Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2022 d0i:10.20944/preprints202203.0410.v3

Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion

Article
Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion Using
the Green’s Theorem and the Finite Difference Method

Valentin Fogang

Civil Engineer, C/o BUNS Sarl, P.O Box 1130, Yaounde, Cameroon; valentin.fogang@bunscameroun.com

valentinfogang(@yahoo.de ORCID iD https://orcid.org/0000-0003-1256-9862

Abstract: This paper presents an approach to the elastic analysis of beams subjected to Saint-Venant torsion using
Green’s theorem and the finite difference method (FDM). The Saint-Venant torsion of beams, also called free torsion or
unrestrained torsion, is characterized by the absence of axial stresses due to torsion; only shear stresses are developed. A
solution to this torsion problem consists of finding a stress function that satisfies the governing equation and the
boundary conditions. The FDM is an approximate method for solving problems described with differential equations; it
does not involve solving differential equations, equations are formulated with values at selected nodes of the structure.
In this paper, the beam’s cross-section was discretized using a two-dimensional grid and additional nodes were
introduced on the boundaries. The introduction of additional nodes allowed us to apply the governing equations at
boundary nodes and satisfy the boundary conditions. Beams with solid sections as well as multiply connected cross-
sections were analyzed using this model; shear stresses and localized stresses at reentrant corners, torsion constant, and
warping displacements were determined. Furthermore, beams with thin-walled closed sections, single-cell or multiple-
cell, were analyzed using the Prandtl stress function whereby a linear distribution of the shear stresses over the thickness
was considered; closed-form solutions for shear stresses and torsion constant were derived. The results obtained in this
study showed good agreement with the exact results for rectangular cross-sections, and the accuracy was increased
through a grid refinement. For thin-walled closed sections, the shear stresses obtained at the centerline using the closed-
form solutions were in agreement with the values using Bredt’s analysis but the maximal values in the cross-section,
which did not necessarily occur at the position with the smallest thickness, were higher; in addition, the results using the
closed-form solutions were in good agreement with those using FDM.

Keywords: Theory of elasticity; Saint-Venant torsion; Green’s theorem; finite difference method; additional nodes;

thin-walled sections; stress concentration at reentrant corners; multiply connected cross-section; warping displacement

1. Introduction
This paper describes the application of Fogang’s model [1] based on the finite difference method (FDM), used for the

homogeneous Euler—Bernoulli beam, to the elastic analysis of beams subjected to Saint-Venant torsion. The Saint-
Venant torsion is characterized by the absence of axial stresses due to torsion; only shear stresses are developed. The

correct solution of the problem of torsion of prismatical beams was given by Saint-Venant [2]; he made assumptions on
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the deformation of the twisted bar that could satisfy the equations of equilibrium and the boundary conditions. Bredt [3]
derived formulas for the torsional analysis of thin-walled bars; these formulas form a basis for the calculation of shear
stresses and deformations in components with closed, thin-walled hollow cross-sections under pure torsional loading.
Prandtl [4] introduced a stress function in terms of which the shear stresses were defined. Therefore, the solution of the
torsion problem consists of finding a stress function which satisfies the governing equation and the boundary conditions.
Analytical solutions of the stress function are available for beams with elliptical cross-sections, equilateral triangle and
several other shapes; furthermore, the torsional problem was solved for rectangular cross-section using infinite
trigonometric series. However, analytical solutions of the Saint-Venant torsion are only suitable for simple cross-
sections; therefore, numerical methods to evaluate the torsional behavior of complicated cross-sections are
indispensable. Numerical methods such as energy methods were considered by numerous authors i.e. Ritz [5] and
Trefftz [6]; the stress function was approximately determined from the minimum condition of the strain energy of the
twisted beam. Various studies have focused on the analysis of beams under unrestrained torsion. Pluzsik et al. [7]
presented a theory for thin-walled, closed section, orthotropic beams which takes into account the shear deformation in
restrained warping induced torque; the analytical (“exact”) solution of simply supported beams subjected to a sinusoidal
load was developed for this purpose. Pan et al. [8] presented a matrix stiffness method for the torsion and warping
analysis of beam-columns in order to investigate the exact element torsional stiffness considering warping deformations;
the equilibrium analysis of an axial-loaded torsion member was conducted, and the torsion-warping problem was solved
based on a general solution of the established governing differential equation for the angle of twist. Pavazza et al. [9]
presented a novel theory of torsion of thin walled beams (“shear deformable beams”) of arbitrary open cross-sections
with influence of shear; the theory is based on the classical Vlasov’s theory of thin-walled beams of open cross-section,
as well on the Timoshenko’s beam bending theory. Choi & Kim [10] proposed a higher-order Vlasov torsion theory that
not only includes as many torsion-related modes as desired but also provides the explicit forces—kinematic
variables—stresses relationships that are fully consistent with those by the Vlasov theory. Amulu & Ezeagu [11]
investigated the effect of combined actions of torsion moments, bending moments and shear forces in reinforced
concrete beams with concrete compressive strength of 30N/mm?; the ultimate torsion moments, bending moments, and
shear forces of the beams were determined experimentally. Tran [12] used isoparametric eight-noded quadrilateral
elements in order to improve Gruttmann’s isoparametric four-noded quadrilateral elements; MATLAB was the language

for programming the numerical method.

In this paper the torsion problem of beams was solved using FDM. The cross-sections were discretized with a two-
dimensional grid and additional nodes were introduced at the boundaries. The introduction of additional nodes allowed
us to apply the governing equations at boundary nodes and to satisfy the boundary conditions. Multiply connected cross-
sections were also analyzed. So, the values of the stress function at nodes were determined and thereafter the shear
stresses and torsion constant. Beams with thin-walled closed sections were analyzed using the stress function whereby
the linear distribution of the shear stresses over the thickness was considered; closed form solutions for shear stresses

and torsion constant were presented and compared to those of Bredt [3].
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2. Materials and methods

2.1  Linear elasticity of unrestrained torsion of beams

The axis convention in the cross-section is represented in Figure 1, whereas the x-axis is the longitudinal beam’s axis.

Figure 1. Axis convention within the beam’s cross-section

The equations in this section are related to the theory of linear elasticity of beams. The displacements in x-, y-, and z-

direction are denoted by u(x,y,z), v(x,y,z), and w(X,y,z), respectively, and the rotation of cross-section or angle of twist

(positive anticlockwise) is denoted by 6(x). The shearing strains Yyy and Yx; are related to the displacements as follows:
ou ov ou ow
= + = +

7xy—a_y &, —E & (1a,b)

!V xz

The cross-sections are assumed to rotate about an axis through the center of torsion T (Y, Z1) (which is equivalent to

the shear center). Therefore, the displacements v(x,y,z) and w(x,y,z) are related to the angle of twist 6(x) as follows

(2a, b)

v=—(z-2,)0, w=(y-v;)6
Combining Equations (1a-b) and (2a-b) yields the stress strains relationships

ou

de ou
7, =G a—(Z—ZT)

dé
291, _gl M (vov Y (3a, b)
dx Fa 01 (y=v:) dx

where G is the shear modulus. Combining Equations (3a) and (3b) yields following relationship between the shear

stresses and the rotation 6(x)

6Txy _ az—xz — —2G d_@ @)
0z oy dx
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Recalling that axial stresses do not occur in the beam subjected to unrestrained torsion, the equilibrium equation in x-

direction applied to an infinitesimal beam element with dimensions dx, dy, and dz yields

aTW aru
+
oy 0z

=0 )

Prandtl [4] introduced a stress function (I)(X,y,z), defined in terms of stress components as follows

o

Xy ’ Xz ©)
0z oy

It is noted that Equations (6) satisfy the equilibrium equation (5). Substituting Equations (6) into (4) yields the following

T

condition to be satisfied by the stress function (I)(x,y,z)
2 2
0¢ 09 _ _,599 @
oy> 0z7° dx

The analysis is then reduced of determining the stress function.

Let us consider an infinitesimal beam element at the boundary with dimensions dx, -dy, and dz. The outer normal N to the

boundary makes an angle a with the +y-axis, as represented in Figure 2.

Z
) n
PN : a Y
-dy
e

Figure 2 Infinitesimal beam element at boundary

Considering that axial stresses do not occur, the equilibrium equation applied to the beam element along the x-axis
combined with Equation (6) yields

—7,, (—dy)xdx -7, dzxdx=0
®)

—>a¢dy+a¢dz=0—>d¢:0
oy 0z
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This means that the stress function ¢(x,y,z) is constant along the boundary of the cross-section. Observing that

sina. = -dy/ds and cosa. = dz/ds, the shearing stress component Tt at the boundary directed along the tangent is

0 0 op dy O¢ dz
Tt_—Z' Sll’lCZ-i—Z' COSQ———¢SII’105— ¢COSO[= ¢ y— ¢— (9a)
0z oy oz ds 0oy ds
Likewise, the shearing stress component Tn at the boundary directed along the outer normal to the boundary is
: 0 op . opdz oO¢d
Tn:TxyCOSCZ+TX281HC¥=—¢COSOZ——¢SII10{: ¢—+ ¢ y (9b)
0z oy oz ds oy ds

Observing Equation (8), the shearing stress component Tn is zero; this is in agreement with the condition of stress free

outer surfaces. Therefore, the resultant shearing stress at the boundary is Tt. Let us recall the Green’s theorem which

relates a line integral around a closed curve B to a double integral over the plane region A bounded by B

Ldy + Mdz | = — dydz (10)
[ ] oM oL
B A

oy 0z
whereby L and M are functions defined on the region A and the path of integration along B is anticlockwise.

Recalling that the stress function has a constant value (g at the boundary, the Green’s theorem shows as follows that the

resultant shear forces are zero

” 7, dydz = J dde = —(]5 gdz = —¢qudz _

_Urxydydz =”8—fdydz = —SB gdy = —¢B<_f> dz=0

where the line integrals are taken around the closed boundary B of the cross-section. Using Equations (6) and (11), the

(11

torque is then given by

dp 0¢ 12
M, = [[[ra (Y=¥i )7 (z-2,) Jdydz =[[| -—Zy-=Fz |dydz
oy 0z
The derivatives of (I)y with respect to y and (I)Z with respect to z, respectively, are given by

ooyl o, ., oléd_as
y P Ta &

Z+¢ (12b)
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Substituting Equations (12b) into (12a) yields

M, :Zﬂqﬁdde—” a[g;y]Jra[m] dydz 120

0z

In the case of solid cross-sections and recalling that the stress function has a constant value d)B at the boundary, the

Green’s theorem applied to the second term at the right-hand side of Equation (12c) is given by

0 0
H [;;IY] N ZZ] dydz = ngydz _ ¢zdy] = ¢B<ﬁ[ydz — zdy] =20, Ag (12d)

B

where Agp is the area enclosed by the outer boundary of the cross-section. Let us express the stress function as follows
%k
¢(X9yaz):¢8+¢ (X,y,Z) (12¢)

where the function d)* is zero along the boundary and satisfies Equation (7). Substituting Equations (12d) and (12e) into
(12c¢) yields

M, = 2” ¢ dydz (12f)

Therefore, for a beam with solid cross-section the expression of the torque is independent of the value ¢B of the stress
function at the boundary. Furthermore, Equations (12a-f) show that half the torque is due to the stress component Txy

and the other half to Txz. For simplification purpose, a modified stress function y(y,z) is defined

' déo

# (%y,2)=C——xy(y.z) (13)
dx
Thus, the function y(y,z) is zero along the boundary. Substituting Equations (13a) and (12¢) into (7) and (6) yields
o’y Oy
—t—=-2
oy 0z (13b)
dg 0 dg 0

. gl 0w _ 540 oy

xy O~ gy > (2% 1.
g dx 0z dx oy

The torsional stiffness Glt is related to the torque Mt and the angle of twist 6(x) as follows

do (13¢)
Mt :Glt&

Combining Equations (12f), (13a), and (13c¢) yields the torsion constant [t
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=2 j j wdydz (13d)

In the case of multiply connected cross-sections with one or many holes Equation (12d) becomes

” a[;;,y] [ ] dydz =2¢, A, - Z2¢A (14a)

where Aj is the area enclosed by the hole i and ¢i the constant value of the stress function along the boundary of the

hole i. Combining Equations (12c, ¢) and (14a) yields

M, = 2” ¢ dydz + Z 26 A (14b)

*
Observing that (I)i = d)B + (1) i, we set d)B to zero and combine Equations (13a, ¢) and (14b) to obtain the torsion constant

=2 .[ j wdydz + 22 wi A (140)
A I

Equation (14¢) can be found in Dieker [13] and Sadd [14].

2.2  Finite difference approximations

For simplification purpose, the analysis will be conducted in the following with the modified stress function \J(y,z). The
analysis is then governed by Equation (13b-1). This equation has second order derivatives; consequently, the function

\Y(y,z) is approximated around the node of interest 1 as a second degree polynomial in each direction. The unknown at

any node is the value \; of the modified stress function.

Given the grid spacings Ay = h and Az = Ah in y- and z-direction, respectively. The finite difference approximations

(FDAs) for the first and second derivatives are then given by

o’y _ O’y _ O’y _ Wi T2ty

2 - 2| 2 - 2 >
Nl N N, h
oy _ TVia Vg

oy | 2h

The partial derivatives in z-direction are formulated similarly.

(15a, b)
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2.3 Analysis at interior nodes
2.3.1 Uniform grid
Figure 3 shows the node distribution of the beam’s cross-section having equidistant nodes with spacings Ay and Az in y-
and z-direction, respectively. The node of interest k and the surrounding nodes are represented, whereby n, s, ¢, and w

stand for the directions north, south, east, and west, respectively, according to the directions in the stencil. The node k

may even be at the boundary of the beam, however being not at angles.

A Ay Ay

——
—_—

Y

Figure 3 Node of interest K and its surrounding nodes for uniform grid

Given the grid spacings Ay = h and Az = Ah. The governing equation (Equation (13b-1)) at a given node can be

expressed by means of a stencil using Equations (15a) as follows

—|1 | 2-=| 1|x[y]=-2 (16)

Ty =G —x—r [0] [x[w]. :—G—xz—[ 1 [0] 1] a17)

In the stencil notation the factor associated to the node of interest is in brackets.
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2.3.2 Non-uniform grid

The distances to the node of interest k are represented in Figure 4 below

hkw hke

Figure 4 Node of interest K and its surrounding nodes for non-uniform grid

The stress function in y-direction i.e. can be described with values at grid points as follows:

v x L0 +w x F 00 +w, x £ (X) (18a)

The shape functions f}(x) (j =1-1; 1; i+) can be expressed using the following Lagrange interpolating polynomials

i+1

X—X
f (X) I I N N (18b)
k=i— IX
k#j

The governing equation at node k is derived using Equations (13b-a), (18a), and (18b) as follows

2
he (e + i)
2 22 2 qwl== o
hkw (hkw + hke ) hkw hke hkn hks hke (hkw + hke )
2
i he (N + 1) |
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The shearing stresses are expressed using Equations (13b), (18a), and (18b) as follows

hks
hkn (hkn + hks )
déo 1 1
=G —= o (20a-b)
WG| [ h W
_ hkn
hks (hkn + hks)
déo —h 1 1 h
— —G ke _ kw
TXZ dX " hkW (hkw + hke ) hkw hke hke (hkw + hke) " [l//]
2.4 Analysis at skew edges

Figure 5 shows the skew edge of the beam’s cross-section with regular and additional nodes. The tangent t to the skew

edge makes an angle o with the +y-axis. One additional node is associated to each edge node; therefore, the governing
equation (Equation (16) or (19)) is applied at any edge node and the boundary condition \J = 0 is set.
z

s n

Figure 5 Skew edge of beam’s cross-section with regular nodes () and additional nodes (x)

It is recalled that the shear stress component Tt directed along the tangent is calculated using Equations (9a), and the

shear stress component Txy and Txz using Equations (17) or (20a-b).
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2.5  Analysis at beam angles

The node distribution must be such that at any position three nodes be available in both directions; so the governing

equations that are formulated through the second derivatives of the stress function can be set.

2.5.1 Rightangles

Figure 6 below represents angles of the beam’s cross-section whereby regular nodes (o) and additional nodes (x) are

represented. The unknown at each node, regular or additional, is the value of the function \J(y, z). One additional node

is associated to each boundary node, at which the boundary condition \y = 0 is set. The governing equations at angle

nodes W, E, S, and SE are modified using Equation (15a) to account for the absence of additional nodes in z-direction;
Therefore Equation (21a) is the governing equation at angles W and E, while Equation (21b) is the governing equation
at angles S and SE. Alternatively, additional nodes at angles could be considered in z-direction instead. An analysis
without additional nodes may be considered whereby the governing equations are not applied at the boundary; it will be

shown in the Results Section that the results using additional nodes are more accurate.

1 [—2+i2} 1 1
A A’
1 2 1 2
1 1

e 1| —24—] 1

\ )
S \\ SE

Figure 6 Angles of beam’s cross-section with regular nodes () and additional nodes ()

X
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2.5.2 Various types of angles and shapes of beam’s cross-sections
Examples of node distributions at various angles and shapes of beam’s cross-sections are represented in Figure 7. The

additional node associated to a node k is denoted by ka.

+10a
(a) (b)
11a 10 93
/ 5 Sa
k 4 43 1 9
\ > 12a 12 8 B8a
\ 3 3a 7
2 2a 1 2 3 7 5 3 17
1 1a 2a 3a 4a 5a 6a 7a
1a X X X X
—_——— Sa g 43
6a - ~ 3a (d)
( { 7a ’23
[ %03
13
ga Y
& (53 o 2
i 42 (©) g 4
3 10 ! < 16a
\ Ga
. 2a
10a
1 12 14 * 144
7[\ 11a 122 - 13
. 13

Figure 7 Examples of node distributions at various angles and shapes of beam’s cross-sections

In the following the stencils may have to be modified to account for eventual non-uniform grids. Equations (16) or (19),

the governing equations, are applied at any boundary node if possible. In Figure 7b, the governing equations at nodes 8
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and 12 are expressed using Equation (21a); furthermore, the governing equations at nodes 1 and 11, and at nodes 7 and

9, respectively, are expressed using Equations (21c-d) as follows

1 1
? ? (21c-d)
1 2 1 2
F |:1—?:| -2 1 x[y/]=—2, F 1 -2 |:1—?:| X[l//]:—z
1 1
e A

In Figure 7c, the governing equations at node 5 is applied using Equation (21b). In Figure 7d, the governing equations at
nodes 9 and 1, respectively, are expressed using Equations (21¢-d) and the governing equations at nodes 5 and 13,

respectively, are expressed using Equations (21a-b).

2.6 Beams with multiply connected cross-sections

2.6.1 Holes aligned with the Cartesian coordinate system
A beam with multiply connected cross-section is represented in Figure 8 (a), together with the grid around the hole (b)
showing the regular nodes () and additional nodes (x). Let the hole be aligned with the Cartesian coordinate system.
The unknown at regular nodes and additional nodes is the value of the stress function. The additional node associated to

a node k is denoted by ka or kaa.

23 24 25 26 27 28 28 292 128b

33 34 35 36 37 38 39 3% 3%

3923
43 44 4 43X35a x.'-)ﬁa xﬂ?ﬁ X?Ba “cd%aa 49a 4%
53 54 >§4a X&Jaa 59a 58b
63 B4 64a 69aa |69 69b
X X

Figure 8 (a) Beam with multiply connected section, (b) grid around the hole with regular nodes () and additional nodes (x)

Similarly to Fogang [15] related to the analysis of deep beams, it is assumed that different nodes may be at the same

geometrical position, i.e. nodes 35a and 44a, 39aa and 49aa in Figure 8. The boundary conditions \ = constant are
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applied to nodes on the hole whereby the constant value \/; for the hole 1 is set at these nodes. The governing equations

are applied at nodes which additional nodes are associated to. Therefore, the governing equations will not be applied at
angle nodes 34 and 39a since additional nodes are not associated to them. Inspired from Timoshenko [16] and Sadd [14],
we perform a line integral (anticlockwise) of the shear stresses along the boundary Bi of the hole i and use Equations (7),

(9a), (12¢), (13a), and the Green’s theorem

09 04, 56 5% do
s =) S dy—dr = [[| -2 8- dydz =26
C-’B?t CEE oz -([-I[ oy’ oz’ dx
(22a-b)

oy oy
— dy ———dz |=2A
a7

where A is the area enclosed by the hole i. Therefore, the value \; for the hole 1 must be chosen so that Equation (22b)
is satisfied; so, there are as many equations as unknowns. Particular attention must be taken by the formulation of the
governing equations and the derivatives Oy/0z and Oy/0y, especially in the vicinity of angle nodes; those equations at
any node k involve the node ka.

Equation (22b) can be applied at any inner boundary whatever the shape of the beam’s cross-section.

For a hole whose edges are aligned with the Cartesian coordinate system, the integral at the left-hand side of Equation

(22b) can be calculated using the Simpson rule i.e. whereby the signs of dy and dz are adjusted in each edge. Let Hk and

Vq be horizontal and vertical edges of the hole, respectively; Equation (22b) can be expressed as

R B LS ) (L2

Bi az q Vq

Alternatively, the right angles can be chamfered such that the angle nodes 34 and 39a behave like interior nodes, as

represented in Figure 9; a modified hole is then obtained.

23 24 25 26 27 28 29 208 |2

33 34 35 LY a8 39 392 3¢

43 44 35a _36a _37a _38a o923 49a |4
44a>< b >< g >493a

53 54 5ia $9aa 592 |5

Figure 9 Beam’s cross-section having an hole with chamfering of the right angles
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Governing equations, not boundary conditions, are then applied at nodes 34 and 39a. Furthermore, governing equations
are applied at any node of the new hole that have associated additional node, and the constant value \/;j is set at these

nodes. Equation (22b) is formulated in the skew segments at angles as follows

(22d)
k+1

oy oy l{oy| Ow 1{ ow| Ow
P oy—dz |=—| 2 +2£ —y, )—| 2 422 —
'I[ az y 8}/ Z 2 az k+ az " (yk+1 k) 2 ay k+ ay » (Zk+1 Zk)

2.6.2 Holes of arbitrary shapes
A beam’s cross-section having a hole is represented in Figure 10, together with regular nodes () and additional nodes (x).

The hole of arbitrary shape is not aligned with the Cartesian coordinate system.

LN

TN

p 8 7a \
“Ba 6 \
9
8a 5a

5
1 9a 4a 4
10a 3a
< 11 <11a 2a 3

%
o

Figure 10 Beam’s cross-section having a hole of arbitrary shape

It is further assumed that different nodes may be at the same geometrical position, i.e. nodes 4a and 3a. The governing

equations are applied to any node on the hole that have associated additional nodes, and the constant value \/; of the

modified stress function is set at any node on the hole. Assuming a linear approximation of the inner boundary and the
derivatives Oy/0z and Oy/0y between neighbor nodes, Equation (22b) is expressed as follows for a hole having n nodes
(1,2 ...n)

1442 0 0
Ek:l a—fk(yk+l_yk—l)_El//k(zkH_zk—l) =2A (22¢)

where the nodes 0 and n + 1 in Equation (22¢) are equivalent to nodes n and 1, respectively.
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2.7 Beams with thin-walled sections

2.7.1 Fundamentals of thin-walled sections

Given a beam with thin-walled section represented in Figure 11.

Ao

Aj

t(s)

Figure 11 Beam with thin-walled section

On the one hand, the analysis of beams with single-cell thin-walled closed sections i.e. is governed by the following

Bredt’s [3] formulas for the shear stress Tt (s) at an arc coordinate s with thickness t(s) and the torsion constant It

2At(s)” q')tf(i:)

where A, is the area enclosed by the midline of the cross-section. Bredt’s formulas are derived under the assumption of a

Tt(s): M, | = 4A§] (23a-b)

constant shear stress Tt over the thickness whereby stresses Tn are neglected.

On the other hand, the analysis of thin-walled open sections is governed by the following formulas

M 1 3
— t —
Tow (5)=—71(s), |, _—It(s) ds (23c-d)
| 3
In the present study, the stress components Tn and Tt can be defined as follows using a coordinate transformation and

observing Figure 2 and Equations (6),

0
N = —¢, ’Z’t = (24a-b)
0S on

Furthermore, Equations (4), (7), and (13b) are transformed as follows

2 2 2 2
Jr, 0t _ 2Gd6’ %4_%: 2Gd9 81//+8y/:_2 (25a-0)

T

s on dx’ 05> on? dx’ 65 on?
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Let us consider continuity regions and discontinuity regions in the cross-section defined as follows: continuity regions
that are away from segment ends and angles of the cross-section, are characterized by constant stress function (for

constant thickness) along the arc coordinate s while discontinuity regions are segment ends and angles.

2.7.2 Thin-walled open sections
At an arc coordinate s the inner and outer node are denoted by si and so, respectively. Recalling that the stress function is
constant along the unique boundary, the stress component Ts at the midline at position s of thickness t(s) can be

determined using Equations (15b) and (24b) as follows
0p _ ¢y~ 9y
(S)Z— _ _ Pso i () 26)

on t(s)

The stress component Tt at the midline is zero: this finding is in agreement with the analysis of thin-walled open sections.

£

Equation (24a) shows that the stress component Tn is zero in continuity regions while Tt that is zero at midline can be

expressed as follows using Equation (25a)

rt(s,n)zzG(;—fxn (27a)

The stress Tt can be formulated using the torsion constant It and the torque Mt in Equation (13c) as follows

Tt(S,n)=2%xn (27b)

t
Equation (27b) shows that the stress component Tt is linearly distributed over the thickness, zero at midline and maximal

at the boundaries as follows

Z-t,max (S):iz¥xt(zs) :i¥xt(8) (27¢)
t

Consequently, the maximal stresses occur at positions with greatest thickness; this finding is in agreement with the

analysis of thin-walled open sections. The modified stress function y(s, n) defined in Equation (13a) which is zero at

n = % t(s)/2 and satisfies Equation (25¢) is given by
t(s)’ | 4n*
4 t(s)’

Then, the torsion constant It calculated using Equation (13d) and (28a) is

1

=3 [t(s)'ds o

Equation (28b) is a well-known formula in the analysis of thin-walled open sections.

(28a)

p(s,n)=
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2.7.3 Thin-walled closed sections

The analysis of closed thin-walled sections is conducted using the Bredt’s [3] formulas (Equations (23a-b)). These

formulas are based on the assumptions of constant shear stress Tt over the thickness and neglecting the stress component
Tn. First, these assumptions do not satisfy the relationship between the shear stresses (Equation (25a)). Second, Bredt’s

Equation (23a) implies that the total torque is due to the stress component Tt, and as shown earlier (Equation (12f)), that is

inexact. In the following, another approach for the torsional analysis of closed thin-walled sections is presented.

Single-cell thin-walled section: The stress function is taken zero along the outer boundary and ¢si along the inner

one. The stress component Tt at the midline at position s of thickness t(s) can be determined using Equations (15b) and

(24b) as follows

on t(s)  t(s) @

It is worth mentioning that ¢si corresponds to the shear flow of the Bredt’s analysis. The stress component Tt can also be

Tt(S)=—8¢ __¢so _¢si _ ¢si

determined using Equations (9a) as follows

. _Opdy 0pdz
' oz ds oyds

op . 0p
30
r,ds=—"dy———dz G0
0z oy
Let us perform a line integral along the midline using Equations (7), (13a), and (29-30) and the Green’s theorem

’ o o o’p 0 do
<j§rds_g‘5t¢s)ds 95 ¢dy—5¢ I,J_%_@qu dydz _2G&AM

g Lasan, v, - 2A

ds 31)

")

where Ay is the area enclosed by the midline of the cross-section. The modified stress function y(s, n) defined in

Equation (13a) which is zero and Y at n =+ t(s)/2, respectively, and satisfies Equation (25c¢) is given by

2 2
w(s,N) =y, 1_n + 1) 1- an > (322)
2 t(s) 4 t(s)
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The torsion constant It is then calculated using Equations (14c), (31), and (32a) as follows

ZZ/\
AM +— <j}t(s) ds+——— AMA‘ (32b)
t(s) t(s)

The second term at the right-hand side of Equation (32b) can be neglected; thus Equation (32b) becomes

_2A,(A+A)
T
w £(S)

where A; and A, are the areas enclosed by the inner and the outer boundary of the cross-section, respectively, and A is

(32¢)

the area of the cross-section material. This expression of the torsion constant looks similar to that of Bredt (Equation

(23b), A; + A, replacing 2A ) and coincides with it for very small thicknesses.
In continuity regions, the stress component Tn is zero and Tt is as follows using Equations (25a) and (29).

Equation (33a) shows that at a position s the stress component Tt is linearly distributed over the thickness, maximal and

minimal at the boundaries. Using Equations (13c) and (31) Tt is given by

(33b)
S ) ELL ) P

l t(s) $
t(s)

Equation (33b) shows that contrarily to Bredt’s formulas the maximum shear stress in the cross-section does not

necessarily occur at the position with the smallest thickness. The shear stress at the midline is as follows using

Equations (13c¢), (29), (31), and (32c¢);

_ Mt
“O = A)()

it is noted that its maximal value occurs at the position with the smallest thickness; interestingly the expression looks

(33¢)

similar to that of Bredt (Equation (23a), A; + A, replacing 2A).
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Multiple-cell thin-walled section: The stress function is taken zero along the outer boundary and ¢sk along the

inner boundary of a cell k. For a given cell at a position s the stress function at the inner and outer boundary are denoted

by (I)si and (I)SO , respectively. So, the stress component Tt at the midline at position s of thickness t(s) is as follows
Tt(S)Z— ¢ — __ 180 si_ _ Tsi o) (34a)

on t(s) t(s)

Equation (31) is applied at each cell through the midline using Equations (12¢), (13a), and (34a); for the cell k it yields

ViV ds =2 AM (34b)
t (s) ‘
A
where Ay is the area enclosed by the midline of the cell k. Let the cell k of thickness ti(s) be bordered by q cells of

thickness ty(s); Equation (34b) applied at the cell k is

WJSt o 2V t(s) = A "

So, the values P of the modified stress function at the inner boundaries of the cells can be determined from the system of

linear equations (34c). Y(s, n) defined in Equation (13a) with values g, and g at n =+ t(s)/2, respectively, which
satisfies Equation (25¢) is given by
2 2
n 1 n N t(s) 1 4n (352)

1
l//(san)_l//si 5_® TV E—i_t(s) 4 t(s)z

The torsion constant It is then calculated using Equation (14c) and (35a)
= (wg+ )t(s)ds+l t(s)’ds+2 (35b)
t = Wi TV Wi A
3 K
where Ajy is the area enclosed by the inner boundary of the cell k. The first integral in Equation (35b) is rewritten as

j(wsi TV )t(S)dS = Z‘//kAk (35¢)

where Ay is the area of the cross-section material associated to the cell k. The second term at the right-hand side of

Equation (35b) can also be neglected; substituting Equation (35¢) into (35b) yields

= ;Wk (Aik + A\)k) (354)


https://doi.org/10.20944/preprints202203.0410.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2022 d0i:10.20944/preprints202203.0410.v3

Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion

where A is the area enclosed by the outer boundary of the cell k. An example of the analysis of a three-cell thin-

walled section is presented in Appendix B.

In continuity regions, the stress component Tn is zero and Tt is as follows using Equations (25a) and (34a)

do = M =
Tt(S,n):ZG—xn+¢s' P =—Lx 2n+M (36a)
dx t(s) I, t(s)
Similarly to the single-cell thin-walled section, the stress component Tt at a position s is linearly distributed over the

thickness, maximal and minimal at the boundaries as follows

T

t,max, min

M, Vi~V
—_t +t PY'si  ¥so (36b)
(5) = 1)+ ¥

For a segment of the beam’s cross-section bordered by cells j and k and having the thickness tj, the shear stresses can

be calculated using Equation (36b) either from the cell j or from the cell k; Tp ; and T, o being the stresses at the inner

and outer boundary of the cell p (p =], k), respectively, it yields

M V=V M Vi =¥
Tj’iZI—tX _tjk +t— ) Tj’OZI—tX tjk +t—
t ik t ik (360
M Wk Wj M W Wj
Tk’izl—tx —tjk+—t ; rk’O:I—tx ty + t
t jk t Jk

It is noted as expected that Tj ; = -Tk o and Tj o = -Tk-

2.8 Warping of the cross-section

2.8.1 Warping of beams with solid sections
In the following the cross-sections are assumed free to warp. For a given cross-section and torque the values of the

stress function y(y,z) were determined according to previous sections. Substituting Equations (3a-b) into (5) yields
2 2
ou 8
2
oy o7

=0 (372)
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Let the outer normal to the boundary make an angle a with the +y-axis (see Figure 2). The boundary conditions are such
that the shearing stress component at the boundary directed along the outer normal is zero from the condition of stress

free outer surfaces; this shear stress is expressed using Equations (9b) and (3a-b)

u

7, =G (Z—ZT)d—Q cosa+G a—u+(y—yT)(:|—f sina =0 (37b)

dx 0z

Therefore, two equations are set at cross-section’s angles of the outer boundary and consequently two additional nodes

should be considered at these positions, as shown in Figure 12.

W
|

x \ \ <

Figure 12 Node distribution for warping calculation with regular nodes (o) and additional nodes (x)

Equation (37b) can be rewritten using (13c)

ou ou . M, :
G| —cosa+—sina |[+—4[(y-V¥; )sina—(z-2z; )cosa | =0 (37¢)
0z I,
Equation (37a) is the governing equation which is applied at any node of the cross-section and Equation (37c¢) is the
boundary condition. For convenience the node distribution is taken the same as that for the stress function. So, the

governing equation (Equation (37a)) is expressed similar to that of the stress function (Equations (16) and (19));

however, zero is put in place of the right-hand side of the latter equations. A modified warping U is defined as U =
GlIt/Mt x u > u = Mv GIt x U = d0/dx x U; therefore, Equations (37a) and (37¢) become
o’'u oU
+ =0
ay2 az 2
(38a-b)
ouU

—cosa+aa—LZJsina+(y—yT)sina—(Z—ZT)cosazO

In Equation (38b) the derivatives of U are expressed using the stencils in Equations (17) and (20a-b). The boundary
conditions are expressed as follows for vertical edges (outer normal to the boundary making an angle o = 0 or © with the

+y-axis) and horizontal edges (outer normal making an angle o = /2 or 37/2 with the +y-axis), respectively

U,-U,-2h(z-2)=0, U,-U +22h(y-y;)=0 (38¢-d)
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At cross-section’s right angles of the outer boundary Equations (38c-d) are both applied.

A kinematic boundary condition is needed for solving the warping problem; therefore, at the center of torsion T

(YT, Zt) (equivalent to the shear center) or at another point suitably chosen (i.e. a point in a symmetry axis) the

warping displacement is set to zero and the governing equation is not applied.

Beam with circular cross-section: the center of torsion is at yr = zr = 0, and the boundary is defined by

y = Rcosa, and z = Rsina. It results that both governing equation and boundary condition (0U/0yxcosa. + 0U/0zxsino

= () are homogeneous differential equations and consequently the warping is zero.

2.8.2 Warping of beams with multiply connected cross-sections
Given a beam with multiply connected cross-sections where the hole is aligned with the Cartesian coordinate system, as
represented in Figure 8. The boundary conditions at the outer boundary are defined in terms of stresses, and Equations

(38b) and (38c-d) are applied. However at the inner boundary’s angle nodes 34 and 39a of Figure 8 for example, the
stress component Tn is not zero; therefore, the governing equation (38a) and not the boundary conditions are applied at

those angles. Attention should always be paid at the inner boundary to have as many equations (governing equations and
boundary conditions) as nodes (regular nodes and additional nodes).

In the case the hole has an arbitrary shape the boundary condition (38b) can be applied. Generally, governing equations
and boundary conditions at the inner boundary are applied such that the number of equations corresponds to the sum of
regular nodes and additional nodes. At a given inner boundary node where two directions intersect, as shown in Figure

13, the angle a. of Equation (38b) can be taken as the mean value of both directions’ angles.

AN Qa da 4

Figure 13 Inner boundary with intersection of two directions
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3 Results and discussions

3.1 Torsion of beam with rectangular cross-section
The elastic torsional behavior of a beam with rectangular cross-section was analyzed. The dimensions of the cross-

section in y- and z-directions are denoted by a and b, respectively. The torsion constant It = kiba® and the maximal
shear stress Tp. = ka GdO/dx were determined, depending on the ratio b/a. A 4 x 4, 8 x 8, and 12 x 12 element mesh

were considered. Details of the analysis and results are presented in Appendix A and in the supplementary material
“Torsion of beam with rectangular cross-section.” Table 1 lists the exact results obtained with Timoshenko [16] using
the membrane analogy and those obtained in the present study (FDM). In this study, the calculation is made considering
additional nodes on the one hand and not considering them on the other hand.

Table 1 Coefficients of the torsion constant and maximal shear stress

b/a =
1.00 1.50 2.00 3.00 10.00

k1 k k1 k k1 k k1 k k1 k

Solution by Timoshenko [16] (exact results)

0.141 0.675 0.196 0.848 0.229 0.930 0.263 0.985 0.312 1.000

Present study (Finite Difference Method, with additional nodes)

4 x 4elements  0.133  0.688 0.185 0.838 0.215 0913 0.243 0971 0.270 1.000

8 x 8elements  0.140 0.677 0.194 0.844 0.227 0.925 0.260 0.982 0.298 1.000

12 x 12 elements  0.140 0.676 0.195 0.846 0.228 0.928 0.262 0.984 0.305 1.000

Present study (Finite Difference Method, without additional nodes)

4 x 4elements  0.133  0.594 0.185 0.790 0.215 0.888 0.243  0.963 0.270  0.999
8 x 8elements  0.140 0.652 0.194 0.832 0.227 0919 0.260 0.980 0.298 1.000

12 x 12 elements  0.140  0.665 0.195 0.841 0.228 0.925 0.262 0.983 0.305 1.000

As Table 1 shows, the results using FDM show good agreement with the exact results, and the accuracy is increased
through a grid refinement. For high values of b/a, the torsion constant It is equal to 1/3 xba’. In addition, the results of
torsion constant are identical regardless of the consideration of additional nodes; it is noted that the governing equations
applied at the boundary permit only to determine the values of stress function at additional nodes and these values have
no influence on the torsion constant. However, the consideration of additional nodes delivers better results of shear
stresses at the boundary than that not considering them but both converge towards the exact results. Without additional

nodes the shear stresses at boundary are calculated using following one-sided finite difference approximations
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dy| _SByit+dvi, —v,  dy| _vi, -4y, +3y,
dx |; 2h T dx |, 2h

(39)

The warping displacement u = d6/dx x U is calculated for a beam with dimensions a =b = 1.0m, whereby a 12 x
12 mesh with spacings Ay = Az = h is considered. Recalling that yr = zr = 0 for the rectangular cross-section, the

boundary conditions are applied using Equations (38c-d). As kinematic boundary condition the warping displacement is

zero at the center of twist where the governing equation is not applied. Detailed results are presented in the above
mentioned supplementary material. The coefficient U (for clarity 100 x U) of the warping is given in Table 2a.

Table 2a 100 x Coefficient U of the warping displacement for a beam with dimensions a=b = 1.0m

y=
Z= -2 -5a/12 a3 -al4  -al6 -a/l2 000 a2 a6 a/d a3 5a12 a2
b/2 0.000 2.627 3.566 3.445 2640 1419 0000 -1419 -2.640 -3445 -3566 -2.627 0.000
5b/12  -2.627 0.000 1317 1703 1459 0.823 0.000 -0.823 -1.459 -1.703 -1.317 0.000 2.627
b/3 3566 -1317  0.000 0593 0.669 0414 0000 -0414 -0.669 -0.593 0.000 1317  3.566
b/4 3445 <1703 0593 0.000 0209 0.166 0.000 -0.166 -0.209 0.000 0593 1703  3.445
b/6 2,640 -1.459  -0.669 -0209 0.000 0.042 0.000 -0.042 0.000 0209 0.669 1459  2.640
b/l2  -1419 -0.823 -0414 -0.166 -0.042 0000 0.000 0000 0042 0.166 0414 0823 1419

0.00 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-b/12 1.419 0823 0414 0.166 0.042 0.000 0.000 0.000 -0.042 -0.166 -0.414 -0.823 -1.419
-b/6 2.640 1459 0.669 0209 0.000 -0.042 0.000 0.042 0.000 -0.209 -0.669 -1.459 -2.640
-b/4 3445 1.703 0593  0.000 -0.209 -0.166 0.000 0.166 0209 0.000 -0.593 -1.703 -3.445
-b/3 3.566  1.317 0.000 -0.593 -0.669 -0.414 0.000 0414 0.669 0593 0.000 -1.317 -3.566
-5b/12 2.627 0.000 -1317 -1.703 -1.459 -0.823 0.000 0.823 1459 1.703 1317 0.000 -2.627
-b/2 0.000 -2.627 -3.566 -3.445 -2.640 -1.419 0.000 1419 2.640 3.445 3.566 2.627  0.000

The warping displacements are zero in the symmetry axes and in the diagonals, in agreement with the exact results
presented in Sadd [14] whereby a displacement pattern with eight zones of symmetry is noted. Some values obtained

using FDM are satisfactorily compared with the exact results in Table 2b below.

Table 2b 100 x Coefficient U of the warping displacement: Exact results Sadd [14] and results using FDM

y =
-a/2  -5a/l2  -a/3 -a/4 -a/6 -a/12  0.00
Exact 0.000 2.678 3.604 3474 2659 1429 0.00
FDM Z=bi2 0.000  2.627 3.566 3.445 2.640 1.419 0.000
Exact -3.604 -1.336 0.000 0.602 0.678 0.420 0.000
Z=Db/3

FDM -3.566 -1.317 0.000 0.593 0.669 0414 0.000



https://doi.org/10.20944/preprints202203.0410.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2022

d0i:10.20944/preprints202203.0410.v3

Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion

3.2

The torsional analysis of a rectangular beam with multiply connected cross-section, as represented in Figure 14, was

Torsion of a rectangular beam with multiply connected cross-sections

conducted. The dimensions of the cross-section in y- and z-directions are denoted by a and b, respectively. The hole was

centered to the cross-section with dimensions a/2 and b/2 in y- and z-directions, respectively.

a
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Figure 14 Beam with multiply connected cross-section

The shear stresses were calculated at the middle of the sides depending on the ratio b/a and the FDM discretization,
whereby a = 1.0m; the torsion constant and the value of the stress function on the inner boundary were also determined.
Details of the results are presented in the supplementary material “Torsion of a beam with rectangular multiply
connected cross-section.” Table 3 lists the results obtained in this study for a torque Mt = 1.0 kNm.

Table 3 Shear stresses, torsion constant, and stress function in the inner boundary

bla =1.00 bla = 2.00 bla = 3.00
FDM FDM FDM FDM FDM FDM FDM FDM FDM
& x8 12x12  16x16 8 x8 12x12  16x16 8x8 12x12 16x16
outer boundary  -4.904 -4.925  -4.955 1674 -1.658 -1.661 1023 -0.986 -0.978
Txy  Midline 3289 3273 -3.275 -0.809 -0.783 -0.787 0.350 -0.314 -0.319
inner boundary ~ -1.673  -1.633  -1.604 0.057 0029  0.026 0323 0261 0238
inner boundary  1.673  1.633  1.604 1.092 1069  1.056 0742 0722 0.712
e Midline 3289 3273 3275 1.617 1608  1.604 1.05s1  1.039  1.034
Outer boundary ~ 4.904 4.925  4.955 2143 2146 2.152 1361 1356 1356
Torsion constant ~ 0.1480 0.1445 0.1418  0.4745 04630 0.4553 0.8073 0.7886 0.7769
Stressfunctioninthe 1,15 (1183 01161 0.1919 0.1861 0.1826 02122 0.2049 0.2008

inner boundary
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These results are consistent with a proper torsional behavior of the beam. However, some inaccuracies regarding the
torsion constant are noted (values greater than that of the solid section for b/a = 1.0 i.e); they are due to the integration

of the stress function over the cross section.
The warping displacement u = d0/dx x U was calculated for a beam with dimensions a =b = 1.0m, whereby a 12
x 12 mesh with spacings Ay = Az = h was considered. Recalling that yr = zr = 0 for the rectangular cross-section,

the boundary conditions were applied using Equations (38c-d). As kinematic boundary condition the warping

displacement was set to zero at a point in the symmetry axis y. Details of the results are presented in the above
mentioned supplementary material. The coefficient U of the warping (for clarity 100 x U is displayed) is given in
Table 4.

Table 4 100 x Coefficient U of the warping for a beam with dimensions a=b = 1.0m

y =
-a/2  -5a/12  -al3 -a/4 -6 -a/l2  0.00 a/12 al6 a4 a/l3  5all2 a2

b/2 0000 2615 3514 3335 2487 1,307 0,000 -1307 -2,487 -3,335 -3514 2615 0,000

5b/12  -2,615 0,000 1,275 1,587 1,263 0,676 0,000 -0,676 -1,263 -1,587 -1,275 0,000 2,615

b/3  -3514 -1275 0000 0473 0,304 0,134 0,000 -0,134 -0,304 -0,473 0,000 1275 3514
b/a 3335 -1,587 -0,473 0000 -0,653 -0443 0,000 0,443 0,653 0000 0473 1,587 3335

b/6  -2487 -1263 -0,304 0,653 0,653 0,304 1263 2,487
b/12  -1307 -0,676 -0,134 0,443 0,443 0,134 0676 1,307
0.00 0,000 0,00 0,000 0,000 0,000 0,000 0,000 0,000
b/12 1307 0,676 0,134 -0443 0443  -0,134 -0,676 -1,307
-b/6 2487 1263 0304 -0,653 0,653 -0,304 -1263 -2,487

-b/4 3335 1,587 0473 0000 0653 0443 0,000 -0443 -0,653 0,000 -0473 -1,587 -3335
b/3 3514 1275 0,000 -0473 -0304 -0,134 0,000 0,134 0304 0473 0000 -1275 -3,514
5b/12 2,615 0,000 -1275 -1,587 -1263 -0,676 0,000 0676 1263 1587 1275 0,000 -2,615
b/2 0000 2,615 -3514 -3335 -2487 -1307 0,000 1,307 2487 3335 3514 2,615 0,000

For the present square section case, the warping displacements are zero as expected in the symmetry axes and in the

diagonals. Similarly to the solid square section, a displacement pattern with eight zones of symmetry is noted.
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3.3 Torsion of beams with thin-walled sections
The elastic torsional behavior of beams with thin-walled sections, as represented in Figure 15, was analyzed. The

dimensions of the cross-section in y- and z-directions are denoted by a = 1.0m and b = 1.0m, respectively.
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Figure 15 Beams with (a) thin-walled closed section and (b) thin-walled open section

Thin-walled closed section: The shear stresses were determined for a torque Mt = 1.0 kNm for
values of thicknesses a/6, a/§, a/10, and a/12. Detailed results were presented in the supplementary material “Torsion of
beam with thin-walled sections.” The results obtained according to the closed-form solutions (CFS, Equations (33b-c))
and FDM (for t = a/8, a/12) were compared to those using Bredt’s formulas (Equations (23a-b)) and were listed in Table

5. The localized shear stresses at reentrant corners were also determined using FDM

Table 5 Shear stresses Tt, stresses at reentrant corner, torsion constant It, stress function on inner boundary

al6 a/8 a/10 a/12
Stress Tt (Bredt) 4.32 5.22 6.17 7.14
It (Bredt) 0.0965 0.0837 0.0729 0.0642
FDM FDM FDM FDM
CFS CFS 16x16  32x32 CFS CFS 44 36x36
Outer 5.82 6.58 6.42 6.45 7.45 837 826 8.27
boundary
Shear
stresses  Midline  4.15 512 5.14 513 6.10 708  7.09 7.09
T Inner
€ 2.49 3.66 3.86 3.82 4.74 579 591 591
boundary
reentrant corners T 2.65 3.06 3.80 4.17

It (Present study) 0.1003 0.0854 0.0975 0.0952 0.0738 0.0647 0.0708 0.0704

Stress function in the
inner boundary

0.0547 0.0626 0.0611 0.0382 0.0418 0.0416
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The shear stresses in this study vary linearly over the thickness. As Table 5 shows, this paper presents values of shear
stresses at midline close to those using Bredt’s analysis but the maximal values are higher. Furthermore, the results
obtained with the derived closed-form solutions are in good agreement with those using FDM. However, FDM analysis

is likely to deliver more accurate results since it can model discontinuity regions such as angles and corners.

Thin-walled open section: The beam with a thin-walled open section and thickness t = a/8, as

represented in Figure 15 (b), was analyzed and the shear stresses were determined for a torque Mt = 1.0 kKNm. The
results obtained using FDM (mesh 16 x 16 and 32 x 32) were compared to those using the commonly used formulas
(CUF, Equations (23c-d)) and were listed in Table 6, whereby detailed results were presented in the above mentioned
supplementary file. The localized shear stresses at reentrant corners were also determined using FDM.

Table 6 Shear stresses and torsion constant for the thin-walled open section with t = a/8

CUF lgate 3%

Outer boundary -102.40 -107.94 -106.21
Shear stresses Tt Midline 0.00 0.00 0.00

Inner boundary 102.40 107.94 106.21

Stresses at the reentrant corners Txy 26.98 46.68
Txz 26.98 46.68

1000 x Torsion Constant It 1.207 1.1581 1.1770

As Table 6 shows, this paper presents values of shear stresses and torsion constant in good agreement with those of the
common analysis. It is recalled that FDM is likely to yield more accurate results since it can model discontinuity regions

such as angles and corners. As the grid got refined, a high increase of shear stresses at reentrant corners was noted.
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3.4 Torsion of a symmetrical beam with double-cell thin-walled section
The torsional behavior of a beam with symmetrical double-cell thin-walled section, as represented in Figure 16, was

analyzed. The thicknesses are tk, k = 1 to 4.
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Figure 16 Beam with double-cell thin-walled section

Let /1 and Y be the values of the modified stress function at the inner boundaries of the cells 1 and 2, respectively;

they are calculated using Equation (34¢) and the torsion constant is determined using Equation (35d)

2
W1:V/2:$9 ItZZV/l('A‘i1+A\)1)
a/b_a (39)
L

+7
t, t,

ot t, ot ot t, ot
= = ab, =|b-L1-2|a-2-=2|, =|b+Ll+2t|a+2+=2
Av = A A ( ! 2]( : 2) A, [ : 2)( 2 2)

The results show that contrarily to Bredt’s analysis, the central web (thickness t3) contributes to the torsional stiffness and

carries shear stresses; the stress distribution is linear and odd with respect to the midline with maximal and minimal value

—+ % t, (40a)
I

The maximal and minimal values in other segments are obtained using Equation (36b), with k=1, 2, and 4

Tt ,max,min
t

M 2 ov)

t,max, min
I t tk
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4 Conclusion

The FDM-based model developed in this paper enables, with certain easiness, the elastic analysis of beams subjected to
Saint-Venant torsion. Beams with solid sections and multiply connected cross-sections were analyzed. In addition,
beams with thin-walled closed sections were also analyzed and closed form solutions were derived; these solutions
which consider a linear distribution of the shear stresses over the thickness can be regarded as an improvement of the
Bredt’s analysis. The results showed that the calculations, as described in this paper, yield accurate results. The FDM
analysis presented in this study is likely to yield more accurate results than analytical methods since it can model
discontinuity regions such as angles and corners. Moreover, the FDM analysis utilizes strong formulation of equations
while the finite element method (FEM) is based on weak formulation of equations; therefore, the results using FDM are

likely to be more accurate than those using FEM.

Supplementary Materials: The following files were uploaded during submission:

. “Torsion of beam with rectangular cross-section”

. “Torsion of a beam with rectangular multiply connected cross-section.”
. “Torsion of beam with thin-walled sections.”
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Appendix A Beam with rectangular cross-section
Given a beam with rectangular cross-section and known values of \J. The integral | ydydz needed for the torsion

constant It is determined here. The grid spacings in y- and z-direction are denoted by Ay and Az, respectively. The

cross-section is divided in rectangles around grid points, as represented in Figure 17.

Figure 17 Rectangles for the calculation of the torsion constant
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Given the rectangle bounded by nodes k, e, s, and se in Figure 17. The stress function y(y,z) is approximated as follows

l//(yﬂ Z) - l//k fk(y9 Z)+l//e fe(y’ Z) +l//s fs(y9 Z)+l//se fse(ya Z) (A1)

The shape function fe(y,z) i.e. can be expressed as follows

__ ¥
fe(ya Z)_ AyXAZ (A2)

Using Equations (A1) and (A2), the integral for the rectangle of interest is

_UV/dde = i(l/lk W, Y Y )X AY X AZ (A3)

Using Equation (A3) for a uniform grid, | dydz on a rectangle around an interior node (node k) is Wi AyAz.
Similarly, using Equation (A3) and recalling that the values of \/ are zero along the boundary, the integral for a

rectangle around a boundary node (node nn) is 1/8x\/,AyAZ, and for a rectangle around an angle node (node n1)

1/64x\y Ay AZ.

Appendix B Three-cell thin-walled section

Given the three-cell thin-walled section represented in Figure 18, with thicknesses tk, k =1 to 8. Let /1, /2, and /3 be

the values of the modified stress function at the inner boundaries of the cells 1, 2, and 3, respectively.
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Figure 18 Three-cell thin-walled section
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The areas Apmk, Ak, and Ay with k =1, 2, and 3 are as follows

Au=(a+b)oA = atb-2 2| o-1-2 | A ~[arbs2+2 |oale
Aw=bd, A=[b-2-Bla-2l] A <[beZel ] dedit
Equation (34c) applied at each cell as follows yields the values .
¥ atle+5+at—:b+% _%%_%EZZA'\“
%:%JFEJF%JFS:_%S_%%:LA\MZ (BI)

b d b d b d
—t—F—+— |-y, —y,—=2
Vs t 'ttt ‘//1t V/zt7 Aus

3

Then the torsion constant and the shear stresses are calculated using Equations (35d) and (36¢), respectively.
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