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Abstract: Currently, face recognition technologies are the most widely used methods for verifying 1

an individual’s identity. Nevertheless, it has increased in popularity, raising concerns about face 2

spoofing attacks, in which a photo or video of an authorized person’s face is used to get access 3

to services. Based on a combination of Background Subtraction (BS) and Convolutional Neural 4

Networks (CNN), as well as an ensemble of classifiers, we propose an efficient and more robust face 5

spoof detection algorithm. This algorithm includes a Fully Connected (FC) classifier with a Majority 6

Vote (MV) algorithm, which uses different face spoof attacks (e.g., printed photo and replayed 7

video). By including a majority vote to determine whether the input video is genuine or not, the 8

proposed method significantly enhances the performance of the Face Anti-Spoofing (FAS) system. 9

For evaluation, we considered the MSU MFSD, REPLAY-ATTACK, and CASIA-FASD databases. 10

The obtained results by our proposed approach are better than those obtained by state of the art 11

methods. On the REPLAY-ATTACK database, we were able to attain a Half Total Error Rate (HTER) 12

of 0.62% and an Equal Error Rate (EER) of 0.58%. It was possible to attain an EER of 0% on both the 13

CASIA-FASD and the MSU FAS databases. 14

Keywords: Biometrics; Face spoofing; CNN; BS; ResNet-50 15

1. Introduction 16

Individuals can be successfully identified and authenticated using biometric features 17

and traits. Hence, it is appropriate for access control and global security systems that 18

depend on person recognition which is achieved through the use of a variety of biometric 19

modalities, ranging from the classic fingerprint through the face, iris, ear [1–4] and, more 20

recently, vein and blood flow. Furthermore, a number of spoofing methods have been 21

developed in order to overcome such biometric systems. [5]. When someone tries to get 22

around a face biometric system by placing a fake face in front of the camera, this is known 23

as a spoofing attack. Nevertheless, compared to other modalities, the abundance of still 24

face images or video sequences on the internet has made it exceptionally easy to obtain a 25

person’s facial data. 26

The spoofing detection literature discusses two types of spoofing attacks namely 27

print and replay. The print attack spoofs 2D face recognition systems by using printed 28

photographs of a subject, whereas the replay attack presents a video of a live person to 29

avoid liveness detection. Furthermore, the low cost of launching a face spoof attack has 30

increased the prevalence of the problem. Face recognition system spoofing media ranges 31

from low-quality paper prints to high-quality photographs, as well as video streams played 32

in front of the biometric authentication system sensor. 33
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Table 1. Definition of the main acronymes.

Acronym Description
AIM-FAS Adaptive Inner-update Meta Face Anti-spoofing
AIU Adaptive Inner-Update
AUC Area Under Curve
BASN Bipartite Auxiliary Supervision Network
BS Background Subtraction
BiFPN Bi-Directional Feature Pyramid Network
CDC Central Difference Convolution
CDCN Central Difference Convolutional Network
CDP Central Difference Pooling
CM CASIA MSU
CNN Convolutional Neural Networks
CR CASIA Replay
DET Detection Error Tradeoff
DL Deep Learning
DMD Dynamic Mode Decomposition
DSIFT Dense Scale Invariant Feature Transform
DTN Deep Tree Network
EER Equal Error Rate
FAR False Acceptance Rate
FAS Face Anti-Spoofing
FC Fully Connected
FDML Frame Difference and Multi-Level
FL Feature Learning
FRR False Rejection Rate
GT Ground Through
HAR Human Activity Recognition
HTER Half Total Error Rate
IDA Image Distortion Analysis
IQA Image Quality Assessment
LBP Local Binary Patterns
LBP-TOP Local Binary Pattern on Three Orthogonal Planes
MBSIF-TOP Multiscale Binarized Statistical Image Features on Three Orthogonal Planes
MC MSU CASIA
MDA Marginal Distribution Alignment
MEGC Multiple Explainable and Generalizable
MFRM Multi-level Feature Refinement Module
MLPQ-TOP Multiscale Local Phase Quantization on Three Orthogonal Plane
MR MSU Replay
MV Majority Vote
OFFB Optical Flow guided Feature Block
RC Replay CASIA
RM Replay MSU
ROC Receiver Operating Characteristic
STASN Spatio-Temporal Anti-Spoof Network
SVM Support Vector Machine
TL Transfer Learning
USDAN Unsupervised and Semi-supervised Domain Adaptation Network
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Table 1 defines the main acronymes used in this paper. 34

Feature extraction is a critical component of the face anti-spoofing task when using a 35

classical machine learning classifier. CNN can be used also to predict scores. This latter is a 36

crucial component of deep learning algorithms such as the ResNet-50 pre-trained model, 37

which has been studied for a few years under a variety of conditions and scenarios. In our 38

work, we use BS with CNN to predict each frame in the input video and rank the score 39

using the MV algorithm to determine whether the input video is real or fake. 40

Inspired by the work of Frame Difference and Multilevel Representation (FDML) [6], 41

we propose effective biometrics systems based on the detection of face spoofing. To do this, 42

we suggest using the background substruction method in the preprocessing step to adjust 43

the face’s motion. The MV algorithm is used to improve the performance rate as well as the 44

decision of the input video after predicting the score of each frame by ResNet-50. To test our 45

system, we used videos from numerous public face spoof databases with varying quality, 46

resolutions, and dynamic ranges. We also compared our results to those of a number of 47

current state-of-the-art approaches. The following are the main contributions of this work: 48

• Improving face spoofing attack detection using BS that discriminates the motion of 49

real face from a fake one. 50

• Fine-tuning ResNet-50 model for face spoofing detection task to extract meaningful 51

deep facial features.. 52

• Using the MV algorithm to increase the classification rate of the system which is 53

clearly observed when the methodology outperformed previous methodologies in the 54

literature, according to the results of our experiments. 55

• Tackling the sensor interoperability problem by including the experiments of inter- 56

database and intra-database tests. 57

The remainder of the paper is structured as follows. Section 2 describes related work 58

on face anti-spoofing. Then, our approach is described in detail in Section 3. Section 4 59

summarizes the experimental results and provides a comparative analysis. The section also 60

describes the databases that we used in our tests. Section 5 draws some conclusions and 61

highlight some future directions. 62

2. Related Work 63

Spoof attacks can be detected in a variety of ways. In this paper, we will only look at 64

two types of face anti-spoofing methods: handcrafted and deep learning-based methods. 65

In this section, We present most previous work in face anti-spoofing approaches. However, 66

we only focus on those that are thematically closer to our goals and contributions. 67

2.1. Handcraft based techniques 68

Texture features, which can describe the contents and details of a specific region in 69

an image, are an important low-level feature in face anti-spoofing methods. Therefore, 70

the analysis of image texture information is used in many techniques such as compressed 71

sensing which preserves texture information and denoising at the same time [7,8]. These 72

techniques based on handcrafted features provide accurate features that increase the detec- 73

tion rate of a spoofing system. Smith et al. [9] proposed a method for countering attacks 74

on face recognition systems by using the color reflected from the user’s face as displayed 75

on mobile devices. The presence or absence of these reflections can be utilized to establish 76

whether or not the images were captured in real time. The algorithms use simple RGB 77

images to detect spoof attacks. These strategies can be classified into two categories: static 78

and dynamic approaches. The static is used on a single image, whilst dynamic is used on 79

the video. 80

The majority of approaches for distinguishing between real and synthetic faces are 81

focused on texture analysis. Arashloo et al. [10] combined two spatial-temporal descrip- 82

tors using kernel discriminant analysis fusion. They are Multiscale Binarized Statistical 83

Image Features on Three Orthogonal Planes (MBSIF-TOP) and Multiscale Local Phase 84

Quantization on Three Orthogonal Planes (MLPQ-TOP). To distinguish between real and 85
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fake individuals, Pereira et al. [11] also experimented with a dynamic texture that was 86

based on Local Binary Pattern on Three Orthogonal Planes (LBP-TOP). The good results 87

of LBP-TOP are due to the fact that temporal information is crucial in face anti-spoofing. 88

Tirunagari et al. [12] used Local Binary Patterns (LBP) for dynamic patterns and Dynamic 89

Mode Decomposition (DMD) for visual dynamics. Wen et al. [13] proposed an Image 90

Distortion Analysis-based method (IDA). To represent the face images, four different fea- 91

tures were used: blurriness, color diversity, specular reflection and chromatic moments, 92

also relying on the features that can detect differences between real image and fake one 93

without capturing any information about the user’s identity. Patel et al. [14]investigated 94

the impact of different RGB color channels (R, G, B, and Gray Scale) and different facial 95

regions on the performance of LBP and Dense Scale Invariant Feature Transform (DSIFT) 96

based algorithms. Their investigations have revealed that extracting the texture from the 97

red channel produces the best results. Boulkenafet et al. [15] proposed a color texture 98

analysis-based face anti-spoofing approach. They employed the LBP descriptor to extract 99

texture features from each channel after encoding the RGB images in two color spaces: 100

HSV and YCbCr, and then concatenated these features to distinguish between real and fake 101

faces. 102

Some methods, such as [16], have recently used user-specific information to improve 103

the performance of texture-based FAS techniques. Garcia et al. [17] proposed face spoofing 104

detection by looking for Moiré patterns caused by digital grid overlap where their detection 105

is based on frequency domain peak detection. For classification, they used Support Vector 106

Machine (SVM) with an radial basis function kernel. They started to run their tests on the 107

Replay Attack Corpus and Moiré databases. Other face anti-spoofing solutions are based 108

on textures on 3D models, such as those used in [18]. Because the attacker in 3D models 109

utilizes a mask to spoof the system, the introduction of wrinkles might be extremely helpful 110

in detecting the attack. The presented work in [18] examines the viability of performing 111

low-cost assaults on 2.5D and 3D face recognition systems using self-manufactured three- 112

dimensional (3D) printed models. 113

2.2. Deep learning based techniques 114

Actually, deep Learning is used in a variety of systems and applications for biometric 115

authentication[19] where the deep network can be trained using a number of patterns. 116

After learning all of the dataset’s unique features, the network can be used to identify 117

similar patterns. Deep learning approaches have mostly been used to learn facial spoofing 118

detection features. Also, Deep Learning is efficient at classification (supervised learning) 119

and clustering tasks (unsupervised learning). Thus, the system assigns class labels to 120

the input instances in a classification task, but the instances in clustering approaches are 121

clustered based on their similarity without the usage of class labels. 122

To train models with significant discriminative abilities, Yang et al.[20] used a deep 123

CNN rather than manually constructing features from the scratch. Quan et al. proposed 124

a semi-supervised learning-based architecture to fight face spoofing threats using only a 125

few tagged data, rather than depending on time-consuming data annotations. They assess 126

the reliability of selected data pseudo labels using a temporal consistency requirement. 127

As a result, network training is substantially facilitated. Also, by progressively increasing 128

the contribution of unlabeled target domain data to the training data, an adaptive transfer 129

mechanism can be implemented to eliminate domain bias. According to the authors in [21], 130

they use a type of Ground Through (GT) termed appr-GT in conjunction with the identity 131

information of the spoof image to generate a genuine image of the appropriate subject in 132

the training set. A metric learning module constrains the generated genuine images from 133

the spoof images to be near the appr-GT and far from the input images. This reduces the 134

effect of changes in the imaging environment on the appr-GT and GT of a spoof image. 135

Jia et al. [22] proposed a Unified unsupervised and Semi-supervised Domain Adapta- 136

tion Network (USDAN) for cross-scenario face anti-spoofing, with the purpose of reducing 137

the distribution mismatch between the source and target domains. The marginal Distribu- 138
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tion Alignment Module (MDA) and the conditional distribution alignment module (CDA) 139

are two modules that use adversarial learning to find a domain-invariant feature space and 140

condense features of the same class. 141

Raw optical flow data from the clipped face region and the complete scene were used 142

to train a neural network by feng’s team et al. [23]. Motion-based anti-spoofing does not 143

need a scenic model or motion assumption to generalize. They present an image quality- 144

based and motion-based liveness framework that can be fused together using a hierarchical 145

neural network. 146

In their work [24], Liu et al. proposed a Deep Tree Network (DTN) that learns charac- 147

teristics in a hierarchical form and may detect unanticipated spoofing attacks by identifying 148

the features that are learned. 149

Yu et al. [25] introduces two new convolution and pooling operators for encoding 150

fine-grained invariant information: Central Difference Convolution (CDC) and Central 151

Difference Pooling (CDP). CDC outperforms vanilla convolution in extracting intrinsic 152

spoofing patterns in a number of situations. 153

As described in Qin et al. [26], Adaptive Inner-Update (AIU) is a novel meta learning 154

approach that uses a meta-learner to train on zero- and few-shot FAS tasks utilizing a newly 155

constructed Adaptive Inner update Meta Face Anti spoofing (AIM-FAS). 156

According to Yu et al. [27], the Multi-level Feature Refinement Module (MFRM) and 157

material-based multi-head supervision can help increase BCN’s performance. In the first 158

approach, local neighborhood weights are reassembled to create multi-scale features, while 159

in the second, the network is forced to acquire strong shared features in order to perform 160

tasks with multiple heads. 161

CDC-based frame-level FAS approaches, proposed by the authors in [28], have been 162

developed. These patterns can be captured by aggregating information about intensity 163

and gradient. In comparison to a vanilla convolutional network, the Central Difference 164

Convolutional Network (CDCN) built with CDC has a more robust modeling capability. 165

CDCN++ is an improved version of CDCN that incorporates the search backbone network 166

with the Multiscale Attention Fusion Module (MAFM) for collecting multi-level CDC 167

features effectively. 168

Spatio-Temporal Anti-Spoof Network (STASN) is a new attention mechanism invented 169

by the Yang et al. [29] that combines global temporal and local spatial information, allowing 170

them to examine the model’s understandable behaviors. 171

To improve CNN generalization, Liu et al. [30] proposed to use innovative auxiliary 172

information to supervise CNN training. A new CNN-RNN architecture for learning the 173

depth map and rPPG signal from end to end is also proposed. 174

Wang et al. [31] proposed a depth-supervised architecture that can efficiently encode 175

spatiotemporal information for presentation attack detection and develops a new approach 176

for estimating depth information from several RGB frames. Short-term extraction is ac- 177

complished through the use of two unique modules: the Optical Flow guided Feature 178

Block (OFFB) and the convolution gated recurrent units (ConvGRU). Jourabloo et al. [32] 179

proposed a new CNN architecture for face de-spoofing, with appropriate constraints and 180

supplementary supervisions. to discern between living and fake faces, as well as long-term 181

motion. In order to detect presentation attacks effectively and efficiently, Kim et al. [33] 182

introduced Bipartite Auxiliary Supervision Network (BASN), an architecture that learns to 183

extract and aggregate auxiliary information. 184

Huszár et al. [34] proposed a Deep Learning (DL) approach to address the problem 185

of spoof attacks occurring from video. The approach was tested in a new database made 186

up of several videos of users juggling a football. Their algorithm is capable of running 187

in parallel with the Human Activity Recognition (HAR) in real-time. Roy et al. [35] pro- 188

posed an approach called Bi-Directional Feature Pyramid Network (BiFPN) to detect spoof 189

attacks because the approach containing high-level information demonstrates negligible 190

improvements. Ali et al. [36] based on stimulating eye movements by using the use of 191

visual stimuli with randomized trajectories to detect spoof attacks. Ali, et al. [37] by the 192

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 April 2022                   doi:10.20944/preprints202204.0033.v1

https://doi.org/10.20944/preprints202204.0033.v1


6 of 17

combination of two methods which are head-detection algorithm and deep neural network- 193

based classifiers. The test was various face presentation attacks in thermal infrared in 194

various conditions. 195

3. PROPOSED APPROACH 196

Figure 1 describes the overall structure of our proposed approach, which is divided 197

into three modules: background subtraction, feature learning, and data classification. To 198

begin, we use the background subtraction between consecutive frames to extract motion, 199

we can also call this technique BS. Then, the features are extracted using the ResNet-50 200

Transfer Learning model on the foreground of BS. Finally, to distinguish between real and 201

fake faces of each frame we use a classification layer that employs a fully connected layer. 202

After that, we use MV to predict the input video is real or not. In the subsections that follow, 203

all subsystems (modules) will be discussed. 204

Input stream Output masks

Classification Module
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Figure 1. Framework of our proposed approach.

3.1. Background Subtraction Module 205

In our research work, we use a face spoofing detection system based on an extended BS 206

algorithm. The Background Subtraction approach, which is based on the premise of getting 207

the pixels in the image sequence difference operation to do two or three continuous frames, 208

is the most commonly used action target detection measure. Using an image pixel value 209

obtained by subtracting the difference image and the binarized difference image, if the 210

pixel value change threshold is less than a predefined one, we can feel this as a background 211

pixel in the adjacent frame. If the pixel value of an image area changes dramatically, it is 212

possible to deduce that this is due to the action of detecting spoof in the image caused by 213

these symbols as foreground pixel regions. While taking dynamic information into account, 214

a pixel region based on symbolic actions can determine the position of the target in the 215

image. 216

Background Subtraction is applied to images and the thresholded result is displayed 217

as a foreground image. Figure 2 shows an example of the output. This is a low-cost and 218

ineffective method of detecting motion in a video stream. The image Pt is transformed into 219

a grey-scale (intensity) image It. Then, given the image It and the previous image It−1, the 220

current output is Rt, where: 221

Rt(x, y) =
{

It(x, y) if |It(x, y)− It−1(x, y)| > T
0 otherwise

(1)
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T is the value of the threshold parameter. In our situation, we just utilized a threshold 222

to remove the pixels with the same values across the two frames. The foreground pixels 223

take the value of the current frame if there is motion. The foreground pixel is set to zero if 224

there is no motion. 225

Real Printed Replay
RG

B
G
ray

B
S

Figure 2. Example of a genuine face and corresponding print and replay attacks in grey-scale and BS.

3.2. Feature Learning Module 226

Feature learning (FL) is a set of approaches in machine learning that allows a system to 227

discover the representation needed for feature detection, prediction, or classification from a 228

preprocessed dataset automatically. This enables a machine to learn the features and apply 229

them to a specific task like classification and prediction. Feature learning can be achieved in 230

deep learning by either creating a complete CNN to train and test the collection of images or 231

adapting a pre-trained CNN for classification or prediction for the new images-set. Transfer 232

learning is the latter strategy used in the deep learning domain. Transfer learning is a 233

machine learning technique in which a model created for one task is utilized as the basis 234

for a model on a different task. 235

Transfer Learning (TL) is commonly used in DL applications to allow you to use a 236

pre-trained network for solving new classification tasks. To meet the new learning tasks, 237

the learning parameters of the pre-trained network with randomly initialized weights must 238

be fine-tuned. Transfer learning is typically considerably faster and easier to learn/train 239

than building a network from the initial concept. Transfer learning is an optimization and a 240

quick way that can save time or improve efficiency. 241

In this section, a transfer learning technique is applied by fine-tuning a pretrained 242

ResNet-50 model on ImageNet dataset using multiple spoofing datasets where the output 243

of the last FC layer is changed to output two classes (real/fake). The network called ResNet- 244

50 due to the fact that it has 48 Convolution layers along with 1 MaxPool and 1 Average 245

Pool layer, and it introduced the use of residual blocks. 246

3.3. Classification Module 247

Data classification is a vital process for separating large datasets into classes for 248

decision-making, pattern detection, and other purposes. For multi-class classification 249

problems with mutually exclusive classes, a classification layer uses a fully connected layer 250

to compute the cross-entropy loss. 251
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The features from ResNet-50 are passed via a FC layer made of 1024 neurons with a 252

40% dropout to prevent over-fitting in the classification module. Having followed that, the 253

units were activated with a rectification mechanism called ReLU. MAX(X, 0) is the ReLu 254

function, which sets all negative values in the matrix X to zero while keeping all other 255

values constant. The reason for choosing ReLU is that deep network training with ReLU 256

tended to converge considerably faster and more reliably than deep network training with 257

sigmoid activation. Finally, the output layer consisted of one neuron unit configured with 258

the Sigmoid f unction to generate probabilities for the classes (Binary classifier). Sigmoid is 259

a mathematical function that takes a vector of k real values as an input and converts it to a 260

probability distribution with two probabilities. 261

We employ Voting Ensemble in our tests to classify each subject (video) as real or 262

fake. A voting ensemble (sometimes known as a "majority voting ensemble") is a machine 263

learning model that incorporates predictions from several other models, such as multiple 264

predictions in each frame after the input video’s last layer (Classification layer). The 265

predictions for each label are combined, and the label with the majority vote is forecasted 266

(See Fig. 1, classification module) to determine if the input video belongs to a real or fake 267

one. The majority voting ensemble creates forecasts based on the most common one. It’s a 268

strategy that can be utilized to boost performance, with the goal of outperforming every 269

frame used independently in the ensemble. 270

4. Experimental results and analysis 271

In this section, the employed benchmark datasets will be introduced first, followed by 272

a brief description of the evaluation criteria. After that, we present and analyze a series of 273

experiments that we assume demonstrate the efficacy of the proposed BS-CNN+MV based 274

face spoofing detection technique. 275

4.1. Database and protocol 276

In order to assess of the effectiveness of our proposed anti spoofing technique, we 277

performed a set of experiments on a well known databases where most three challenging 278

databases were used: The CASIA-FASD 1 Face Anti-Spoofing database, Replay-Attack 279

2 database and MSU 3 Mobile Face Spoofing databases. Those databases contain video 280

recording of real and fake attacks. A brief description of these databases is given as fellow: 281

The CASIA-FASD database[38] is a data-set for face anti spoofing detection. This 282

database contains 50 genuine subjects in total and the corresponding fake faces are captured 283

with high quality from the original ones.Therefore each subject contains 12 videos (3 284

genuine and 9 fake) under three different resolutions and light conditions namely the low 285

quality, normal quality and high quality. Also, three fake face attacks are designed, which 286

include warped photo attack, cut photo attack and video attack. The overall database 287

contains 600 video clips and the subjects are divided into subsets for performing training 288

and test in which 240 videos of 20 subjects are used for training and 360 videos of 30 289

subjects for testing. Test protocol is provided, which consists of 7 scenarios for a thorough 290

evaluation from all possible aspects see fig 3. 291

Among the popular databases designed for the anti spoofing application, one can 292

find the Replay-Attack database [39]. This database consists of 1300 video of real-access 293

and attack attempts to 50 subjects, (See Fig 5). However, These video were taken using 294

a built-in webcam on a Macbook laptop under two separate scenarios (controlled and 295

adversed). In addition, Two cameras were used to create the faked facial attack for each 296

person in high-resolution images and videos: a Canon PowerShot SX150 IS and an iPhone 297

3GS camera. Also, Fixed attacks and hand attacks are the two types of attacks. There 298

are ten videos in each subsets: 4 mobile attacks with a resolution of 480× 320 pixels on 299

1 http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp
2 https://www.idiap.ch/dataset/replayattack
3 https://drive.google.com/drive/folders/1nJCPdJ7R67xOiklF1omkfz4yHeJwhQsz
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Low 
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Real 
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Cut Photo 
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Video 
Attack

Figure 3. Samples from the CASIA FAS database.

an iPhone 3GS screen, then, by using an iPad first generation with a screen resolution 300

of 1024× 768 pixels, four high-resolution screen attacks were performed. On A4 paper, 301

two hard-copy print attacks (printed on a Triumph-Adler DCC 2520 colour laser printer) 302

occupied the whole available printing surface. It will be noted that the complete set of 303

video is divided into three non-overlapping subsets for training, development, and testing 304

in order to evaluate them. 305

The Patterns Recognition and Image Processing (PRIP) group at Michigan State Uni- 306

versity developed a publicly available MSU-MFSD database for face spoof attacks. The 307

database contains 280 video clips of attempted photo and video attacks on 35 clients. It 308

was created using a mobile phone to capture both genuine and spoof attacks. This was 309

accomplished using two types of cameras: 1) the built-in camera in the MacBook Air 13 310

inch (640× 480) and 2) the front-facing camera on the Google Nexus 5 Android phone 311

(720× 480). Each subject received two video recordings, the first of which was taken using 312

a laptop camera and the second with an Android camera (See Fig 4). High-resolution video 313

was recorded for each subject utilizing two devices to create the attacks:1) Canon PowerShot 314

550D SLR camera, which captures 18.0 Megapixel photos and 1080p high-definition video 315

clips; 2) iPhone 5S back-facing camera, which captures 1080p video clips. There are three 316

types of spoof attack, the first one 1) high-resolution replay videoThe first type of spoof 317

attack is a high-resolution replay video attack using an iPad Air screen, with a resolution of 318

2048× 1536, the second is a mobile phone replay video attack using an iPhone 5S screen, 319

with a resolution of 1136× 640, and the third is a printed photo attack using an A3 paper 320

with a fully-occupied printed photo of the client’s biometry, with a paper size of: 11× 17 321

(279mm× 432mm), printed with an HP Colour Laserjet CP6015xh printer at a resolution of 322

1200× 600 dpi. Finally, to assess performance, the 35 subjects in the MSU-MFSD database 323

were divided into two subsets: 15 for training and 20 for testing. 324

4.2. Evaluation metrics 325

The comparative results for cross-scenario testing are expressed in terms of the HTER, 326

which is the mean of the False Acceptance Rate (FAR) and False Rejection Rate (FRR). On 327

the development set, we first compute the EER and the corresponding threshold, and then 328

use the threshold to determine the HTER on the testing set. Additionally, the Receiver 329

Operating Characteristic (ROC) is reported to assess the method’s performance. We use 330

HTER for the Idiap Replay-Attack dataset and EER for the CASIA-FASD and MSU-MFSD 331
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Figure 4. Example images of genuine and spoof faces of one of the subjects in the MSU-MFSD database.

Adverse 
Scenario

Controlled 
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Real Access Photo Attack 
Fixed

Photo Attack 
Hand

Video Attack 
Hand

Video Attack 
Fixed

Figure 5. Examples of real accesses and attacks in different scenarios.

datasets for intra-scenario testing. We employ Area Under Curve (AUC) as a performance 332

metric for type-scenario testing. 333

4.3. Performance comparison on intra-database 334

We computed the EERs for the seven scenarios, including different qualities and 335

media, to meet the official CASIA Face Anti-Spoofing test protocol. Low, normal, and 336

high-quality image sequences are provided as quality descriptors, and the used media for 337

spoofing attacks are warped images, chopped photos, and videos played on an iPad. The 338

last scenario is the overall test, which will look at how image quality and spoofing media 339

affect system performance. In this part, we computed two tests, the first of which was 340

performed per-frame and the second of which was performed per-video. The first test uses 341
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Table 2. Comparison EER (in %) between the proposed approach and the state-of-the-art methods on different scenario on CASIA FAS.

Scenarios
Methods Low Normal High Warped Cut Video Overall
IQA [40] 31.70 22.20 05.60 26.10 18.30 34.40 32.40
DoG baseline [38] 13.00 13.00 26.00 16.00 06.00 24.00 17.00
visual codebooks [41] 10.00 17.78 13.33 07.78 22.22 08.89 14.07
LBP-overlapping+fisher [42] 07.20 08.80 14.40 12.00 10.00 14.70 13.10
CDD [43] 01.50 05.00 02.80 06.40 04.70 00.30 11.80
ML-LPQ fisher [44] 12.49 08.96 05.22 13.62 09.66 10.10 11.39
LBP-TOP [11] 10.00 12.00 13.00 06.00 12.00 10.00 10.00
FD-ML-BSIF-FS [6] 07.93 11.85 12.42 05.85 03.11 15.84 09.96
MLLBP + MLBSIF [45] 006.56 09.93 007.36 09.98 03.45 10.04 09.81
Kernel Fusion [10] 00.70 08.70 13.00 01.40 10.10 04.30 07.20
YCbCr+HSV-LBP [15] 07.80 10.10 06.40 07.50 05.40 08.10 06.20
Identity-DS [21] - - - - - - 03.30
USDAN-Norm [22] - - - - - - 01.10
S-CNN+PL+TC [46] - - - - - - 00.69
BS-CNN+MV (Ours) 00.83 00.00 00.00 00.74 00.00 00.00 00.00

BS-CNN to determine whether an image is real or fake, while the second test uses MV to 342

determine whether a video is real or not (See Table 2). In addition, we discovered that the 343

proposed method (BS-CNN+MV) improves the performance. 344

Moreover, we have found that combining the MV with BS-CNN yields the best results 345

for picture quality (low, normal, and high), as well as with spoof media (warped photo, cut 346

photo and video attacks) (See Fig 6). This can be explained by the fact that MV improves 347

decision-making performance. Table 2 shows that our proposed technique outperforms the 348

CASIA baseline in all scenarios when compared to the database created by CASIA [38]. 349
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Figure 6. Effect of Quality and Spoofing Media on the Performance on the CASIA-FASD. (a) Quality and (b) Spoofing Media

The suggested method is compared to state-of-the-art methods in Table 4 using data 350

from the Replay-Attack database. Despite the fact that our EER and HTER are similar to the 351

previous approaches. The following are the types of attacks on replay databases that we 352

compute the performance of using our method: Depending on the method used to hold the 353
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Table 3. Testing our proposed countermeasure using all scenarios of the REPLAY-ATTACK database.

BS-CNN+MV (our)
EER HTER

Sc
en

ar
io

s

Digitalphoto 01.25 01.87
Highdef 01.42 03.43
Mobile 00.00 00.31
Photo 00.53 02.50
Print 00.83 00.62
Video 00.00 01.56

Overall 00.58 00.62

Table 4. Comparison between the proposed countermeasure and the state-of-the-art methods on REPLAY-ATTACK database

Methods overall
EER HTER

IQA [40] 00.00 15.20
LBP [47] 13.90 13.87
MotionCorrelation [48] 11.78 11.79
LBP-TOP [11] 07.90 07.60
IDA [13] 08.58 07.41
Motion+LBP [49] 04.50 05.11
FD-ML-LPQ-Fisher [6] 05.62 04.80
DMD [12] 05.30 03.75
Colour-LBP [15] 00.40 02.90
Spectral cubes [41] - 02.75
CNN [20] 06.10 02.10
USDAN-Norm [22] - 00.30
Bottleneck Feature Fusion + NN [23] 00.83 00.00
Identity-DS [21] 00.20 00.00
S-CNN+PL+TC [46] 0.36 -
BS-CNN+MV (our) 00.58 00.62

attack replay device (paper, mobile phone, or tablet), the three attack subsets (print, mobile, 354

and highdef) were recorded in two different modes: i) fixed-support and ii) hand-based 355

(See Tables 3). We also put our method to the test using the MSU-MFSD database. (See 356

Table 5). It will be noted that there is no articles have been published that detail the results 357

of various sorts of attacks on this database. We can see that our results are better to the 358

state of the art, with our BS-CNN+MV providing the best results. 359

The final comparison results on intra-database that are shown in (Tables: 2, 4 and 5), 360

which indicates that our proposed method achieves much lower errors on all three datasets 361

than other state-of-the-art methods. Meanwhile, from Figure 7 it can be observed that the 362

BS-CNN+MV perform better than the BS-CNN, which further verify the effectiveness of 363

the proposed background subtraction based convolution neural network. 364

Table 5. Comparison EER (in %) between the proposed approach and the state-of-the-art methods on different scenario on MSU-MFSD.

Scenarios
Methods HD Android HD Laptop Mobile Android Mobile Laptop Print Android Print Laptop Overall
IDA [13] - - - - - - 08.58
Identity-DS [21] - - - - - - 08.58
FD-ML-BSIF-FS [6] - - - - - - 02.10
S-CNN+PL+TC [46] - - - - - - 00.64
USDAN-Norm [22] - - - - - - 00.00
BS-CNN+MV (our) 00.00 00.00 00.00 00.00 00.00 00.00 00.00
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Table 6. AUC (%) of the model cross-type testing on CASIA-FASD, Replay-Attack, and MSU-MFSD.

Methods CASIA-FASD Replay-Attack MSU-MFSD overallVideo Cut photo Wrapped Video Digital Photo Printed Printed HR Video Mobile Video
OC-SVM+BSIF [50] 70.74 60.73 95.90 84.03 88.14 73.66 64.81 87.44 74.69 78.68± 11.74
NN+LBP [51] 94.16 88.39 79.85 99.75 95.17 78.86 50.57 99.93 93.54 86.69± 16.25
SVM+LBP [52] 91.94 91.70 84.47 99.08 98.17 87.28 47.68 99.50 97.61 88.55± 16.25
NAS-Baseline [25] 96.32 94.86 98.60 99.46 98.34 92.78 68.31 99.89 96.76 93.90± 09.87
DTN [24] 90.00 97.30 97.50 99.90 99.90 99.60 81.60 99.90 97.50 95.90± 06.20
AIM-FAS [26] 93.6 99.7 99.1 99.8 99.9 99.8 76.3 99.9 99.1 96.40± 07.80
CDCN [28] 98.48 99.90 99.80 100.00 99.43 99.92 70.82 100.00 99.99 96.48± 09.64
CDCN++ [28] 98.07 99.90 99.60 99.98 99.89 99.98 72.29 100.00 99.98 96.63± 09.15
BCN [27] 99.62 100.00 100.00 99.99 99.74 99.91 71.64 100.00 99.99 96.77± 09.99
NAS-FAS [25] 99.62 100 100 99.99 99.89 99.98 74.62 100.00 99.98 97.12± 08.94
BS-CNN+MV (our) 100 100 99.98 100 100 100 100 100 100 99.99± 0.0067

4.4. Inter-Dataset Cross-Type Testing 365

In this part of experiments, the CASIA-FASD, Replay-Attack, and MSU-MFSD are 366

used to perform the intra-dataset cross-type testing between replay and print attacks . As 367

shown in Table 6, our proposed method outperforms state-of-the-art methods in terms 368

of overall performance (99.99% AUC), indicating that learned features extended well to 369

unknown attacks. As a result of this, it appears that our method can learn intrinsic material 370

patterns from a wide range of materials and so generalizes well to previously unexplored 371

types of material. 372

4.5. Inter-Dataset Cross-dataset Testing 373

This experiment includes six cross-dataset testing protocols. The first is that we 374

perform CASIA-FASD training and testing on Replay-Attack, which is known as protocol 375

CR; the second is that we perform CASIA-FASD training and testing on MSU-MFSD, 376

which is known as protocol CM; and the third is that we exchange the training and testing 377

datasets that we have in the first, which is known as protocol RC. The rest of the protocols 378
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Table 7. The results of cross-dataset testing between CASIA-FASD, MSU-MFSD and Replay-Attack. The evaluation metric is HTER(%)

Method
Protocol CR Protocol CM Protocol RC Protocol RM Protocol MC Protocol MR

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing
Casia Replay Casia MSU Replay Casia Replay MSU MSU Casia MSU Replay

FD-ML-LPQ-FS [6] 50.25 50.41 42.59 38.00 50.00 48.00
Motion-Mag [53] 50.10 NP 47.00 NP NP NP

LBP-TOP [54] 49.70 NP 60.60 NP NP NP
LBP [15] 47.00 NP 39.60 NP NP NP

Spectral cubes [41] 34.40 NP 50.00 NP NP NP
STASN [29] 31.50 NP 30.90 NP NP NP

Color Texture [55] 30.30 NP 37.70 NP NP NP
FaceDs [32] 28.50 NP 41.10 NP NP NP

Auxiliary [30] 27.60 NP 28.40 NP NP NP
MEGC [56] 20.20 NP 27.90 NP NP NP

FAS-TD [31] 17.50 NP 24.00 NP NP NP
BASN [33] 17.50 NP 24.00 NP NP NP

Patch+BCN+MFRM [27] 16.60 NP 36.40 NP NP NP
CDCN [28] 15.50 NP 32.60 NP NP NP

BS-CNN+MV (our) 17.62 23.75 20.35 24.16 35.45 44.33

are identical, with the exception that we utilize the data to train one time and test the next; 379

the protocols are protocol RM, protocol MC, and protocol MR. As may be seen in Table 7. On 380

protocol CR, our suggested BS-CNN+MV has 17.62% HTER, exceeding the previous state- 381

of-the-art by a convincing margin of 2%. Increasing the size of the training set with data 382

augmentation could increase performance even more. For protocol RC, we also outperform 383

state-of-the-art frame-level techniques (see Table 7, third column). Furthermore, we can see 384

in the same table for our suggestion that the convincing margin between protocols RC and 385

CR is 3% in the same technique, compared to other most convincing methods in the same 386

protocol, such as in [28] (17%). As a result, we can presume that our approach outperforms 387

current approaches. 388

5. CONCLUSION AND FUTURE DIRECTIONS 389

Fake face detection is a problem that has been addressed in this work. We ana- 390

lyzed seven scenarios from the MSU-MFSD, the REPLAY-ATTACK, and the CASIA-FASD 391

databases. In fact, texture and motion-based characteristics were used by the majority 392

of authors in the field of face spoof detection. However, BS and a CNN with a majority 393

vote seems to determine well if a person is using a fake face. In our paper, we evaluated 394

our approach under different protocols. Firstly, we used all three types of databases to 395

evaluate if they produced satisfactory results when compared to the current state of the 396

art. The proposed technique is then put to the test using Cross-Type Testing to ensure 397

that it can handle all attributes and attacks across the three databases. In the final test, we 398

used Cross-dataset Testing to compare each train of any data with the test to other data in 399

order to improve the validity of our approach. The obtained results have shown that our 400

proposed methods outperform the current state-of-the-art. As a future direction, face spoof 401

detection research could focus on making the system more robust across all databases. It is 402

also of interest to create a common training model for each face spoof detection using the 403

transformer method. 404
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