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Abstract: Currently, face recognition technologies are the most widely used methods for verifying 1
an individual’s identity. Nevertheless, it has increased in popularity, raising concerns about face =
spoofing attacks, in which a photo or video of an authorized person’s face is used to get access 3
to services. Based on a combination of Background Subtraction (BS) and Convolutional Neural a
Networks (CNN), as well as an ensemble of classifiers, we propose an efficient and more robust face s
spoof detection algorithm. This algorithm includes a Fully Connected (FC) classifier with a Majority
Vote (MV) algorithm, which uses different face spoof attacks (e.g., printed photo and replayed 7
video). By including a majority vote to determine whether the input video is genuine or not, the =
proposed method significantly enhances the performance of the Face Anti-Spoofing (FAS) system.
For evaluation, we considered the MSU MFSD, REPLAY-ATTACK, and CASIA-FASD databases. 10
The obtained results by our proposed approach are better than those obtained by state of the art 11
methods. On the REPLAY-ATTACK database, we were able to attain a Half Total Error Rate (HTER) 12
of 0.62% and an Equal Error Rate (EER) of 0.58%. It was possible to attain an EER of 0% on both the 13

CASIA-FASD and the MSU FAS databases. 14
Keywords: Biometrics; Face spoofing; CNN; BS; ResNet-50 15
1. Introduction 16

Individuals can be successfully identified and authenticated using biometric features 17
and traits. Hence, it is appropriate for access control and global security systems that is
depend on person recognition which is achieved through the use of a variety of biometric 1o
modalities, ranging from the classic fingerprint through the face, iris, ear [1-4] and, more 2o
recently, vein and blood flow. Furthermore, a number of spoofing methods have been =2
developed in order to overcome such biometric systems. [5]. When someone tries to get 22
around a face biometric system by placing a fake face in front of the camera, this is known =3
as a spoofing attack. Nevertheless, compared to other modalities, the abundance of still 24
face images or video sequences on the internet has made it exceptionally easy to obtaina  =s
person’s facial data. 26

The spoofing detection literature discusses two types of spoofing attacks namely =
print and replay. The print attack spoofs 2D face recognition systems by using printed 2
photographs of a subject, whereas the replay attack presents a video of a live person to 2
avoid liveness detection. Furthermore, the low cost of launching a face spoof attack has 3o
increased the prevalence of the problem. Face recognition system spoofing media ranges s
from low-quality paper prints to high-quality photographs, as well as video streams played s
in front of the biometric authentication system sensor. 33
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Table 1. Definition of the main acronymes.

Acronym Description

AIM-FAS Adaptive Inner-update Meta Face Anti-spoofing
AIU Adaptive Inner-Update

AUC Area Under Curve

BASN Bipartite Auxiliary Supervision Network

BS Background Subtraction

BiFPN Bi-Directional Feature Pyramid Network

CDC Central Difference Convolution

CDCN Central Difference Convolutional Network

cbr Central Difference Pooling

CM CASIA MSU

CNN Convolutional Neural Networks

CR CASIA Replay

DET Detection Error Tradeoff

DL Deep Learning

DMD Dynamic Mode Decomposition

DSIFT Dense Scale Invariant Feature Transform

DTN Deep Tree Network

EER Equal Error Rate

FAR False Acceptance Rate

FAS Face Anti-Spoofing

FC Fully Connected

FDML Frame Difference and Multi-Level

FL Feature Learning

FRR False Rejection Rate

GT Ground Through

HAR Human Activity Recognition

HTER Half Total Error Rate

IDA Image Distortion Analysis

IQA Image Quality Assessment

LBP Local Binary Patterns

LBP-TOP Local Binary Pattern on Three Orthogonal Planes
MBSIF-TOP | Multiscale Binarized Statistical Image Features on Three Orthogonal Planes
MC MSU CASIA

MDA Marginal Distribution Alignment

MEGC Multiple Explainable and Generalizable

MFRM Multi-level Feature Refinement Module
MLPQ-TOP | Multiscale Local Phase Quantization on Three Orthogonal Plane
MR MSU Replay

MV Majority Vote

OFFB Optical Flow guided Feature Block

RC Replay CASIA

RM Replay MSU

ROC Receiver Operating Characteristic

STASN Spatio-Temporal Anti-Spoof Network

SVM Support Vector Machine

TL Transfer Learning

USDAN Unsupervised and Semi-supervised Domain Adaptation Network
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Table 1 defines the main acronymes used in this paper. 34

Feature extraction is a critical component of the face anti-spoofing task when usinga s
classical machine learning classifier. CNN can be used also to predict scores. This latterisa 16
crucial component of deep learning algorithms such as the ResNet-50 pre-trained model, 7
which has been studied for a few years under a variety of conditions and scenarios. In our s
work, we use BS with CNN to predict each frame in the input video and rank the score s
using the MV algorithm to determine whether the input video is real or fake. 40

Inspired by the work of Frame Difference and Multilevel Representation (FDML) [6], a2
we propose effective biometrics systems based on the detection of face spoofing. To do this, a2
we suggest using the background substruction method in the preprocessing step to adjust s
the face’s motion. The MV algorithm is used to improve the performance rate as well as the 44
decision of the input video after predicting the score of each frame by ResNet-50. To test our 45
system, we used videos from numerous public face spoof databases with varying quality, s
resolutions, and dynamic ranges. We also compared our results to those of a number of 47
current state-of-the-art approaches. The following are the main contributions of this work: 4.

¢ Improving face spoofing attack detection using BS that discriminates the motion of 4

real face from a fake one. 50
*  Fine-tuning ResNet-50 model for face spoofing detection task to extract meaningful s
deep facial features.. 52

*  Using the MV algorithm to increase the classification rate of the system which is s
clearly observed when the methodology outperformed previous methodologies in the  ss

literature, according to the results of our experiments. 55
¢  Tackling the sensor interoperability problem by including the experiments of inter- se
database and intra-database tests. 57

The remainder of the paper is structured as follows. Section 2 describes related work  ss
on face anti-spoofing. Then, our approach is described in detail in Section 3. Section 4  so
summarizes the experimental results and provides a comparative analysis. The section also  eo
describes the databases that we used in our tests. Section 5 draws some conclusions and e
highlight some future directions. 62

2. Related Work 63

Spoof attacks can be detected in a variety of ways. In this paper, we will only look at s
two types of face anti-spoofing methods: handcrafted and deep learning-based methods. s
In this section, We present most previous work in face anti-spoofing approaches. However, s
we only focus on those that are thematically closer to our goals and contributions. o7

2.1. Handcraft based techniques o8

Texture features, which can describe the contents and details of a specific region in  ee
an image, are an important low-level feature in face anti-spoofing methods. Therefore, 7
the analysis of image texture information is used in many techniques such as compressed 7.
sensing which preserves texture information and denoising at the same time [7,8]. These 7
techniques based on handcrafted features provide accurate features that increase the detec- 73
tion rate of a spoofing system. Smith et al. [9] proposed a method for countering attacks 7
on face recognition systems by using the color reflected from the user’s face as displayed 7
on mobile devices. The presence or absence of these reflections can be utilized to establish 76
whether or not the images were captured in real time. The algorithms use simple RGB
images to detect spoof attacks. These strategies can be classified into two categories: static 7
and dynamic approaches. The static is used on a single image, whilst dynamic is used on 7
the video. 80

The majority of approaches for distinguishing between real and synthetic faces are &
focused on texture analysis. Arashloo et al. [10] combined two spatial-temporal descrip- =
tors using kernel discriminant analysis fusion. They are Multiscale Binarized Statistical s
Image Features on Three Orthogonal Planes (MBSIF-TOP) and Multiscale Local Phase s
Quantization on Three Orthogonal Planes (MLPQ-TOP). To distinguish between real and s
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fake individuals, Pereira ef al. [11] also experimented with a dynamic texture that was s
based on Local Binary Pattern on Three Orthogonal Planes (LBP-TOP). The good results &7
of LBP-TOP are due to the fact that temporal information is crucial in face anti-spoofing. s
Tirunagari ef al. [12] used Local Binary Patterns (LBP) for dynamic patterns and Dynamic s
Mode Decomposition (DMD) for visual dynamics. Wen et al. [13] proposed an Image oo
Distortion Analysis-based method (IDA). To represent the face images, four different fea- o
tures were used: blurriness, color diversity, specular reflection and chromatic moments, e
also relying on the features that can detect differences between real image and fake one o
without capturing any information about the user’s identity. Patel et al. [14]investigated  oa
the impact of different RGB color channels (R, G, B, and Gray Scale) and different facial s
regions on the performance of LBP and Dense Scale Invariant Feature Transform (DSIFT) o6
based algorithms. Their investigations have revealed that extracting the texture from the o7
red channel produces the best results. Boulkenafet et al. [15] proposed a color texture s
analysis-based face anti-spoofing approach. They employed the LBP descriptor to extract oo
texture features from each channel after encoding the RGB images in two color spaces: 100
HSV and YCbCr, and then concatenated these features to distinguish between real and fake 101
faces. 102

Some methods, such as [16], have recently used user-specific information to improve 10
the performance of texture-based FAS techniques. Garcia et al. [17] proposed face spoofing = 1os
detection by looking for Moiré patterns caused by digital grid overlap where their detection 105
is based on frequency domain peak detection. For classification, they used Support Vector 106
Machine (SVM) with an radial basis function kernel. They started to run their tests on the 107
Replay Attack Corpus and Moiré databases. Other face anti-spoofing solutions are based  10s
on textures on 3D models, such as those used in [18]. Because the attacker in 3D models 100
utilizes a mask to spoof the system, the introduction of wrinkles might be extremely helpful 110
in detecting the attack. The presented work in [18] examines the viability of performing 11
low-cost assaults on 2.5D and 3D face recognition systems using self-manufactured three- 112
dimensional (3D) printed models. 113

2.2. Deep learning based techniques 114

Actually, deep Learning is used in a variety of systems and applications for biometric s
authentication[19] where the deep network can be trained using a number of patterns. 1
After learning all of the dataset’s unique features, the network can be used to identify -
similar patterns. Deep learning approaches have mostly been used to learn facial spoofing s
detection features. Also, Deep Learning is efficient at classification (supervised learning) e
and clustering tasks (unsupervised learning). Thus, the system assigns class labels to 120
the input instances in a classification task, but the instances in clustering approaches are 121
clustered based on their similarity without the usage of class labels. 122

To train models with significant discriminative abilities, Yang ef al.[20] used a deep 123
CNN rather than manually constructing features from the scratch. Quan et al. proposed 124
a semi-supervised learning-based architecture to fight face spoofing threats using only a 125
few tagged data, rather than depending on time-consuming data annotations. They assess 126
the reliability of selected data pseudo labels using a temporal consistency requirement. 127
As a result, network training is substantially facilitated. Also, by progressively increasing 12s
the contribution of unlabeled target domain data to the training data, an adaptive transfer 12
mechanism can be implemented to eliminate domain bias. According to the authors in [21], 130
they use a type of Ground Through (GT) termed appr-GT in conjunction with the identity 1s
information of the spoof image to generate a genuine image of the appropriate subject in 132
the training set. A metric learning module constrains the generated genuine images from  1ss
the spoof images to be near the appr-GT and far from the input images. This reduces the 114
effect of changes in the imaging environment on the appr-GT and GT of a spoof image. 135

Jia et al. [22] proposed a Unified unsupervised and Semi-supervised Domain Adapta- 1ss
tion Network (USDAN) for cross-scenario face anti-spoofing, with the purpose of reducing 137
the distribution mismatch between the source and target domains. The marginal Distribu- 13s
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tion Alignment Module (MDA) and the conditional distribution alignment module (CDA) 130
are two modules that use adversarial learning to find a domain-invariant feature space and 140
condense features of the same class. 141

Raw optical flow data from the clipped face region and the complete scene were used 1a2
to train a neural network by feng’s team et al. [23]. Motion-based anti-spoofing does not  1as
need a scenic model or motion assumption to generalize. They present an image quality- 14
based and motion-based liveness framework that can be fused together using a hierarchical 1as
neural network. 146

In their work [24], Liu et al. proposed a Deep Tree Network (DTN) that learns charac- a7
teristics in a hierarchical form and may detect unanticipated spoofing attacks by identifying 1as
the features that are learned. 149

Yu et al. [25] introduces two new convolution and pooling operators for encoding s
fine-grained invariant information: Central Difference Convolution (CDC) and Central s
Difference Pooling (CDP). CDC outperforms vanilla convolution in extracting intrinsic s
spoofing patterns in a number of situations. 153

As described in Qin et al. [26], Adaptive Inner-Update (AIU) is a novel meta learning  ss
approach that uses a meta-learner to train on zero- and few-shot FAS tasks utilizing a newly 1ss
constructed Adaptive Inner update Meta Face Anti spoofing (AIM-FAS). 156

According to Yu et al. [27], the Multi-level Feature Refinement Module (MFRM) and s~
material-based multi-head supervision can help increase BCN’s performance. In the first 1ss
approach, local neighborhood weights are reassembled to create multi-scale features, while 1se
in the second, the network is forced to acquire strong shared features in order to perform 1eo
tasks with multiple heads. 161

CDC-based frame-level FAS approaches, proposed by the authors in [28], have been  1s:
developed. These patterns can be captured by aggregating information about intensity 1es
and gradient. In comparison to a vanilla convolutional network, the Central Difference 1es
Convolutional Network (CDCN) built with CDC has a more robust modeling capability. 1es
CDCN++ is an improved version of CDCN that incorporates the search backbone network 166
with the Multiscale Attention Fusion Module (MAFM) for collecting multi-level CDC 16
features effectively. 168

Spatio-Temporal Anti-Spoof Network (STASN) is a new attention mechanism invented  1ee
by the Yang et al. [29] that combines global temporal and local spatial information, allowing 170
them to examine the model’s understandable behaviors. 7

To improve CNN generalization, Liu et al. [30] proposed to use innovative auxiliary i
information to supervise CNN training. A new CNN-RNN architecture for learning the 17
depth map and rPPG signal from end to end is also proposed. 174

Wang et al. [31] proposed a depth-supervised architecture that can efficiently encode 17s
spatiotemporal information for presentation attack detection and develops a new approach 17
for estimating depth information from several RGB frames. Short-term extraction is ac- 177
complished through the use of two unique modules: the Optical Flow guided Feature i7s
Block (OFFB) and the convolution gated recurrent units (ConvGRU). Jourabloo et al. [32] 17
proposed a new CNN architecture for face de-spoofing, with appropriate constraints and  1eo
supplementary supervisions. to discern between living and fake faces, as well as long-term e
motion. In order to detect presentation attacks effectively and efficiently, Kim et al. [33] 1e
introduced Bipartite Auxiliary Supervision Network (BASN), an architecture that learns to  1s:
extract and aggregate auxiliary information. 188

Huszar et al. [34] proposed a Deep Learning (DL) approach to address the problem  1es
of spoof attacks occurring from video. The approach was tested in a new database made 1ss
up of several videos of users juggling a football. Their algorithm is capable of running s
in parallel with the Human Activity Recognition (HAR) in real-time. Roy et al. [35] pro- iss
posed an approach called Bi-Directional Feature Pyramid Network (BiFPN) to detect spoof  1ss
attacks because the approach containing high-level information demonstrates negligible 150
improvements. Ali et al. [36] based on stimulating eye movements by using the use of 10
visual stimuli with randomized trajectories to detect spoof attacks. Ali, et al. [37] by the 102


https://doi.org/10.20944/preprints202204.0033.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2022 d0i:10.20944/preprints202204.0033.v1

60of 17

combination of two methods which are head-detection algorithm and deep neural network- 103
based classifiers. The test was various face presentation attacks in thermal infrared in 1es
various conditions. 1905

3. PROPOSED APPROACH 196

Figure 1 describes the overall structure of our proposed approach, which is divided o7
into three modules: background subtraction, feature learning, and data classification. To 198
begin, we use the background subtraction between consecutive frames to extract motion, 10
we can also call this technique BS. Then, the features are extracted using the ResNet-50 200
Transfer Learning model on the foreground of BS. Finally, to distinguish between real and  zo:
fake faces of each frame we use a classification layer that employs a fully connected layer. 202
After that, we use MV to predict the input video is real or not. In the subsections that follow, 2o
all subsystems (modules) will be discussed. 208

Fake |
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Figure 1. Framework of our proposed approach.
3.1. Background Subtraction Module 208

In our research work, we use a face spoofing detection system based on an extended BS 206
algorithm. The Background Subtraction approach, which is based on the premise of getting 207
the pixels in the image sequence difference operation to do two or three continuous frames, zos
is the most commonly used action target detection measure. Using an image pixel value 200
obtained by subtracting the difference image and the binarized difference image, if the 210
pixel value change threshold is less than a predefined one, we can feel this as a background = 2u:
pixel in the adjacent frame. If the pixel value of an image area changes dramatically, itis =2
possible to deduce that this is due to the action of detecting spoof in the image caused by 21
these symbols as foreground pixel regions. While taking dynamic information into account, 21
a pixel region based on symbolic actions can determine the position of the target in the 25
image. 216

Background Subtraction is applied to images and the thresholded result is displayed 217
as a foreground image. Figure 2 shows an example of the output. This is a low-cost and  21s
ineffective method of detecting motion in a video stream. The image P; is transformed into 210
a grey-scale (intensity) image I;. Then, given the image I; and the previous image I;_1, the 220
current output is Ry, where: 221

_ [ k(xy)  if[l(xy) = La(xy)| > T
Ri(xy) = { 0 otherwise @)
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T is the value of the threshold parameter. In our situation, we just utilized a threshold 222
to remove the pixels with the same values across the two frames. The foreground pixels 223
take the value of the current frame if there is motion. The foreground pixel is set to zero if 224
there is no motion. 225

Real Printed Replay

994

Aein

sq

Figure 2. Example of a genuine face and corresponding print and replay attacks in grey-scale and BS.

3.2. Feature Learning Module 226

Feature learning (FL) is a set of approaches in machine learning that allows a system to 227
discover the representation needed for feature detection, prediction, or classification froma 22s
preprocessed dataset automatically. This enables a machine to learn the features and apply 22
them to a specific task like classification and prediction. Feature learning can be achieved in 230
deep learning by either creating a complete CNN to train and test the collection of images or 23
adapting a pre-trained CNN for classification or prediction for the new images-set. Transfer 232
learning is the latter strategy used in the deep learning domain. Transfer learning is a 233
machine learning technique in which a model created for one task is utilized as the basis 23a
for a model on a different task. 235

Transfer Learning (TL) is commonly used in DL applications to allow you to use a 236
pre-trained network for solving new classification tasks. To meet the new learning tasks, 2s
the learning parameters of the pre-trained network with randomly initialized weights must  2ss
be fine-tuned. Transfer learning is typically considerably faster and easier to learn/train =23
than building a network from the initial concept. Transfer learning is an optimization and a 240
quick way that can save time or improve efficiency. 241

In this section, a transfer learning technique is applied by fine-tuning a pretrained za:
ResNet-50 model on ImageNet dataset using multiple spoofing datasets where the output 24
of the last FC layer is changed to output two classes (real/fake). The network called ResNet-  24a
50 due to the fact that it has 48 Convolution layers along with 1 MaxPool and 1 Average 245
Pool layer, and it introduced the use of residual blocks. 246

3.3. Classification Module 247

Data classification is a vital process for separating large datasets into classes for s
decision-making, pattern detection, and other purposes. For multi-class classification 2ss
problems with mutually exclusive classes, a classification layer uses a fully connected layer zso
to compute the cross-entropy loss. 251
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The features from ResNet-50 are passed via a FC layer made of 1024 neurons with a  =s2
40% dropout to prevent over-fitting in the classification module. Having followed that, the 2s:
units were activated with a rectification mechanism called ReLU. MAX(X,0) is the ReLu 254
function, which sets all negative values in the matrix X to zero while keeping all other s
values constant. The reason for choosing ReLU is that deep network training with ReLU  2s6
tended to converge considerably faster and more reliably than deep network training with  2s
sigmoid activation. Finally, the output layer consisted of one neuron unit configured with  zss
the Sigmoid function to generate probabilities for the classes (Binary classifier). Sigmoid is  2so
a mathematical function that takes a vector of k real values as an input and converts it toa zeo
probability distribution with two probabilities. 261

We employ Voting Ensemble in our tests to classify each subject (video) as real or ze2
fake. A voting ensemble (sometimes known as a "majority voting ensemble") is a machine 263
learning model that incorporates predictions from several other models, such as multiple zes
predictions in each frame after the input video’s last layer (Classification layer). The zes
predictions for each label are combined, and the label with the majority vote is forecasted  zs6
(See Fig. 1, classification module) to determine if the input video belongs to a real or fake ze7
one. The majority voting ensemble creates forecasts based on the most common one. It’sa  zes
strategy that can be utilized to boost performance, with the goal of outperforming every e
frame used independently in the ensemble. 270

4. Experimental results and analysis 2n1

In this section, the employed benchmark datasets will be introduced first, followed by 272
a brief description of the evaluation criteria. After that, we present and analyze a series of 273
experiments that we assume demonstrate the efficacy of the proposed BS-CNN+MV based 27
face spoofing detection technique. 275

4.1. Database and protocol 276

In order to assess of the effectiveness of our proposed anti spoofing technique, we 277
performed a set of experiments on a well known databases where most three challenging 27
databases were used: The CASIA-FASD ! Face Anti-Spoofing database, Replay-Attack 27
2 database and MSU ° Mobile Face Spoofing databases. Those databases contain video s
recording of real and fake attacks. A brief description of these databases is given as fellow: 2e

The CASIA-FASD database[38] is a data-set for face anti spoofing detection. This 22
database contains 50 genuine subjects in total and the corresponding fake faces are captured  2es
with high quality from the original ones.Therefore each subject contains 12 videos (3 2«
genuine and 9 fake) under three different resolutions and light conditions namely the low  2es
quality, normal quality and high quality. Also, three fake face attacks are designed, which  2s6
include warped photo attack, cut photo attack and video attack. The overall database =ze
contains 600 video clips and the subjects are divided into subsets for performing training 2ss
and test in which 240 videos of 20 subjects are used for training and 360 videos of 30  2es
subjects for testing. Test protocol is provided, which consists of 7 scenarios for a thorough 200
evaluation from all possible aspects see fig 3. 201

Among the popular databases designed for the anti spoofing application, one can 202
find the Replay-Attack database [39]. This database consists of 1300 video of real-access 203
and attack attempts to 50 subjects, (See Fig 5). However, These video were taken using zes
a built-in webcam on a Macbook laptop under two separate scenarios (controlled and 205
adversed). In addition, Two cameras were used to create the faked facial attack for each 206
person in high-resolution images and videos: a Canon PowerShot SX150 IS and an iPhone 27
3GS camera. Also, Fixed attacks and hand attacks are the two types of attacks. There 208
are ten videos in each subsets: 4 mobile attacks with a resolution of 480 x 320 pixels on 200

1 http:/ /www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp

https:/ /www.idiap.ch/dataset/replayattack
3 https://drive.google.com/drive/folders/1nJCPd]7R67xOiklFlomkfz4yHeJwhQsz
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Low

Quality

Real Warped Photo Cut Photo Video
Face Attack Attack Attack

Figure 3. Samples from the CASIA FAS database.

an iPhone 3GS screen, then, by using an iPad first generation with a screen resolution
of 1024 x 768 pixels, four high-resolution screen attacks were performed. On A4 paper,
two hard-copy print attacks (printed on a Triumph-Adler DCC 2520 colour laser printer)
occupied the whole available printing surface. It will be noted that the complete set of
video is divided into three non-overlapping subsets for training, development, and testing
in order to evaluate them.

The Patterns Recognition and Image Processing (PRIP) group at Michigan State Uni-
versity developed a publicly available MSU-MFSD database for face spoof attacks. The
database contains 280 video clips of attempted photo and video attacks on 35 clients. It
was created using a mobile phone to capture both genuine and spoof attacks. This was
accomplished using two types of cameras: 1) the built-in camera in the MacBook Air 13
inch (640 x 480) and 2) the front-facing camera on the Google Nexus 5 Android phone
(720 x 480). Each subject received two video recordings, the first of which was taken using
a laptop camera and the second with an Android camera (See Fig 4). High-resolution video
was recorded for each subject utilizing two devices to create the attacks:1) Canon PowerShot
550D SLR camera, which captures 18.0 Megapixel photos and 1080p high-definition video
clips; 2) iPhone 55 back-facing camera, which captures 1080p video clips. There are three
types of spoof attack, the first one 1) high-resolution replay videoThe first type of spoof
attack is a high-resolution replay video attack using an iPad Air screen, with a resolution of
2048 x 1536, the second is a mobile phone replay video attack using an iPhone 5S screen,
with a resolution of 1136 x 640, and the third is a printed photo attack using an A3 paper
with a fully-occupied printed photo of the client’s biometry, with a paper size of: 11 x 17
(279mm x 432mm), printed with an HP Colour Laserjet CP6015xh printer at a resolution of
1200 x 600 dpi. Finally, to assess performance, the 35 subjects in the MSU-MFSD database
were divided into two subsets: 15 for training and 20 for testing.

4.2. Evaluation metrics

The comparative results for cross-scenario testing are expressed in terms of the HTER,
which is the mean of the False Acceptance Rate (FAR) and False Rejection Rate (FRR). On
the development set, we first compute the EER and the corresponding threshold, and then
use the threshold to determine the HTER on the testing set. Additionally, the Receiver
Operating Characteristic (ROC) is reported to assess the method’s performance. We use
HTER for the Idiap Replay-Attack dataset and EER for the CASIA-FASD and MSU-MFSD

300
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Spoof faces by Spoof faces by Spoof faces by
iPad iPhone printed photo
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Google Nexus 5
smart phone
camera

Mac Book Air
13" laptop
camera

Figure 4. Example images of genuine and spoof faces of one of the subjects in the MSU-MFSD database.

Real Access Photo Attack Photo Attack Video Attack Video Attack
Fixed Hand Fixed Hand

Adverse
Scenario

Controlled |
Scenario |

Figure 5. Examples of real accesses and attacks in different scenarios.

datasets for intra-scenario testing. We employ Area Under Curve (AUC) as a performance sa2
metric for type-scenario testing. 333

4.3. Performance comparison on intra-database 338

We computed the EERs for the seven scenarios, including different qualities and  s3s
media, to meet the official CASIA Face Anti-Spoofing test protocol. Low, normal, and  sss
high-quality image sequences are provided as quality descriptors, and the used media for s
spoofing attacks are warped images, chopped photos, and videos played on an iPad. The = s3s
last scenario is the overall test, which will look at how image quality and spoofing media 33
affect system performance. In this part, we computed two tests, the first of which was 340
performed per-frame and the second of which was performed per-video. The first test uses za:
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Table 2. Comparison EER (in %) between the proposed approach and the state-of-the-art methods on different scenario on CASIA FAS.

Scenarios
Methods Low Normal High Warped Cut Video Overall
IQA [40] 31.70 22.20 05.60 2610 1830 3440 32.40
DoG baseline [38] 13.00 13.00 26.00 16.00  06.00 24.00 17.00
visual codebooks [41] 10.00 17.78 13.33 07.78 2222 08.89 14.07
LBP-overlapping+fisher [42]  07.20 08.80 14.40 12.00  10.00 14.70 13.10
CDD [43] 01.50 05.00 02.80 0640 0470 00.30 11.80
ML-LPQ fisher [44] 12.49 08.96 05.22 13.62  09.66 10.10 11.39
LBP-TOP [11] 10.00 12.00 13.00 06.00  12.00 10.00 10.00
FD-ML-BSIF-FS [6] 07.93 11.85 12.42 0585 03.11 15.84 09.96
MLLBP + MLBSIF [45] 006.56 0993 00736 0998  03.45 10.04 09.81
Kernel Fusion [10] 00.70 08.70 13.00 0140 1010 04.30 07.20
YCbCr+HSV-LBP [15] 07.80 10.10 06.40 0750 0540 08.10 06.20
Identity-DS [21] - - - - - - 03.30
USDAN-Norm [22] - - - - - - 01.10
S-CNN+PL+TC [46] - - - - - - 00.69
BS-CNN+MYV (Ours) 00.83 00.00 00.00 00.74  00.00 00.00 00.00

BS-CNN to determine whether an image is real or fake, while the second test uses MV to  3a2
determine whether a video is real or not (See Table 2). In addition, we discovered that the sa3
proposed method (BS-CNN+MV) improves the performance. 348

Moreover, we have found that combining the MV with BS-CNN yields the best results  sas
for picture quality (low, normal, and high), as well as with spoof media (warped photo, cut 4
photo and video attacks) (See Fig 6). This can be explained by the fact that MV improves  sa
decision-making performance. Table 2 shows that our proposed technique outperforms the ss
CASIA baseline in all scenarios when compared to the database created by CASIA [38]. 340

-8} IBS-CNN =3 IBS-CNN
> I BS-CNN+MV > ol I BS-CNN+MV
w w
we| ]
8 83
©
g, :
: 52
I ) I |
:
LIDJ- w 0
0 | 1
) > 0 Q RY 0
0 ‘\Q o ~b
W éé(‘\ Q $,°$Q &
(@) Quality (b) Spoofing Media

Figure 6. Effect of Quality and Spoofing Media on the Performance on the CASIA-FASD. (a) Quality and (b) Spoofing Media

The suggested method is compared to state-of-the-art methods in Table 4 using data sso
from the Replay-Attack database. Despite the fact that our EER and HTER are similar to the s
previous approaches. The following are the types of attacks on replay databases that we  ss2
compute the performance of using our method: Depending on the method used to hold the  s:
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Table 3. Testing our proposed countermeasure using all scenarios of the REPLAY-ATTACK database.

BS-CNN+MYV (our)

EER HTER

Digitalphoto | 01.25 01.87
Highdef 01.42 03.43

2| Mobile | 0000 00.31
g Photo 00.53 02.50
g Print 00.83 00.62
» Video 00.00 01.56

Overall | 00.58 00.62

Table 4. Comparison between the proposed countermeasure and the state-of-the-art methods on REPLAY-ATTACK database

overall
Methods EER HTER
IQA [40] 00.00 15.20
LBP [47] 1390 13.87
MotionCorrelation [48] 11.78 11.79
LBP-TOP [11] 07.90 07.60
IDA [13] 08.58 07.41
Motion+LBP [49] 04.50 05.11
FD-ML-LPQ-Fisher [6] 05.62 04.80
DMD [12] 05.30 03.75
Colour-LBP [15] 00.40 0290
Spectral cubes [41] - 02.75
CNN [20] 06.10 02.10
USDAN-Norm [22] - 00.30
Bottleneck Feature Fusion + NN [23] | 00.83  00.00
Identity-DS [21] 00.20  00.00
S-CNN+PL+TC [46] 0.36 -
BS-CNN+MYV (our) 00.58 00.62

attack replay device (paper, mobile phone, or tablet), the three attack subsets (print, mobile, sa
and highdef) were recorded in two different modes: i) fixed-support and ii) hand-based  sss
(See Tables 3). We also put our method to the test using the MSU-MFSD database. (See  sse
Table 5). It will be noted that there is no articles have been published that detail the results s
of various sorts of attacks on this database. We can see that our results are better to the sss
state of the art, with our BS-CNN+MYV providing the best results. 359

The final comparison results on intra-database that are shown in (Tables: 2, 4 and 5), seo
which indicates that our proposed method achieves much lower errors on all three datasets s
than other state-of-the-art methods. Meanwhile, from Figure 7 it can be observed that the e
BS-CNN+MYV perform better than the BS-CNN, which further verify the effectiveness of e
the proposed background subtraction based convolution neural network. 364

Table 5. Comparison EER (in %) between the proposed approach and the state-of-the-art methods on different scenario on MSU-MFSD.

Scenarios
Methods HD Android HD Laptop  Mobile Android  Mobile Laptop  Print Android  Print Laptop  Overall
IDA[13] - - - - - - 08.58
Identity-DS [21] - - - - - - 08.58
FD-ML-BSIF-FS [6] - - - - - - 02.10
S-CNN+PL+TC[46] - - - - - - 00.64
USDAN-Norm [22] 00.00

BS-CNN+MYV (our) 00.00 00.00 00.00 00.00 00.00 00.00 00.00
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Figure 7. DET curve of the proposed approach on CASIA, MSU and REPLAY databases.
Table 6. AUC (%) of the model cross-type testing on CASIA-FASD, Replay-Attack, and MSU-MFSD.
Methods CASIA-FASD Replay-Attack MSU-MFSD overall
Video  Cutphoto  Wrapped | Video Digital Photo Printed | Printed HR Video  Mobile Video
OC-SVM+BSIF[50] | 70.74 60.73 95.90 84.03 88.14 73.66 64.81 87.44 74.69 78.68 £ 11.74
NN+LBP [51] 94.16 88.39 79.85 99.75 95.17 78.86 50.57 99.93 93.54 86.69 + 16.25
SVM+LBP[52] 91.94 91.70 84.47 99.08 98.17 87.28 47.68 99.50 97.61 88.55 +16.25
NAS-Baseline [25] 96.32 94.86 98.60 99.46 98.34 92.78 68.31 99.89 96.76 93.90 + 09.87
DTN [24] 90.00 97.30 97.50 99.90 99.90 99.60 81.60 99.90 97.50 95.90 + 06.20
AIM-FAS [26] 93.6 99.7 99.1 99.8 99.9 99.8 763 99.9 99.1 96.40 + 07.80
CDCN [28] 98.48 99.90 99.80 100.00 99.43 99.92 70.82 100.00 99.99 96.48 + 09.64
CDCN++ [28] 98.07 99.90 99.60 99.98 99.89 99.98 72.29 100.00 99.98 96.63 + 09.15
BCN[27] 99.62 100.00 100.00 99.99 99.74 99.91 71.64 100.00 99.99 96.77 £ 09.99
NAS-FAS [25] 99.62 100 100 99.99 99.89 99.98 74.62 100.00 99.98 97.12 + 08.94
BS-CNN+MV (our) 100 100 99.98 100 100 100 100 100 100 99.99 + 0.0067

4.4. Inter-Dataset Cross-Type Testing

In this part of experiments, the CASIA-FASD, Replay-Attack, and MSU-MFSD are
used to perform the intra-dataset cross-type testing between replay and print attacks . As
shown in Table 6, our proposed method outperforms state-of-the-art methods in terms
of overall performance (99.99% AUC), indicating that learned features extended well to
unknown attacks. As a result of this, it appears that our method can learn intrinsic material
patterns from a wide range of materials and so generalizes well to previously unexplored
types of material.

4.5. Inter-Dataset Cross-dataset Testing

This experiment includes six cross-dataset testing protocols. The first is that we
perform CASIA-FASD training and testing on Replay-Attack, which is known as protocol
CR; the second is that we perform CASIA-FASD training and testing on MSU-MFSD,
which is known as protocol CM; and the third is that we exchange the training and testing
datasets that we have in the first, which is known as protocol RC. The rest of the protocols

378
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Table 7. The results of cross-dataset testing between CASIA-FASD, MSU-MFSD and Replay-Attack. The evaluation metric is HTER(%)

Protocol CR Protocol CM Protocol RC Protocol RM Protocol MC Protocol MR
Method Training | Testing | Training | Testing | Training | Testing | Training | Testing | Training | Testing | Training [ Testing
Casia Replay Casia | MSU Replay Casia Replay [ MSU MSU | Casia MSU | Replay
FD-ML-LPQ-FS [6] 50.25 50.41 42.59 38.00 50.00 48.00
Motion-Mag [53] 50.10 NP 47.00 NP NP NP
LBP-TOP [54] 49.70 NP 60.60 NP NP NP
LBP [15] 47.00 NP 39.60 NP NP NP
Spectral cubes [41] 34.40 NP 50.00 NP NP NP
STASN [29] 31.50 NP 30.90 NP NP NP
Color Texture [55] 30.30 NP 37.70 NP NP NP
FaceDs [32] 28.50 NP 41.10 NP NP NP
Auxiliary [30] 27.60 NP 28.40 NP NP NP
MEGC [56] 20.20 NP 27.90 NP NP NP
FAS-TD [31] 17.50 NP 24.00 NP NP NP
BASN [33] 17.50 NP 24.00 NP NP NP
Patch+BCN+MFRM [27] 16.60 NP 36.40 NP NP NP
CDCN [28] 15.50 NP 32.60 NP NP NP
BS-CNN+MYV (our) 17.62 23.75 20.35 24.16 35.45 44.33

are identical, with the exception that we utilize the data to train one time and test the next; 7
the protocols are protocol RM, protocol MC, and protocol MR. As may be seenin Table 7. On  3s0
protocol CR, our suggested BS-CNN+MYV has 17.62% HTER, exceeding the previous state- se:
of-the-art by a convincing margin of 2%. Increasing the size of the training set with data e
augmentation could increase performance even more. For protocol RC, we also outperform  ses
state-of-the-art frame-level techniques (see Table 7, third column). Furthermore, we can see  ssa
in the same table for our suggestion that the convincing margin between protocols RC and  ses
CR is 3% in the same technique, compared to other most convincing methods in the same s
protocol, such as in [28] (17%). As a result, we can presume that our approach outperforms ser
current approaches. 388

5. CONCLUSION AND FUTURE DIRECTIONS 380

Fake face detection is a problem that has been addressed in this work. We ana- se0
lyzed seven scenarios from the MSU-MFSD, the REPLAY-ATTACK, and the CASIA-FASD 30
databases. In fact, texture and motion-based characteristics were used by the majority 3o
of authors in the field of face spoof detection. However, BS and a CNN with a majority = ses
vote seems to determine well if a person is using a fake face. In our paper, we evaluated  s0a
our approach under different protocols. Firstly, we used all three types of databases to e
evaluate if they produced satisfactory results when compared to the current state of the 306
art. The proposed technique is then put to the test using Cross-Type Testing to ensure 3oz
that it can handle all attributes and attacks across the three databases. In the final test, we 308
used Cross-dataset Testing to compare each train of any data with the test to other data in 300
order to improve the validity of our approach. The obtained results have shown that our a0
proposed methods outperform the current state-of-the-art. As a future direction, face spoof 4o
detection research could focus on making the system more robust across all databases. Itis o2
also of interest to create a common training model for each face spoof detection using the 03
transformer method. 204
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