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Abstract
As one of the representatives of emerging metallic transition metal dichalcogenides, niobium
ditelluride (NbTe,) has attracted intensive interest recently due to its distorted lattice structure
and unique physical properties. Here, we report on the ultrafast carrier dynamics in NbTe;
measured using time-resolved pump-probe transient reflection spectroscopy. A thickness-
dependent carrier relaxation time is observed, exhibiting a clear increase in the fast and slow
carrier decay rates for thin NbTe;, flakes. In addition, pump power dependent measurements
indicate that the carrier relaxation rates are power-independent, with the peak amplitude of the
transient reflectivity increasing linearly with pump power. Isotropic relaxation dynamics in
NbTe; is also verified by performing polarization-resolved pump-probe measurements. These
results provide an insight into the light-matter interactions and charge carrier dynamics in NbTe,
and will pave the way for its applications to photonic and optoelectronic devices.
KEYWORDS: Layered transition metal dichalcogenides, NbTe;, flake, ultrafast carrier dynamics, pump-probe
spectroscopy.

1. INTRODUCTION

Since the ground-breaking discovery of graphene,! two-dimensional (2D) layered materials have undergone a
tremendous surge in interest in the past decade, both in fundamental science as well as industrial applications.?®
Layered transition metal dichalcogenides (TMDCs), with a formula of MX, (M represents transition metal and X
is chalcogen element), are a widely studied family of 2D materials that have demonstrated huge potential for
electronic and optical devices owing to their novel electrical and optical properties. Thanks to their atomic film
thickness and high carrier mobilities, monolayer MaoS; and WeS; films have been used for sub-5nm field-effect
transistors (FETs).%* A layer-tunable optical band gap that covers a spectral range from the visible to the NIR
regions makes TMDCs promising for broadband photodetectors and highly efficient solar cells.*>* In addition,
strong light-matter interactions in atomically thin MoSe;, WS;, and PdSe; above their bandgap gives rise to many
fascinating phenomena, such as exotic excitonic properties,'>'” a strong optical nonlinearity,*®*° and quantum

interference,°-?! enabling many new photonic and quantum devices.

Recently, metallic 1-T phase TMDCs with exotic physical properties, such charge density waves (CDW) and low-
temperature superconductivity, have attracted significant interest.?2-2 NbTe; is one example that is a semimetal
with a topologically protected band crossing.?® Owing to its semimetal nature and ultrahigh electrical conductivity,
NbTe, has been used as conductive electrode to reduce the contact resistance and improve carrier mobility of
other 2D semiconductors.?4? More importantly, NbTe, exhibits a coexistence of CDW and superconductivity
below 0.74 K, providing a good platform for unconventional superconductivity and strongly correlated electron
systems.?6-2 Linear magnetoresistance and anisotropic magneto-transport properties were also experimentally
observed, demonstrating its strong potential for magnetic devices.?” 3 Although progress has been promising for
electric and magnetic applications, the optical properties of NbTe, have yet to be investigated. This includes the
ultrafast carrier dynamics and layer-dependent light-matter interaction.
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In this work, we characterize the photon-excited carrier dynamics in mechanically exfoliated NbTe; flakes having
thicknesses from ~ 15 — 50 nm via time-resolved transient reflection spectroscopy. Photoinduced bleaching (PB)
of 1040 nm probe light is experimentally achieved when the samples are irradiated by a pump at 520 nm.
Thickness-dependent carrier relaxation times are observed, where both the fast and slow relaxation rates decrease
with sample thickness. We also observe a linear increase in the transient reflection peak amplitude with pump
power, whereas the photon-excited carrier decay times are power independent. In addition, polarization-resolved
Raman and pump-probe measurements show that the relaxation dynamics are isotropic. Our results present a
comprehensive analysis of photon-excited carrier dynamics in NbTe, and provide guidance for its applications to

photonic and optoelectronic devices.

2. MATERIALS AND CHARACTERIZATION

Sample preparation. NbTe; single crystals were synthesized by the chemical vapor transport (CVT) technique.?”
31 High purity Nb foil (99.99%), Te power (99.999%), and iodine (99%) were sealed in an evacuated quartz tube,
which was subsequently heated to 550 °C and held for one day in a two-zone furnace. After that, the heating
temperatures of the two-zone furnace were increased to 850 °C (source side) and 750 °C (sink side) and kept for
one week. After cooled naturally, NbTe; single crystals were obtained. NbTe; flakes with different thicknesses

were exfoliated from the bulk crystals using adhesive tape and transferred onto quartz substrates.

Material characterization. Morphology images and thicknesses of the samples were characterized using atomic
force microscopy (Alpha 300ras, WITec) in tapping mode. The resolutions in vertical and transverse directions
were ~ 0.1 nm and ~ 8 nm, respectively. Raman spectra were characterized with the same instrument with a 532
nm laser excitation. The linear absorbance of the materials was measured by an ultraviolet-visible (UV-vis)

spectrometer.

Time-resolved pump-probe technique. The transient reflection measurements were performed using a Yb fiber-
based laser (Menlo Systems) with a central wavelength at 1040 nm. The repetition rate and pulse width of the
laser were 100 MHz and 150 fs, respectively. The laser beam size is ~ 4 um. Five percent of the output laser was
employed as a probe beam while the balance of 95% provided the pump pulse at 520 nm via frequency doubling.
A half-wave plate combined with a linear polarizer was used as a continuously adjustable power attenuator. After
passing through a free space time--delay line, the pump and probe pulses were focused with an objective lens (Tu
Plan Fluor 50 x NA = 0.8, Nikon) onto the sample surface with a Gaussian spot. The reflected probe beam was
separated from the pump light by using a color filter before reaching the silicon photodetector, which significantly
improved the signal-to-noise ratio. A lock-in amplifier (SR865A, Stanford Research Systems) referenced to 1.5
kHz mechanically chopped pump (SR542, Stanford Research Systems) was employed to collect the reflection

change (AR) of the probe beam due to the pump excitation.

3. RESULTS AND DISCUSSION
NbTe; is a typical layered CDW material with two different structural phases. At high temperature (above 550 K),

it exhibits a high symmetry 1-T phase where each Nb atom is coordinated octahedrally by Te atoms.®? Below 550
K, NbTe, undergoes a CDW phase transition which results in a displacement of Nb atoms from the octahedral
centers to a monoclinically distorted 1-T phase (1-T'phase).?% % This 1-T’ phase is very stable at room temperature

since the phase transition temperature is much higher. The crystal structure of 1-T"NbTe; is shown in Figure 1(a).
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Each monolayer is composed of an Nb layer sandwiched by two Te layers, where the Nb atoms are displaced
within the plane to form “trimers,” whereas the Te atoms present an out-of-plane buckling.?® %2 The Te-Nb-Te
sandwiches stack with weak van der Waals interactions to form a layered structure.
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Figure 1. (a) Schematic crystal structure of monoclinic 1-7" NbTe,. The green and yellow dots represent the Nb
and Te atoms, respectively. (b) Optical microscopy image of an exfoliated NbTe; flake. (c) AFM height profile
of the NbTe; flake. The measured thickness is ~ 28 nm. (d) Raman spectrum excited via a 532 nm laser. (e) UV-

vis absorption spectrum. (f) Determined optical bandgaps of samples with different thicknesses.

We prepared single crystal NbTe, flakes with different thicknesses via mechanical exfoliation. An optical
microscopy image of a representative sample is shown in Figure 1(b). Different contrasts represent areas with
different thicknesses. It can be seen that the exfoliated flake presents a flat surface with uniform thickness in the
different areas. Figure 1(c) shows the AFM height profile of the NbTe; flake, which indicates that the thickness
of the flake is ~ 28 nm. Due to the strong interlayer coupling of NbTe,, it is very difficult to obtain very thin
samples using mechanical exfoliation.® The thinnest flake obtained in our experiments is ~ 15 nm. Further AFM
images of NbTe; flakes with different thickness are shown in Figure S2 (Supporting Information). The Raman
spectrum of a NbTe; flake is shown in Figure 1(d) with an excitation laser at 532 nm. Characteristic peaks at ~55
cm?t, ~83 cm?, ~121 cm™t, ~140 cm?, ~157 cm™?, ~168 cm, ~219 cm?, and ~262 cm™* can be observed,
which correspond to the phonon modes of Agt, A2, Ag', AP, Af, Bs*, A/, and A® in NbTey, respectively.3334
These results indicate the high crystal quality of the samples. Optical absorption spectra (from 400 nm to 900 nm)
of NbTe; flakes with different thicknesses were measured by using a UV-vis spectrometer, as shown in Figure
1(e). A broadband absorption response with a smooth absorption band in the wavelength range can be observed
for all the thicknesses. The thickness-dependent optical bandgap is estimated from a Tauc plot of (aAv)? versus
hv based on the Tauc formula (Figure S3), where o and /v represent the optical absorption coefficient and photon
energy, respectively. Figure 1(f) shows the measured optical bandgaps as a function of thicknesses, where the
bandgap of the NbTe, decreases from ~ 0.8 eV to 0 eV with increasing the sample thickness from 15 nm to 50

nm.
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Figure 2. (a)—(e) Time-resolved transient reflection (AR) curves of NbTe; flakes with different thicknesses. The
laser powers of pump (520 nm) and probe (1040 nm) beams are ~ 40 pW and ~ 35 pW, respectively. The insets
show the normalized AR curves around O delay time. (f) The measured relaxation time constants with different
thicknesses.

To characterize the photon-excited carrier dynamics, time-resolved pump-probe transient reflection (AR)
spectroscopy was used with a pump laser at 520 nm and probe laser at 1040 nm. The pump-induced probe
reflection change (4R=R-Rq) was measured by chopping the pump and monitoring the output of the photodiode
with a lock-in amplifier, where R and R, are the probe reflections with and without pump light, respectively.
Figures 2(a) — (e) show the time-resolved AR curves for flakes with thicknesses from ~15 nm to ~50 nm. The
insets of these figures present the corresponding normalized AR curves for 0 delay times. It can be seen that, for
all thicknesses, a fast increase of probe reflection from zero to its maximum value (positive 4R) is observed at
zero-delay. The positive 4R indicates photoinduced bleaching (PB) of the probe light.* Since the NbTe, bandgap
is much less than the pump photon energy (~2.38 eV), the pump can excite electrons directly from the valance to
conduction bands. These excited carriers are commonly known to decrease the absorption of the probe light and
enhance its reflection due to the filling of states and the Pauli-blocking effect.36-%°

After AR reaches its maximum, a decay process can be observed in the AR curves, which can be mainly
separated into two components: a sharp drop of 4R followed by a slow relaxation process, as shown in Figure 2(a)
— (e). By fitting the experimental data, relaxation time constants during the decay process can be obtained. In our

case, a tri-exponential decay function was used to fit the measured AR curves, as follows:*0-4

4R _ -t -t -t

—— = Aexp (Tl) + Bexp (Tz) + Cexp (T3) 1)
where A, B, and C denote the corresponding amplitudes. t denotes the delay time between the pump and probe,
and 71, ., and 73 are the time constants of relaxation processes. Here, we combine the semi-log fit with the tri-
exponential fit for better evaluation of the time constants.
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The measured values of 71, 7o, and = for different film thicknesses are presented in Figure 2(f). It can be seen
that the sample having the fastest relaxation time was 15-nm thick, and had a 71 ~ 7.4 ps. This is in the same order
of magnitude of other TMDCs, such as M0S,*2*% and PdSe,.*® This picosecond relaxation process can be attributed
to carrier—carrier and carrier—phonon scattering during the carrier-cooling process.**#" The pump-excited hot
carriers initially thermalize to quasi-equilibrium states through carrier-carrier scattering. They then transfer their
energy to the NbTe; lattice and are cooled mainly by electron—phonon scattering. A thickness-dependent behavior
can be observed in 71, where it increases from ~ 7.4 ps to 38.3 ps as the sample thickness increases from 15 nm to
50 nm. It has been demonstrated that an increase in thickness in TMDCs can lead to an enhancement of dielectric
screening of the long-range Coulomb interaction, weakening the electron—phonon coupling,*®4° which in turn

increases the relaxation time z; for thicker samples.

The time constant z, exhibits a similar trend to z; with increasing sample thickness, although with an overall
slower lifetime, ranging from ~ 83.4 ps for 15-nm to ~ 465 ps for the 50-nm flakes, as shown in Figure 2(f). We
attribute this relatively longer relaxation process to the anharmonicity-driven phonon-phonon scattering.®® As
discussed above, 71 denotes carrier relaxation to phonons via fast carrier-phonon scattering processes. The
subsequent thermalization of these generated phonons with the rest of the phonon subsystem takes a longer time
via the anharmonicity-driven phonon-phonon scattering. This phonon dominating process may also explain the
thickness-dependent 7, because of the slower phonon cooling process occurring in thicker flakes.5! The longest
lifetime 3, is on a nanosecond time scale (inset of Figure 2(f)), which arises from lattice cooling by dissipating

the energy to the substrate.3" %25
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Figure 3. (&) Time-resolved transient reflection (AR) curves of a 32 nm-NbTe; flake with different pump laser
powers. (b) Corresponding peak amplitudes of the AR curves as a function of the pump power. The black solid

squares represent the experimental data, and the red solid line is the linear fit.

Figures 3(a) shows pump power dependent AR measurements for a 32 nm-flake with pump powers from 40
uW to 80 uW, with the probe power fixed at 35 uW. Similar temporal features in the AR curves can be observed
for different pump powers, indicating that the carrier relaxation dynamics in NbTe, are pump power independent,
similar to other TMDCs.** % In contrast, for the AR amplitudes, a clear increase with pump power is observed.
Figure 3(b) plots the corresponding peak amplitudes extracted from the AR curves in Figure 3(a), demonstrating
a linear relationship between the amplitude and pump power. The observed linear contribution of the pump power

indicates a one-photon excitation of carriers in NbTe, with the pump beam and contribution to Pauling blocking
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at the probe wavelength.®> 43 The extracted peak amplitudes as a functions of pump power for other thicknesses

are presented in Figure S4.
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Figure 4. (a) Polarization-dependent Raman spectra of NbTe, flake. (b) Polarization diagram of the Raman
intensities of A, mode (~ 83.4 cm*) was extracted through the fitting of the Raman spectra of each polarization
angle under the parallel configurations. (c) Normalized AR curves under different pump polarization, where the
probe polarization is fixed at 0°. (d) Peak amplitudes as a function of pump polarization angles with respect to the

sample orientation.

We investigated the anisotropic ultrafast carrier dynamics via polarization-dependent pump-probe
measurements. Angle-resolved polarized Raman spectroscopy was used to analyze the crystal axis of NbTe; flakes
under a parallel configuration, with an excitation laser wavelength of 532 nm. In the experiment, we fixed the
sample and rotated the polarizers in the incident and scattered light paths to vary the angle between the sample
crystallographic orientation and the polarizations of beams. Figure 4(a) shows the Raman spectra of a flake for
different excitation laser polarization angles. To better illustrate the polarization trend, the polarization diagram
of A mode of the sample is plot in Figure 4(b). It can be seen that the peak intensity of the Ag mode oscillates
with a periodicity of 180° as the orientation of the polarization is rotated. Therefore, by using this polarization

diagram, the crystallographic orientation of the flakes can easily be determined.

After determining the crystal directions, we conducted the polarization-resolved pump-probe measurements.

The pump and probe powers were 40 and 35 uW, respectively, with their polarization angles controlled by rotating
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a half-wave plate. Figure 4(c) shows the normalized AR curves of the 40-nm sample for pump polarization angles
of 0° and 90° with respect to the sample orientation. Varying the pump polarization did not change their temporal
response, indicating that the photon-excited carrier relaxation process is isotropic in NbTe, flake. We also
measured the peak amplitudes of the AR curves under different pump polarization angles (Figure 4(d)) where a
sinusoidal dependence on the polarization angles is observed, originating mainly from the anisotropic pump
absorption. This is further verified by the polarization-dependent transmission of pump light in the sample, as

shown in Figure S5.

4. CONCLUSIONS

In summary, by using time-resolved transient reflection spectroscopy, we characterize the photon-excited
carrier dynamics in mechanically exfoliated single crystal NbTe, flakes. A typical photoinduced bleaching (PB)
of probe light at 1040 nm and thickness-dependent relaxation dynamics of excited carriers in NbTe, flakes are
observed when the samples are irradiated with a 520-nm pump beam. The influence of the pump power is also
investigated, showing a linear increase in the transient reflection peak amplitude with pump power, with a power-
independent carrier decay. Polarization-resolved pump-probe measurements indicate that the carrier relaxation
dynamics in NbTe; is isotropic. These properties demonstrate the potential of NbTe, as a novel and interesting
2D material for photonic and optoelectronic applications. In particular, these results indicate that the ultrafast
response of single crystal NbTe; flakes could be useful for integrated photonic chips based on CMQOS compatible

platforms for microcomb devices [55-70] for high bandwidth applications [71-190].
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Figure S1. Schematic diagram for the time-resolved transient reflection measurement system. BS: beam-splitter;
HWP: half-wave plate; DM: dichroic mirror; SP: Silicon photodiode detector; G-T: Glan-Taylor prism.
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Figure S2. (a)-(d) AFM images and height profiles for NbTe, samples with different thicknesses.
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Figure S3. Tauc plots of NbTe; flakes with different thicknesses.
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Figure S4. (a)—(d) Peak amplitudes of the AR curves as a function of the pump power for NbTe, flakes with

different thicknesses. The black solid squares represent the experimental data, and the red solid line is the linear

fit.


https://doi.org/10.20944/preprints202204.0035.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2022 d0i:10.20944/preprints202204.0035.v1

0.07f
0.06 | N,
|| [ |
u ]
] ]
(g ]
= 005f - ~
] u u n
l. .I l'- .l
0.04 [ .
ot o
0.03}

-30 0 S50 100 150 200 250
Polarization (°)

Figure S5. Polarization-resolved transmission of 520 nm pump light in NbTe, sample. T and T, are measured

transmissions for the sample and quartz substrate, respectively.
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