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Abstract: This paper presents an approach to the elastic analysis of beams subjected to Saint-Venant torsion using 

Green’s theorem and the finite difference method (FDM). The Saint-Venant torsion of beams, also called free torsion or 

unrestrained torsion, is characterized by the absence of axial stresses due to torsion; only shear stresses are developed. A 

solution to this torsion problem consists of finding a stress function that satisfies the governing equation and the 

boundary conditions. The FDM is an approximate method for solving problems described with differential equations; it 

does not involve solving differential equations, equations are formulated with values at selected nodes of the structure. 

In this paper, the beam’s cross-section was discretized using a two-dimensional grid and additional nodes were 

introduced on the boundaries. The introduction of additional nodes allowed us to apply the governing equations at 

boundary nodes and satisfy the boundary conditions. Beams with solid sections as well as multiply connected cross-

sections were analyzed using this model; shear stresses and localized stresses at reentrant corners, torsion constant, and 

warping displacements were determined. Furthermore, beams with thin-walled closed sections, single-cell or multiple-

cell, were analyzed using the Prandtl stress function whereby a linear distribution of the shear stresses over the thickness 

was considered; closed-form solutions for shear stresses and torsion constant were derived. The results obtained in this 

study showed good agreement with the exact results for rectangular cross-sections, and the accuracy was increased 

through a grid refinement. For thin-walled closed sections, the shear stresses obtained at the centerline using the closed-

form solutions were in agreement with the values using Bredt’s analysis but the maximal values in the cross-section, 

which did not necessarily occur at the position with the smallest thickness, were higher; in addition, the results using the 

closed-form solutions were in good agreement with those using FDM.   

Keywords: Theory of elasticity; Saint-Venant torsion; Green’s theorem; finite difference method; additional nodes; 

thin-walled sections; stress concentration at reentrant corners; multiply connected cross-section; warping displacement  

 

1. Introduction 

This paper describes the application of Fogang’s model [1] based on the finite difference method (FDM), used for the 

homogeneous EulerBernoulli beam, to the elastic analysis of beams subjected to Saint-Venant torsion. The Saint- 

Venant torsion is characterized by the absence of axial stresses due to torsion; only shear stresses are developed. The 

correct solution of the problem of torsion of prismatical beams was given by Saint-Venant [2]; he made assumptions on 
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the deformation of the twisted bar that could satisfy the equations of equilibrium and the boundary conditions. Bredt [3] 

derived formulas for the torsional analysis of thin-walled bars; these formulas form a basis for the calculation of shear 

stresses and deformations in components with closed, thin-walled hollow cross-sections under pure torsional loading. 

Prandtl [4] introduced a stress function in terms of which the shear stresses were defined. Therefore, the solution of the 

torsion problem consists of finding a stress function which satisfies the governing equation and the boundary conditions. 

Analytical solutions of the stress function are available for beams with elliptical cross-sections, equilateral triangle and 

several other shapes; furthermore, the torsional problem was solved for rectangular cross-section using infinite 

trigonometric series. However, analytical solutions of the Saint-Venant torsion are only suitable for simple cross-

sections; therefore, numerical methods to evaluate the torsional behavior of complicated cross-sections are 

indispensable. Numerical methods such as energy methods were considered by numerous authors i.e. Ritz [5] and 

Trefftz [6]; the stress function was approximately determined from the minimum condition of the strain energy of the 

twisted beam. Various studies have focused on the analysis of beams under unrestrained torsion. Pluzsik et al. [7] 

presented a theory for thin-walled, closed section, orthotropic beams which takes into account the shear deformation in 

restrained warping induced torque; the analytical (“exact”) solution of simply supported beams subjected to a sinusoidal 

load was developed for this purpose. Pan et al. [8] presented a matrix stiffness method for the torsion and warping 

analysis of beam-columns in order to investigate the exact element torsional stiffness considering warping deformations; 

the equilibrium analysis of an axial-loaded torsion member was conducted, and the torsion-warping problem was solved 

based on a general solution of the established governing differential equation for the angle of twist. Pavazza et al. [9] 

presented a novel theory of torsion of thin walled beams (“shear deformable beams”) of arbitrary open cross-sections 

with influence of shear; the theory is based on the classical Vlasov’s theory of thin-walled beams of open cross-section, 

as well on the Timoshenko’s beam bending theory. Choi & Kim [10] proposed a higher-order Vlasov torsion theory that 

not only includes as many torsion-related modes as desired but also provides the explicit forceskinematic 

variablesstresses relationships that are fully consistent with those by the Vlasov theory. Amulu & Ezeagu [11] 

investigated the effect of combined actions of torsion moments, bending moments and shear forces in reinforced 

concrete beams with concrete compressive strength of 30N/mm2; the ultimate torsion moments, bending moments, and 

shear forces of the beams were determined experimentally. Tran [12] used isoparametric eight-noded quadrilateral 

elements in order to improve Gruttmann’s isoparametric four-noded quadrilateral elements; MATLAB was the language 

for programming the numerical method.      

In this paper the torsion problem of beams was solved using FDM. The cross-sections were discretized with a two-

dimensional grid and additional nodes were introduced at the boundaries. The introduction of additional nodes allowed 

us to apply the governing equations at boundary nodes and to satisfy the boundary conditions. Multiply connected cross-

sections were also analyzed. So, the values of the stress function at nodes were determined and thereafter the shear 

stresses and torsion constant. Beams with thin-walled closed sections were analyzed using the stress function whereby 

the linear distribution of the shear stresses over the thickness was considered; closed form solutions for shear stresses 

and torsion constant were presented and compared to those of Bredt [3].    
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This means that the stress function (x,y,z) is constant along the boundary of the cross-section. Observing that               

sin = -dy/ds and cos = dz/ds, the shearing stress component t at the boundary directed along the tangent is  

 

Likewise, the shearing stress component n at the boundary directed along the outer normal to the boundary is  

 

Observing Equation (8), the shearing stress component n is zero; this is in agreement with the condition of stress free 

outer surfaces. Therefore, the resultant shearing stress at the boundary is t. Let us recall the Green’s theorem which 

relates a line integral around a closed curve B to a double integral over the plane region A bounded by B 

 

 

whereby L and M are functions defined on the region A and the path of integration along B is anticlockwise. 

Recalling that the stress function has a constant value B at the boundary, the Green’s theorem shows as follows that the 

resultant shear forces are zero 

   

 

 

 

where the line integrals are taken around the closed boundary B of the cross-section. Using Equations (6) and (11), the 

torque is then given by 

 

 

The derivatives of y with respect to y and z with respect to z, respectively, are given by 
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Substituting Equations (12b) into (12a) yields 

 

 

In the case of solid cross-sections and recalling that the stress function has a constant value B at the boundary, the 

Green’s theorem applied to the second term at the right-hand side of Equation (12c) is given by 

 

 

 

where AB is the area enclosed by the outer boundary of the cross-section. Let us express the stress function as follows 

 

                          (12e) 

where the function * is zero along the boundary and satisfies Equation (7). Substituting Equations (12d) and (12e) into 

(12c) yields  

  

                          (12f) 

Therefore, for a beam with solid cross-section the expression of the torque is independent of the value B of the stress 

function at the boundary. Furthermore, Equations (12a-f) show that half the torque is due to the stress component xy 

and the other half to xz. For simplification purpose, a modified stress function (y,z) is defined 

 

              (13a) 

Thus, the function (y,z) is zero along the boundary. Substituting Equations (13a) and (12e) into (7) and (6) yields 

 

             (13b) 

 

The torsional stiffness GIt is related to the torque Mt and the angle of twist (x) as follows 

            
                         (13c) 

 

Combining Equations (12f), (13a), and (13c) yields the torsion constant It 
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In the case of multiply connected cross-sections with one or many holes Equation (12d) becomes 

 

              (14a) 

 

where Ai is the area enclosed by the hole i and i the constant value of the stress function along the boundary of the 

hole i. Combining Equations (12c, e) and (14a) yields  

 

              (14b) 

Observing that i = B + *
i, we set B to zero and combine Equations (13a, c) and (14b) to obtain the torsion constant  

 

              (14c) 

 

Equation (14c) can be found in Dieker [13] and Sadd [14]. 

 

 

2.2 Finite difference approximations 

For simplification purpose, the analysis will be conducted in the following with the modified stress function (y,z). The 

analysis is then governed by Equation (13b-1). This equation has second order derivatives; consequently, the function 

(y,z) is approximated around the node of interest i as a second degree polynomial in each direction. The unknown at 

any node is the value i of the modified stress function.  

Given the grid spacings y = h and z =h in y- and z-direction, respectively. The finite difference approximations 

(FDAs) for the first and second derivatives are then given by  

 

 

 

 

 

The partial derivatives in z-direction are formulated similarly.  
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Let us consider continuity regions and discontinuity regions in the cross-section defined as follows: continuity regions 

that are away from segment ends and angles of the cross-section, are characterized by constant stress function (for 

constant thickness) along the arc coordinate s while discontinuity regions are segment ends and angles. 

 
2.7.2  Thin-walled open sections 

At an arc coordinate s the inner and outer node are denoted by si and so, respectively. Recalling that the stress function is 

constant along the unique boundary, the stress component s at the midline at position s of thickness t(s) can be 

determined using Equations (15b) and (24b) as follows 

 

                (26) 

 

The stress component t at the midline is zero: this finding is in agreement with the analysis of thin-walled open sections.  

Equation (24a) shows that the stress component n is zero in continuity regions while t that is zero at midline can be 

expressed as follows using Equation (25a)  

                

 

 

The stress t can be formulated using the torsion constant It and the torque Mt in Equation (13c) as follows 

 

                  (27b) 
    

Equation (27b) shows that the stress component t is linearly distributed over the thickness, zero at midline and maximal 

at the boundaries as follows  

 
                   (27c) 

 
 

Consequently, the maximal stresses occur at positions with greatest thickness; this finding is in agreement with the 

analysis of thin-walled open sections. The modified stress function (s, n) defined in Equation (13a) which is zero at       

n =  t(s)/2 and satisfies Equation (25c) is given by 

 

                    (28a) 

 

Then, the torsion constant It calculated using Equation (13d) and (28a) is  

 

                    (28b) 

Equation (28b) is a well-known formula in the analysis of thin-walled open sections. 
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2.7.3  Thin-walled closed sections 

The analysis of closed thin-walled sections is conducted using the Bredt’s [3] formulas (Equations (23a-b)). These 

formulas are based on the assumptions of constant shear stress t over the thickness and neglecting the stress component 

n. First, these assumptions do not satisfy the relationship between the shear stresses (Equation (25a)). Second, Bredt’s 

Equation (23a) implies that the total torque is due to the stress component t, and as shown earlier (Equation (12f)), that is 

inexact. In the following, another approach for the torsional analysis of closed thin-walled sections is presented.   

 
Single-cell thin-walled section: The stress function is taken zero along the outer boundary and si along the inner 

one. The stress component t at the midline at position s of thickness t(s) can be determined using Equations (15b) and 

(24b) as follows 

 

                (29) 

 

It is worth mentioning that si corresponds to the shear flow of the Bredt’s analysis. The stress component t can also be 

determined using Equations (9a) as follows 

 

                  (30) 

             

Let us perform a line integral along the midline using Equations (7), (13a), and (29-30) and the Green’s theorem  

 

 

 

 

 

 

 

where AM is the area enclosed by the midline of the cross-section. The modified stress function (s, n) defined in 

Equation (13a) which is zero and si at  n =  t(s)/2, respectively, and satisfies Equation (25c) is given by 

 

                     (32a) 
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The torsion constant It is then calculated using Equations (14c), (31), and (32a) as follows 

  

  

 

 

 

The second term at the right-hand side of Equation (32b) can be neglected; thus Equation (32b) becomes 

 

 

 

 

where Ai and Ao are the areas enclosed by the inner and the outer boundary of the cross-section, respectively, and A is 

the area of the cross-section material. This expression of the torsion constant looks similar to that of Bredt (Equation 

(23b), Ai + Ao replacing 2AM) and coincides with it for very small thicknesses.  

In continuity regions, the stress component n is zero and t is as follows using Equations (25a) and (29).  

                

 

 

Equation (33a) shows that at a position s the stress component t is linearly distributed over the thickness, maximal and 

minimal at the boundaries. Using Equations (13c) and (31) t is given by  

 
                    (33b) 

 
 

 

Equation (33b) shows that contrarily to Bredt’s formulas the maximum shear stress in the cross-section does not 

necessarily occur at the position with the smallest thickness. The shear stress at the midline is as follows using 

Equations (13c), (29), (31), and (32c); 

 

 

it is noted that its maximal value occurs at the position with the smallest thickness;  interestingly the expression looks 

similar to that of Bredt (Equation (23a), Ai + Ao replacing 2AM).   
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Multiple-cell thin-walled section: The stress function is taken zero along the outer boundary and sk along the 

inner boundary of a cell k. For a given cell at a position s the stress function at the inner and outer boundary are denoted 

by si and so , respectively. So, the stress component t at the midline at position s of thickness t(s) is as follows 

 

                  (34a) 

 

Equation (31) is applied at each cell through the midline using Equations (12e), (13a), and (34a); for the cell k it yields 

  

 

 

where AMk is the area enclosed by the midline of the cell k. Let the cell k of thickness tk(s) be bordered by q cells of 

thickness tq(s); Equation (34b) applied at the cell k is  

 

                     (34c) 

 

So, the values k of the modified stress function at the inner boundaries of the cells can be determined from the system of 

linear equations (34c). (s, n) defined in Equation (13a) with values so and si at  n =  t(s)/2, respectively, which 

satisfies Equation (25c) is given by 

 

  

 

 

The torsion constant It is then calculated using Equation (14c) and (35a)  

               

where Aik is the area enclosed by the inner boundary of the cell k. The first integral in Equation (35b) is rewritten as   

 

 

 

where Ak is the area of the cross-section material associated to the cell k. The second term at the right-hand side of 

Equation (35b) can also be neglected; substituting Equation (35c) into (35b) yields 

 

 
( ) ( )

so si si so
t s

n t s t s

     
    



2 2

2

1 1 ( ) 4
( , ) 1

2 ( ) 2 ( ) 4 ( )si so

n n t s n
s n

t s t s t s
  

    
         

     

  31
( ) ( ) 2

3t si so k ik
k

I t s ds t s ds A       

2
( )

si so
Mk

kk

ds A
t s

 


(35b) 

2
( ) ( )k q Mk

qk qk

ds ds
A

t s t s
   

(35a) 

 t k ik ok
k

I A A  (35d) 

  ( )si so k k
k

t s ds A    (35c) 

(34b) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2022                   doi:10.20944/preprints202203.0410.v3

https://doi.org/10.20944/preprints202203.0410.v3


Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion 

where Aok is the area enclosed by the outer boundary of the cell k. An example of the analysis of a three-cell thin-

walled section is presented in Appendix B. 

In continuity regions, the stress component n is zero and t is as follows using Equations (25a) and (34a)      

      

 

 

Similarly to the single-cell thin-walled section, the stress component t at a position s is linearly distributed over the 

thickness, maximal and minimal at the boundaries as follows  

 

 

 

 

For a segment of the beam’s cross-section bordered by cells j and k and having the thickness tjk, the shear stresses can 

be calculated using Equation (36b) either from the cell j or from the cell k; p,i and p,o being the stresses at the inner 

and outer boundary of the cell p (p = j, k), respectively, it yields  

 

 

 

 

 

It is noted as expected that j,i = -k,o and j,o = -k,i.  

 

2.8   Warping of the cross-section 

2.8.1   Warping of beams with solid sections 

In the following the cross-sections are assumed free to warp. For a given cross-section and torque the values of the 

stress function (y,z) were determined according to previous sections. Substituting Equations (3a-b) into (5) yields 
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3 Results and discussions 

3.1  Torsion of beam with rectangular cross-section   

The elastic torsional behavior of a beam with rectangular cross-section was analyzed. The dimensions of the cross-

section in y- and z-directions are denoted by a and b, respectively. The torsion constant It = k1ba3 and the maximal 

shear stress max = ka Gd/dx were determined, depending on the ratio b/a. A 4  4, 8  8, and 12  12 element mesh 

were considered. Details of the analysis and results are presented in Appendix A and in the supplementary material 

“Torsion of beam with rectangular cross-section.” Table 1 lists the exact results obtained with Timoshenko [16] using 

the membrane analogy and those obtained in the present study (FDM). In this study, the calculation is made considering 

additional nodes on the one hand and not considering them on the other hand.  

Table 1   Coefficients of the torsion constant and maximal shear stress  

 

As Table 1 shows, the results using FDM show good agreement with the exact results, and the accuracy is increased 

through a grid refinement. For high values of b/a, the torsion constant It is equal to 1/3×ba3. In addition, the results of 

torsion constant are identical regardless of the consideration of additional nodes; it is noted that the governing equations 

applied at the boundary permit only to determine the values of stress function at additional nodes and these values have 

no influence on the torsion constant. However, the consideration of additional nodes delivers better results of shear 

stresses at the boundary than that not considering them but both converge towards the exact results. Without additional 

nodes the shear stresses at boundary are calculated using following one-sided finite difference approximations 

 b/a = 

 1.00  1.50  2.00  3.00  10.00 

 k1 k  k1 k k1 k k1 k k1 k 

 Solution by Timoshenko [16] (exact results) 

 0.141 0.675  0.196 0.848  0.229 0.930  0.263 0.985  0.312 1.000 

 Present study (Finite Difference Method,  with additional nodes) 

4  4 elements 0.133 0.688  0.185 0.838  0.215 0.913  0.243 0.971  0.270 1.000 

8  8 elements 0.140 0.677  0.194 0.844  0.227 0.925  0.260 0.982  0.298 1.000 

12  12 elements 0.140 0.676  0.195 0.846  0.228 0.928  0.262 0.984  0.305 1.000 

 Present study (Finite Difference Method, without additional nodes) 

4  4 elements 0.133 0.594  0.185 0.790  0.215 0.888  0.243 0.963  0.270 0.999 

8  8 elements 0.140 0.652  0.194 0.832  0.227 0.919  0.260 0.980  0.298 1.000 

12  12 elements 0.140 0.665  0.195 0.841  0.228 0.925  0.262 0.983  0.305 1.000 
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.  
The warping displacement u = d/dx  U is calculated for a beam with dimensions a = b = 1.0m, whereby a 12  

12 mesh with spacings y = z =h is considered. Recalling that yT = zT = 0 for the rectangular cross-section, the 

boundary conditions are applied using Equations (38c-d). As kinematic boundary condition the warping displacement is 

zero at the center of twist where the governing equation is not applied. Detailed results are presented in the above 

mentioned supplementary material. The coefficient U (for clarity 100  U) of the warping is given in Table 2a.  

Table 2a   100  Coefficient U of the warping displacement for a beam with dimensions a = b = 1.0m  

  y =  

Z =  -a/2 -5a/12 -a/3 -a/4 -a/6 -a/12 0.00 a/12 a/6 a/4 a/3 5a/12 a/2 
b/2 0.000 2.627 3.566 3.445 2.640 1.419 0.000 -1.419 -2.640 -3.445 -3.566 -2.627 0.000 

5b/12 -2.627 0.000 1.317 1.703 1.459 0.823 0.000 -0.823 -1.459 -1.703 -1.317 0.000 2.627 

b/3 -3.566 -1.317 0.000 0.593 0.669 0.414 0.000 -0.414 -0.669 -0.593 0.000 1.317 3.566 

b/4 -3.445 -1.703 -0.593 0.000 0.209 0.166 0.000 -0.166 -0.209 0.000 0.593 1.703 3.445 

b/6 -2.640 -1.459 -0.669 -0.209 0.000 0.042 0.000 -0.042 0.000 0.209 0.669 1.459 2.640 

b/12 -1.419 -0.823 -0.414 -0.166 -0.042 0.000 0.000 0.000 0.042 0.166 0.414 0.823 1.419 

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-b/12 1.419 0.823 0.414 0.166 0.042 0.000 0.000 0.000 -0.042 -0.166 -0.414 -0.823 -1.419 

-b/6 2.640 1.459 0.669 0.209 0.000 -0.042 0.000 0.042 0.000 -0.209 -0.669 -1.459 -2.640 

-b/4 3.445 1.703 0.593 0.000 -0.209 -0.166 0.000 0.166 0.209 0.000 -0.593 -1.703 -3.445 

-b/3 3.566 1.317 0.000 -0.593 -0.669 -0.414 0.000 0.414 0.669 0.593 0.000 -1.317 -3.566 

-5b/12 2.627 0.000 -1.317 -1.703 -1.459 -0.823 0.000 0.823 1.459 1.703 1.317 0.000 -2.627 

-b/2 0.000 -2.627 -3.566 -3.445 -2.640 -1.419 0.000 1.419 2.640 3.445 3.566 2.627 0.000 

 

The warping displacements are zero in the symmetry axes and in the diagonals, in agreement with the exact results 

presented in Sadd [14] whereby a displacement pattern with eight zones of symmetry is noted. Some values obtained 

using FDM are satisfactorily compared with the exact results in Table 2b below.  
 
Table 2b 100  Coefficient U of the warping displacement: Exact results Sadd [14] and results using FDM  

     y =    
 -a/2 -5a/12 -a/3 -a/4 -a/6 -a/12 0.00 

Exact  
Z = b/2 

0.000 2.678 3.604 3.474 2.659 1.429 0.00 

FDM 0.000 2.627 3.566 3.445 2.640 1.419 0.000

Exact 
Z = b/3 

-3.604 -1.336 0.000 0.602 0.678 0.420 0.000

FDM -3.566 -1.317 0.000 0.593 0.669 0.414 0.000

1 2 2 13 4 4 3
,

2 2
i i i i i i

i i

d d

dx h dx h

             
  (39) 
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These results are consistent with a proper torsional behavior of the beam. However, some inaccuracies regarding the 

torsion constant are noted (values greater than that of the solid section for b/a = 1.0 i.e); they are due to the integration 

of the stress function over the cross section. 

The warping displacement u = d/dx  U was calculated for a beam with dimensions a = b = 1.0m, whereby a 12 

 12 mesh with spacings y = z =h was considered. Recalling that yT = zT = 0 for the rectangular cross-section, 

the boundary conditions were applied using Equations (38c-d). As kinematic boundary condition the warping 

displacement was set to zero at a point in the symmetry axis y. Details of the results are presented in the above 

mentioned supplementary material. The coefficient U of the warping (for clarity 100  U is displayed) is given in 

Table 4.  

Table 4   100  Coefficient U of the warping for a beam with dimensions a = b = 1.0m  

 

For the present square section case, the warping displacements are zero as expected in the symmetry axes and in the 

diagonals. Similarly to the solid square section, a displacement pattern with eight zones of symmetry is noted. 

  

  y = 

-a/2 -5a/12 -a/3 -a/4 -a/6 -a/12 0.00 a/12 a/6 a/4 a/3 5a/12 a/2 
b/2 0,000 2,615 3,514 3,335 2,487 1,307 0,000 -1,307 -2,487 -3,335 -3,514 -2,615 0,000 

5b/12 -2,615 0,000 1,275 1,587 1,263 0,676 0,000 -0,676 -1,263 -1,587 -1,275 0,000 2,615 

b/3 -3,514 -1,275 0,000 0,473 0,304 0,134 0,000 -0,134 -0,304 -0,473 0,000 1,275 3,514 

b/4 -3,335 -1,587 -0,473 0,000 -0,653 -0,443 0,000 0,443 0,653 0,000 0,473 1,587 3,335 

b/6 -2,487 -1,263 -0,304 0,653      -0,653 0,304 1,263 2,487 

b/12 -1,307 -0,676 -0,134 0,443      -0,443 0,134 0,676 1,307 

0.00 0,000 0,000 0,000 0,000      0,000 0,000 0,000 0,000 

-b/12 1,307 0,676 0,134 -0,443      0,443 -0,134 -0,676 -1,307 

-b/6 2,487 1,263 0,304 -0,653      0,653 -0,304 -1,263 -2,487 

-b/4 3,335 1,587 0,473 0,000 0,653 0,443 0,000 -0,443 -0,653 0,000 -0,473 -1,587 -3,335 

-b/3 3,514 1,275 0,000 -0,473 -0,304 -0,134 0,000 0,134 0,304 0,473 0,000 -1,275 -3,514 

-5b/12 2,615 0,000 -1,275 -1,587 -1,263 -0,676 0,000 0,676 1,263 1,587 1,275 0,000 -2,615 

-b/2 0,000 -2,615 -3,514 -3,335 -2,487 -1,307 0,000 1,307 2,487 3,335 3,514 2,615 0,000 
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The shear stresses in this study vary linearly over the thickness. As Table 5 shows, this paper presents values of shear 

stresses at midline close to those using Bredt’s analysis but the maximal values are higher. Furthermore, the results 

obtained with the derived closed-form solutions are in good agreement with those using FDM. However, FDM analysis 

is likely to deliver more accurate results since it can model discontinuity regions such as angles and corners. 

 

Thin-walled open section: The beam with a thin-walled open section and thickness t = a/8, as 

represented in Figure 15 (b), was analyzed and the shear stresses were determined for a torque Mt = 1.0 kNm. The 

results obtained using FDM (mesh 16  16 and 32  32) were compared to those using the commonly used formulas 

(CUF, Equations (23c-d)) and were listed in Table 6, whereby detailed results were presented in the above mentioned 

supplementary file. The localized shear stresses at reentrant corners were also determined using FDM. 

Table 6   Shear stresses and torsion constant for the thin-walled open section with t = a/8 

 

As Table 6 shows, this paper presents values of shear stresses and torsion constant in good agreement with those of the 

common analysis. It is recalled that FDM is likely to yield more accurate results since it can model discontinuity regions 

such as angles and corners. As the grid got refined, a high increase of shear stresses at reentrant corners was noted. 

 

  

 
CUF 

FDM 
16  16 

FDM 
32  32 

Shear stresses t 

Outer boundary -102.40 -107.94 -106.21 

Midline  0.00 0.00 0.00 

Inner boundary 102.40 107.94 106.21 

Stresses at the reentrant corners  xy 26.98 46.68 

  xz 26.98 46.68 

1000  Torsion Constant  It  
 

1.207 1.1581 1.1770 
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The areas AMk, Aik, and Aok with k = 1, 2, and 3 are as follows 

 

 

 

 

 

 

 

 

  

Equation (34c) applied at each cell as follows yields the values k.       
   

 

 

 

 

 

Then the torsion constant and the shear stresses are calculated using Equations (35d) and (36c), respectively. 
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