide numerical
solutions for IVPs equipped with fractional derivatives of the standard Caputo type. Some
modified versions and implementations of this numerical method can be found in [23-28].

Having all these aspects in mind, in this manuscript we suggested a predictor-corrector
algorithm to numerically simulate IVPs that involves fractional derivative with Mittag-
Leffler kernels containing three parameters. The manuscript is organised as follows:The
required defnitions and formulas are reported in Section 2. The developed predictor-
corrector algorithm is presented in detal in Section 3. The test examples are depicted in
Session 4. Finally, the conclussions are depicted in Section 5.

2. Preliminaries

This section recalls some definitions, characteristics and properties related to the gen-
eralized Caputo-type Atangana-Baleanu (ABC) fractional derivative with Mittag-Leffler
kernels. The most interesting fractional derivative operators that are used in physical ap-
plications with non-local and memory properties are the Riemann-Liouville and Caputo
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fractional derivatives. Their definition is based on the use of the Riemann-Liouville frac-
tional integral operator which is identified as

Definition 1. The Riemann-Liouville fractional integral operator, of order o > 0, can be
expressed as [4]

al’ f(x) = L /x(:c — )7 f(t)dt, Re(o) >0,a <z <h. (1)

I'(o)
Definition 2. The MittagLeffier (ML) function of one parameter is defined as [4]

E,(\ z) = E,(\z7),

(2)
_Z 0]+1 0#)X€ER, 2 €C, Re(o) >0,

and the ML function with two parameters o and [ has the following form

Egﬁ(A,Z) = B_lEgﬁ()\ZJ)

»0J+6-1 (3)
:Z e 0#£MNeR, zeC, Re(o) > 0.

Moreover, the formula of the modified version of the generalized ML of three parameters is
given by
e U]—i—,B 1

Z m (4)

=0

where (7); = v(y+1)...(y+j—1). Next, we recall the generalized ABC fractional derivative
with three parameters ML kernel.

Definition 3. The generalized ABC fractional derivative with kernel EJ (\,t) where 0 <
o<1, Re() >0, v€R and X = % is defined by [21]

@) o) =322 [, 00— 05 @) i
No) (5)
=——F) (A x—a)x f'(x).
l—0o 7F
For0 <o <1,Re(l1—p)>0,v>0and A\ = =% the corresponding AB fractional integral

s given by

(P1mf)e) =2 (7> Noi ol @) (6)

=0

where N'(c) > 0 is a normalization function such that N'(0) = N (1) = 1.
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Lemma 4. For0<o <1, u>0,v>0, A\ ==% and f defined on [a,b] we have [21]

l—0o

2817w (A€ Do ) (1) = f(x) — f(a). 7)

Throughout the rest of this paper we take >0, p# 1, v > 0 and A = =.

g

Proposition 5. Assume that 0 <o <1, u>0,v€ R, A= 1% andv > 0. Then

1
fBCDU,/L,’Y@ —a)' = = O'F(U +DE] 40

(Mt —a). (8)

Theorem 6. Assume that 0 <o <1,0<pu<1,v>0, A= % and F € Cla,T]. Then
the IVP [21]

ABCDoORIF (1) = W(t, F(t)), a<t<T, (9)

subject to the initial condition F(a) = Fo, is equivalent to the integral equation
F(t) = Fo+27 I7M70(t, F(1)). (10)

3. Predictor-corrector algorithm

Several predictor-corrector approaches, which are generalizations of the Adams-Bashforth-
Moulton method, have been used successfully to solve numerically some Caputo-types frac-
tional differential equations [30, BI]. In this section, we developed a predictor-corrector
algorithm for the numerical solutions of IVPs including generalized fractional derivative
with Mittag-Leffler kernels. We introduced the main steps of the suggested algorithm to
handle the IVP given in Eq. @[) over the interval [a, T]. Initially, if 0 <o < 1,0 < pu < 1,
v >0, A= % and F € Cla, T}, then the IVP (9), referring to Theorem 6 , is equivalent to
the Volterra-type integral equation given in Eq. . To describe our algorithm, assuming
that the function W is set so that a unique solution for the IVP (9) comes out in the interval
la, T], let’s start by defining a uniform grid in the interval [a,T] with N + 1 equispaced
nodes t., r =0,1,--- N, given by t, = a + rh, where r = 0,1,.... N, N € N* h = T&“ is
the time step size and ty = T. At the node r 4+ 1 we have

F(tri1) = Fo+ Z 27 L(F)) (tr), (11)
where
ouer (7 (o)’
2= (@) I'(oi+1—pwN(o)(1—o)-1 (12)
and

do0i:10.20944/preprints202204.0045.v1
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(L(F)(t) = /0 (t — )7 (7, F(1))dr. (13)

In order to progress further along in the construction of our numerical scheme, the in-
tegral (I;(F))(t,+1) is approximating by making use of the trapezoidal quadrature formula.
That is

tr+1 . ~
~ / (trr — 7)7 10,y (7)dr,

=]

where W, 1(7) is the piecewise linear interpolant for the function (7, F(7)). Using F, to

denote the numerical approximation of F(t,), V,,1(7) is given by

T—1

- tivg—T .
v, = Iyt F) 4+ ——L (. F
+1(T))|T€[tj,tj+1] tj—l—l _ tj ( 79 J) + tj—l—l _ tj ( J+1s ]+1)7
0<j<r.

Let m = r 4+ 1, and by employing some algebraic manipulations, the previous integral can
be determined as

1 m—1 tit1 ) tjt1 )
) = 23 | / (b — 7)7 N (r — £,)dT — 0, / (b = 777 — ty01)d7 | |
§=0 ty tj
= TN G 95,
§=0
where
_6m,i70a lfj = Oa
Gm,i,j = wm,i,m—b lfj =m,

Winij1 — Umj, 1 1<j<m—1,

LED il TESES W (CE et S B v

wmm:“”ﬁ)[ oi —p+1 ot —pr+2

LES unceb TSRS unc W (GRS a3 SEES ]

Omig = (M= >{ oi—pu+1 01—+ 2
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Consequently, the corrector formula is described by the rule

Fri1 = Fo+ U(trr, Fryr) + Z%HJ‘I’(% Fi), (14)
=0
with _ .
e v (0)7, X hcrz—l—l—,u
g’r j — . . . T E 15
weL () s S = 1
and
roEt2 — (p — (oi — p A+ 1)) (r + 1)o7 et if 7=0,
Q41,5 , A A (16)
(T _ ] + 2)az—u+2 + (7“ _ j)az—u+2 _ 2(7, _ ,] + 1)az—u+2 Zf 1 S ,] S r.

The principle step of our algorithm is to replace the value of the term F,.,; appears
on the right hand side of by the predictor value 7 ;. In this case, employing the
fractional version of Adams-Bashforth method, replacing the function W(t, F(t)) at each
subinterval by the quantity W(¢;, F;), we obtain [23]

Fra=Fo+ Z &1,V (85, F)), (17)
§=0
where | -
(7 (o) x hoiti=n
éar - ; br j 5 18
+1,4 ; (2> T(oi+2— N (o)1= o)t (18)
and |
bryry = (r41— )77 — (r — )7t (19)

The last step of our algorithm is to use the truncation series S (.), where M € N,
as an approximation of the infinite series > .~ (.). Thus, the predictor-corrector approach
is well described by the following formula, where F(j) ~ F(¢;) for j =0,1,--- , N,

( T
= M F( +1) ot hoitl—p
fr—f—l - ]:0 + Zi:O I‘(i+1);(77i+1) (I—0) I T(oi—pt3) Z a"f—i—l,j\p(tj, -7:3)
i=0
a J (20)
I'(v+1) o poitl—p .
i Z 1—1 1 \I]<t'r+17 ~7:7«+1),
N T+ 1)l (y—i+1)(1—0)"1T(0i — p+3)
where
FPo=Fo+ i T(y+1) o poitl—n Z ) e
r+41 — Y0 P F(Z + 1)F(’7 — 7+ ].) (]_ — O-)Z 1 1“ O'Z L =+ 2 T’+1j ], .
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In the next section, the performance of the suggested algorithm we will be examined.
For implementation purposes, we can observe that the behaviour of our algorithm is in-
dependent of the value of the parameters o, p and v, and of course the accuracy can be
enhanced when h becomes small. However, we can notice that the approximation F,.,; is
based on the whole data record (Fy, Fi, ..., F,). This asserts the realization of the non-local
property of the studied fractional operator.

4. Test problems

In this section, we demonstrated the efficiency and accuracy of the suggested predictor-
corrector algorithm to deal with IVPs involving generalized fractional derivative with
Mittag-Leffler kernels. The first two test problems are identified so that their exact solu-
tions can be found in order to compare the numerical results produced using our algorithm
with exact solutions. In the third test problem, we used the suggested algorithm to study
the dynamic behaviour of the studied problem.

Example 1. Our first problem considers the IVP

o,u+opu+1

{ ABCDomy(t) = LT(op+2)E] (A ) + u?(t) — (ytorth)2, t>0, )

u(0) =

=)

)

where B¢ D7 is the generalized ABC fractional derivative with ML kernel presented in
Definition 3, 0 <o < 1,0 < pu <1, > 0and A = %. The exact solution of the IVP
(22) is u(t) = yt7r.

In Tables 1, 2, 3 and 4, we display approximate solutions to the IVP (22) obtained using
the proposed predictor-corrector algorithm at t = 1 and ¢ = 2 for some specific values of
the parameters o, p and . Through the numerical results shown in these tables, we can
simply note that the numerical approximations provided using our algorithm are very close
to the exact solutions. Furthermore, we can conclude that when N and M become large,
the accuracy becomes better.

Example 2. Our second problem considers the IVP

0 PC DI u(t) = ﬁ <F(’VU +2)E o1 (A1) = T(p+ Z)E;I,Qu—&-l()‘at))

— W) + (D — ), t>0, (23

u(0) = 0,
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N M =10 M =20 M =40
10 0.73827970 0.73935162 0.73935182

20 0.74554909 0.74668745 0.74668767

40 0.74779723 0.74895962 0.74895985

80  0.74849741 0.74966789

160 0.74871891

Table 1: Numerical solutions to the IVP (22), when o = 0.8, y = 0.5 and v = 0.75, at t = 1. The exact
value of v at t =1 is 0.75.

N M =10 M =20 M =40
10 0.48059149 0.49603680 0.49605572

20 0.48302228 0.49835776 0.49837588

40 0.48395954 0.49930956 0.49932745

80 0.48432259 0.49970232

160 0.48446575

Table 2: Numerical solutions to the IVP (22), when o = 0.85, u = 0.75 and v = 0.5, at t = 1. The exact
value of u at t =1 is 0.5.

N M =10 M =20 M =40
10 1.21074309 1.32748578 1.32869314

20 1.39839620 1.54717462 1.54886505

40 1.47912231 1.64419345 1.64616852

80 1.51074278 1.68276081

160 1.52263631

Table 3: Numerical solutions to the IVP (22), when o = 0.75, = 0.25 and v = 0.75, at ¢t = 2. The exact
value of u at t = 2 is 1.70818295.
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N M =10 M =20 M =40
10 1.42633610 1.44687990 1.44693776

20 1.71501560 1.74198215 1.74206038

40 1.84058353 1.87112448 1.87121479

80  1.88664452 1.91869928

160 1.90220804

Table 4: Numerical solutions to the IVP (22), when o = 0.7, x = 0.4 and v = 0.8, at t = 2. The exact
value of u at t = 2 is 1.94271182.

where §8¢ D#7 is the generalized ABC fractional derivative with ML kernel presented in
Definition 3, 0 < 0 < 1,0 < pu <1,y > 0and A = =%. The exact solution of the IVP
(23) is u(t) = 7ot — gL,

In Tables 5, 6, 7 and 8, we display approximate solutions to the IVP (23) obtained using
the proposed predictor-corrector algorithm at t = 0.5 and ¢ = 1.5 for some specific values
of the parameters o, u and 7. Through the numerical results shown in these tables, we can
simply deduce that the numerical approximations provided using our algorithm are highly
compatible with the exact solutions. As shown in the previous example, we can conclude
that when N and M become large, the accuracy becomes better. Moreover, by noting the
convergence of the numerical results displayed in Tables 1-8, we can observe the stability
property of proposed algorithm.
Example 3. Our third problem considers the IVP

{ 0PCDTIu(t) = u(t) —uP(t), >0,
(24)

u(0) = g,

where §B8C D77 is the generalized ABC fractional derivative with ML kernel presented in
Deﬁn1t10n3 u R, 0<o <1, 0<u<1,’y>0and)\_l"’.

The solution behavior of the fractional model given in the IVP regarding different
parameters of generalized derivative versus the variable t is descrlbed in Figs. [l and
These figures display numerical solutions to the IVP ((24)) provided using our predictor-
corrector algorithm, when N = 400, M = 30, T' = 5 and uy = 0.25, for some specific values
of o, i and 7.

do0i:10.20944/preprints202204.0045.v1
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N M =10 M =20 M =40
10 0.14512415 0.14512465 0.14512465

20 0.14545820 0.14545871 0.14545871

40 0.14554839 0.14554891 0.14554891

80  0.14557230 0.14557312

160 0.14557908

Table 5: Numerical solutions to the IVP (23), when o = 0.7, . = 0.75 and v = 0.25, at ¢t = 0.5. The exact
value of u at t = 0.5 is 0.14558198.

N M =10 M =20 M =40
10 0.17932800 0.17933581 0.17933581

20 0.17949689 0.17950473 0.17950473

40 0.17954318 0.17955102 0.17955102

80  0.17955605 0.17956389

160 0.17955972

Table 6: Numerical solutions to the IVP (23), when o = 0.8, u = 0.9 and v = 0.2, at ¢ = 0.5. The exact
value of u at ¢t = 0.5 is 0.17956917.

N M =10 M =20 M =40
10 0.65005987 0.65092136 0.65092229

20 0.61671127 0.61778343 0.61778469

40 0.60620821 0.60735569 0.60735707

80  0.60302358 0.60419510

160 0.60207416

Table 7: Numerical solutions to the IVP (23), when o = 0.75, p = 0.4 and v = 1.5, at ¢t = 1.5. The exact
value of u at ¢t = 1.5 is 0.60285785.
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N M =10 M =20 M =40
10 0.38051467 0.38055271 0.38055271

20 0.36465861 0.36470581 0.36470582

40 0.35918591 0.35923675 0.35923676

80 0.35737370 0.35742584

160 0.35678871

Table 8: Numerical solutions to the IVP (23), when ¢ = 0.65, u = 0.35 and v = 1.25, at ¢t = 1.5. The
exact value of u at t = 1.5 is 0.35657074.

10p 10

Figure 1: Plots of numerical solutions to the IVP (24), where 1 = 0.5 and v = 0.75, when N = 400,
M =25 up=0.25 and T = 5.
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Figure 2: Plots of numerical solutions to the IVP (24), where p = 0.4 and v = 1, when N = 400, M = 25,
ug = 0.25 and T' = 5.

5. Conclusion

In this paper, an efficient predictor-corrector algorithm for the numerical solutions of
IVPs involving generalized ABC fractional derivatives with three parameters ML kernel
is proposed. The developed algorithm was designed to work successfully in handling the
corresponding Volterra-type integral equations conveniently and accurately. The results of
the first two studied test problems confirm that the precise numerical solutions obtained
using the proposed algorithm are very close to the exact solutions. Furthermore, form the
convergence of the numerical results provided using the suggested algorithm, which was
successfully implemented to demonstrate the solution behavior of the third test problem,
we can observe the numerical stability feature of this method. Finally, since the suggested
algorithm is the only one that has been developed to deal with the considered fractional
models, we believe that it will find useful implementations in providing numerical solutions
for many nonlinear fractional models including generalized ABC fractional derivatives with
ML kernels.
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