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Abstract: This paper presents an approach to the elastic analysis of beams subjected to Saint-Venant torsion using 

Green’s theorem and the finite difference method (FDM). The Saint-Venant torsion of beams, also called free torsion or 

unrestrained torsion, is characterized by the absence of axial stresses due to torsion; only shear stresses are developed. 

The solution to this torsion problem consists of finding a stress function that satisfies the governing equation and the 

boundary conditions. The FDM is an approximate method for solving problems described with differential or partial 

differential equations; it does not involve solving differential equations, equations are formulated with values at selected 

nodes of the structure. In this paper, the beam’s cross-section was discretized using a two-dimensional grid and 

additional nodes were introduced at the boundaries. The introduction of additional nodes allowed us to apply the 

governing equations at boundary nodes and satisfy the boundary conditions. Beam’s cross-sections of various shapes 

and openings were analyzed using this model; shear stresses, torsion constant, and warping were determined. 

Furthermore, beams with thin-walled closed sections, single-cell or multiple-cell, were analyzed using the stress 

function whereby the linear distribution of the shear stresses over the thickness was considered; closed-form solutions 

for shear stresses and torsion constant were presented. For rectangular cross-sections, the results obtained in this study 

showed good agreement with the exact results, and the accuracy was increased through a grid refinement. For thin-

walled closed sections it was noted that the maximal shear stress in the midline occurs at the position with the smallest 

thickness, which is in agreement with Bredt’s analysis, but the maximal shear stress in the cross-section did not 

necessarily occur at that position; moreover, the values of torsion constant were higher than those calculated using 

Bredt’s analysis   

Keywords: Theory of elasticity; Saint-Venant torsion; Green’s theorem; finite difference method; additional nodes; 

thin-walled sections; cross-section with openings; warping  

 

1. Introduction 

This paper describes the application of Fogang’s model [1] based on the finite difference method (FDM), used for the 

homogeneous EulerBernoulli beam, to the elastic analysis of beams subjected to Saint-Venant torsion. The Saint- 

Venant torsion is characterized by the absence of axial stresses due to torsion; only shear stresses are developed. The 

correct solution of the problem of torsion of prismatical beams was given by Saint-Venant [2]; he made assumptions on 
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the deformation of the twisted bar that could satisfy the equations of equilibrium and the boundary conditions. Bredt [3] 

derived formulas for the torsional analysis of thin-walled bars; these formulas form a basis for the calculation of shear 

stresses and deformations in components with closed, thin-walled hollow cross-sections under pure torsional loading. 

Prandtl [4] introduced a stress function in terms of which the shear stresses were defined. Therefore, the solution of the 

torsion problem consists of finding a stress function which satisfies the governing equation and the boundary conditions. 

Analytical solutions of the stress function are available for beams with elliptical cross-sections, equilateral triangle and 

several other shapes; furthermore, the torsional problem was solved for rectangular cross-section using infinite 

trigonometric series. However, analytical solutions of the Saint-Venant torsion are only suitable for simple cross-

sections; therefore, numerical methods to evaluate the torsional behavior of complicated cross-sections are 

indispensable. Numerical methods such as energy methods were considered by numerous authors i.e. Ritz [5] and 

Trefftz [6]; the stress function was approximately determined from the minimum condition of the strain energy of the 

twisted beam. Various studies have focused on the analysis of beams under unrestrained torsion. Pluzsik et al. [7] 

presented a theory for thin-walled, closed section, orthotropic beams which takes into account the shear deformation in 

restrained warping induced torque; the analytical (“exact”) solution of simply supported beams subjected to a sinusoidal 

load was developed for this purpose. Pan et al. [8] presented a matrix stiffness method for the torsion and warping 

analysis of beam-columns in order to investigate the exact element torsional stiffness considering warping deformations; 

the equilibrium analysis of an axial-loaded torsion member was conducted, and the torsion-warping problem was solved 

based on a general solution of the established governing differential equation for the angle of twist. Pavazza et al. [9] 

presented a novel theory of torsion of thin walled beams (“shear deformable beams”) of arbitrary open cross-sections 

with influence of shear; the theory is based on the classical Vlasov’s theory of thin-walled beams of open cross-section, 

as well on the Timoshenko’s beam bending theory. Choi & Kim [10] proposed a higher-order Vlasov torsion theory that 

not only includes as many torsion-related modes as desired but also provides the explicit forceskinematic 

variablesstresses relationships that are fully consistent with those by the Vlasov theory. Amulu & Ezeagu [11] 

investigated the effect of combined actions of torsion moments, bending moments and shear forces in reinforced 

concrete beams with concrete compressive strength of 30N/mm2;  the ultimate torsion moments, bending moments, and 

shear forces of the beams were determined experimentally. Tran [12] used isoparametric eight-noded quadrilateral 

elements in order to improve Gruttmann’s isoparametric four-noded quadrilateral elements; MATLAB was the language 

for programming the numerical method.      

In this paper the torsion problem of beams with solid cross-sections was solved using FDM. The cross-sections were 

discretized with a two-dimensional grid and additional nodes were introduced at the boundaries. The introduction of 

additional nodes allowed us to apply the governing equations at boundary nodes and to satisfy the boundary conditions. 

Sections with openings were also analyzed. So, the values of the stress function at nodes were determined and thereafter 

the shear stresses, torsion constant, and warping. Beams with thin-walled closed sections were analyzed using the stress 

function whereby the linear distribution of the shear stresses over the thickness was considered; closed form solutions 

for shear stresses and torsion constant were presented and compared to those of Bredt [3].    

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 April 2022                   doi:10.20944/preprints202203.0410.v2

https://doi.org/10.20944/preprints202203.0410.v2


Th

Th

dir

(po

 

 

Th

the

 

Co

 

 

wh

str

 

 



v



2.

he axis conve

he equations i

rection are de

ositive anticl

he cross-secti

e shear cente

ombining Equ

here G is the 

esses and the

xy

u

y
 




v z  

xy G


 


xy

z






Cross-

. Ma

2.1 

ention in the 

in this sectio

enoted by u(x

lockwise) is d

ions are assu

er). Therefore

uations (1a-b

shear modul

e rotation (x

,
v

x





 ,Tz 

u
z

y


 



xz

y


  



-sectional A

aterials an

Linear e

cross-section

Figure 1.

on are related

x,y,z), v(x,y

denoted by 

umed to rotat

e, the displac

b) and (2a-b)

lus. Combini

x) 

xz

u

z
 




w y

T

d
z

dx




2
d

G
dx




Analysis of 

nd method

elasticity o

n is represen

.  Axis co

d to the theor

,z), and w(x,

(x). The she

e about an ax

cements v(x,

) yields the st

ing Equation

u w

z x





Ty y 

, xz






f Beams Sub

ds 

of unrestra

nted in Figure

onvention w

ry of linear e

,y,z), respect

earing strains

xis through t

,y,z) and w(x

tress strains 

ns (3a) and (3



z

u
G

z

  

bjected to S

ained torsi

e 1, whereas 

within the bea

elasticity of b

tively, and th

s xy and xz

the center of 

x,y,z) are rela

relationships

3b) yields fol

u
y y

z
 

Saint-Vena

ion of beam

the x-axis is

 

am’s cross-se

beams. The d

he rotation of

z are related t

torsion T (y

ated to the an

s  

llowing relat

T

d
y

dx

 



ant Torsion

ms  

s the longitud

ection 

displacement

f cross-sectio

to the displa

yT, zT) (whi

ngle of twist 

tionship betw

n 

dinal beam’s

ts in x-, y-, an

on or angle o

cements as f

ich is equiva

(x) as follo

ween the shea

(1a, b) 

(2a, b)

(3a, b)

(4) 

s axis. 

nd z-

of twist 

follows:  

alent to 

ows 

ar 

) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 April 2022                   doi:10.20944/preprints202203.0410.v2

https://doi.org/10.20944/preprints202203.0410.v2


Re

dir

 

 

Pra

It i

con

 

Th

Le

bou

Co

com

ecalling that a

rection applie

andtl [4] intr

 

is noted that 

ndition to be

he analysis is

t us consider

undary make

onsidering th

mbined with

 

Cross-

axial stresses

ed to an infin

roduced a str

 

Equations (6

e satisfied by

 then reduce

r an infinites

es an angle 

hat axial stres

h Equation (6

xy

y




xy 

2

2y




x




-sectional A

s do not occu

nitesimal bea

ess function 

  

6) satisfy the

y the stress fu

ed of determi

simal beam e

 with the +y

Fi

sses do not o

6) yields 

xz

z


 



,
z




2

2z

 



 xz dy

dy
y



 






Analysis of 

ur in the beam

am element w

(x,y,z), de

e equilibrium

unction (x,y

ning the stre

lement at the

y-axis, as rep

igure 2  Infin

ccur, the equ

0

xz 
 

2G 

xydx

dz
z





 






f Beams Sub

m subjected 

with dimensi

fined in term

 

m equation (5

y,z) 

ess function.

e boundary w

presented in F

nitesimal bea

uilibrium equ

y




d

dx



0

ydz dx

d

 



bjected to S

to unrestrain

ions dx, dy, a

ms of stress c

). Substitutin

 

with dimensi

Figure 2.  

am element a

uation applie

0

0





Saint-Vena

ned torsion, t

and dz yields

omponents a

  

ng Equations

ons dx, -dy, 

at boundary 

ed to the beam

ant Torsion

the equilibriu

s 

as follows 

 

s (6) into (4) 

and dz. The 

 

m element al

n 

um equation 

 (6

yields the fo

     (7

outer norma

long the x-ax

(5)

in x-

6) 

ollowing 

7) 

al n to the 

xis 

(8) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 April 2022                   doi:10.20944/preprints202203.0410.v2

https://doi.org/10.20944/preprints202203.0410.v2


Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion 

This means that the stress function (x,y,z) is constant along the boundary of the cross-section. Observing that               

sin = -dy/ds and cos = dz/ds, the shearing stress component t at the boundary directed along the tangent is  

 

Likewise, the shearing stress component n at the boundary directed along the outer normal to the boundary is  

 

Observing Equation (8), the shearing stress component n is zero; this is in agreement with the condition of stress free 

outer surfaces. Therefore, the resultant shearing stress at the boundary is t. Let us recall the Green’s theorem which 

relates a line integral around a closed curve B to a double integral over the plane region A bounded by B 

 

 

whereby L and M are functions defined on the region A and the path of integration along B is anticlockwise. 

Recalling that the stress function has a constant value B at the boundary, the Green’s theorem shows as follows that the 

resultant shear forces are zero 

   

 

 

 

where the line integrals are taken around the closed boundary B of the cross-section. Using Equations (6) and (11), the 

torque is then given by 

 

 

The derivatives of y with respect to y and z with respect to z, respectively, are given by 
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Substituting Equations (12b) into (12a) yields 

 

 

In the case of cross-sections without openings and recalling that the stress function has a constant value B at the 

boundary, the Green’s theorem applied to the second term at the right-hand side of Equation (12c) is given by 

 

 

 

where AB is the area enclosed by the outer boundary of the cross-section. Let us express the stress function as follows 

 

                          (12e) 

with the function * being zero along the boundary and satisfying Equation (7). Substituting Equations (12d) and (12e) 

into (12c) yields  

  

                          (12f) 

Therefore, for a beam’s cross-section without openings the expression of the torque is independent of the value B of 

the stress function at the boundary. Furthermore, Equations (12a-f) show that half the torque is due to the stress 

component xy and the other half to xz. For simplification purpose, a modified stress function (y,z) is defined 

 

              (13a) 

Thus, the function (y,z) is zero along the boundary. Substituting Equations (13a) and (12e) into (7) and (6) yields 

 

             (13b) 

 

The torsional stiffness GIt is related to the torque Mt and the angle of twist (x) as follows 

            
                         (13c) 

 

Combining Equations (12f), (13a), and (13c) yields the torsion constant It 
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In the case of cross-sections having openings Equation (12d) becomes 

 

              (14a) 

 

where Ai are the areas enclosed by the openings i and i the constant values of the stress function along the boundary of 

the opening i. Combining Equations (12c, e) and (14a) yields  

 

              (14b) 

Observing that i = B + *
i, we set B to zero and combine Equations (13a, c) and (14b) to obtain the torsion constant  

 

              (14c) 

 

Equation (14c) can be found in Dieker [13]. 

 

 

2.2 Finite difference approximations 

For simplification purpose, the analysis will be conducted in the following with the modified stress function (y,z). The 

analysis is then governed by Equation (13b-1). This equation has second order derivatives; consequently, the function 

(y,z) is approximated around the node of interest i as a second degree polynomial in each direction. The unknown at 

any node is the value i of the modified stress function.  

Given the grid spacings y = h and z =h in y- and z-direction, respectively. The finite difference approximations 

(FDAs) for the first and second derivatives are then given by  

 

 

 

 

 

The partial derivatives in z-direction are formulated similarly.  
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Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion 

In the present study, the stress components n and t can be defined as follows using a coordinate transformation and 

observing Figure 2 and Equations (6),  

 

               (24a-b) 

 

Furthermore, Equations (4), (7), and (13b) are transformed as follows  

 

                       (25a-c)  

 

 

Let us consider continuity regions and discontinuity regions in the cross-section defined as follows: continuity regions 

that are away from segment ends and angles of the cross-section, are characterized by constant stress function along the 

arc coordinate s while discontinuity regions are segment ends and angles of the cross-section. 

 
2.7.2  Thin-walled open sections 

At an arc coordinate s the inner and outer node are denoted by si and so, respectively. Recalling that the stress function is 

constant along the unique boundary, the stress component s at the midline at position s of thickness t(s) can be 

determined using Equations (15b) and (24b) as follows 

 

                (26) 

 

The stress component t at the midline is zero: this finding is in agreement with the analysis of thin-walled open sections.  

Equation (24a) shows that the stress component n is zero in continuity regions while t that is zero at midline can be 

expressed as follows using Equation (25a)  

                

 

 

The stress t can be formulated using the torsion constant It and the torque Mt in Equation (13c) as follows 

 

                  (27b) 
    

Equation (27b) shows that the stress component t is linearly distributed over the thickness, zero at midline and maximal 

at the boundaries as follows  

 
                   (27c) 
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Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion 

Consequently, the maximal stresses occur at positions with greatest thickness; this finding is in agreement with the 

analysis of thin-walled open sections. The modified stress function (s, n) defined in Equation (13a) which is zero at       

n =  t(s)/2 and satisfies Equation (25c) is given by 

 

                    (28a) 

 

Then, the torsion constant It calculated using Equation (13d) and (28a) is  

 

                    (28b) 

Equation (28b) is a well-known formula in the analysis of thin-walled open sections. 

 

2.7.3  Thin-walled closed sections 

The analysis of closed thin-walled sections is conducted using the Bredt’s [3] formulas (Equations (23a-b)). These 

formulas are based on the assumptions of constant shear stress t over the thickness and neglecting the stress component 

n. First, these assumptions do not satisfy the relationship between the shear stresses (Equation (4)). Second, Bredt’s 

Equation (23a) implies that the total torque is due to the stress component t, and as shown earlier (Equation (12f)), that is 

inexact. In the following, another approach for the torsional analysis of closed thin-walled sections is presented.   

 
Single-cell thin-walled section: The stress function is taken zero along the outer boundary and si along the inner 

one. The stress component t at the midline at position s of thickness t(s) can be determined using Equations (15b) and 

(24b) as follows 

 

                (29) 

 

It is worth mentioning that si corresponds to the shear flow of the Bredt’s analysis. The stress component t can also be 

determined using Equations (9a) as follows 

 

                  (30) 

             

Let us perform a line integral through the midline using Equations (7), (13a), and (29-30) and the Green’s theorem  
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where AM is the area enclosed by the midline of the cross-section. The modified stress function (s, n) defined in 

Equation (13a) which is zero and si at  n =  t(s)/2, respectively, and satisfies Equation (25c) is given by 

 

                     (32a) 

 

The torsion constant It is then calculated using Equations (14c), (31), and (32a) as follows 

  

  

 

 

 

The second term at the right-hand side of Equation (32b) can be neglected; thus Equation (32b) becomes 

 

 

 

 

where Ai and Ao are the areas enclosed by the inner and the outer boundary of the cross-section, respectively, and A is 

the area of the cross-section material. This expression of the torsion constant looks similar to that of Bredt (Equation 

(23b), Ai + Ao replacing 2AM) and coincides with it for very small thicknesses.  

In continuity regions, the stress component n is zero and t is as follows using Equations (25a) and (29).  

                

 

 

Equation (33a) shows that at a position s the stress component t is linearly distributed over the thickness, maximal and 

minimal at the boundaries. Using Equations (13c) and (31) t is given by  

 
                    (33b) 

 
 

 

Equation (33b) shows that contrarily to Bredt’s formulas the maximum shear stress in the cross-section does not 

necessarily occur at the position with the smallest thickness. The shear stress at the midline is as follows using 

Equations (13c), (29), (31), and (32c); 
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it is noted that its maximal value occurs at the position with the smallest thickness;  interestingly the expression looks 

similar to that of Bredt (Equation (23a), Ai + Ao replacing 2AM).   

 

Multiple-cell thin-walled section: The stress function is taken zero along the outer boundary and sk along the 

inner boundary of a cell k. For a given cell at a position s the stress function at the inner and outer boundary are denoted 

by si and so , respectively. So, the stress component t at the midline at position s of thickness t(s) is as follows 

 

                  (34a) 

 

Equation (31) is applied at each cell through the midline using Equations (12e), (13a), and (34a); for the cell k it yields 

  

 

 

where AMk is the area enclosed by the midline of the cell k. Let the cell k of thickness tk(s) be bordered by q cells of 

thickness tq(s); Equation (34b) applied at the cell k is  

 

                     (34c) 

 

So, the values k of the modified stress function at the inner boundaries of the cells can be determined from the system of 

linear equations (34c). (s, n) defined in Equation (13a) with values so and si at  n =  t(s)/2, respectively, which 

satisfies Equation (25c) is given by 

 

  

 

 

The torsion constant It is then calculated using Equation (14c) and (35a)  

               

where Aik is the area enclosed by the inner boundary of the cell k. The first integral in Equation (35b) is rewritten as   

 

 

 

 
( ) ( )

so si si so
t s

n t s t s

     
    



2 2

2

1 1 ( ) 4
( , ) 1

2 ( ) 2 ( ) 4 ( )si so

n n t s n
s n

t s t s t s
  

    
         

     

  31
( ) ( ) 2

3t si so k ik
k

I t s ds t s ds A       

2
( )

si so
Mk

kk

ds A
t s

 


(35b) 

2
( ) ( )k q Mk

qk qk

ds ds
A

t s t s
   

(35a) 

  ( )si so k k
k

t s ds A    (35c) 

(34b) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 April 2022                   doi:10.20944/preprints202203.0410.v2

https://doi.org/10.20944/preprints202203.0410.v2


Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion 

where Ak is the area of the cross-section material associated to the cell k. The second term at the right-hand side of 

Equation (35b) can also be neglected; substituting Equation (35c) into (35b) yields 

 

 

where Aok is the area enclosed by the outer boundary of the cell k. As an example the analysis of a three-cell thin-

walled section is presented in Appendix B. 

In continuity regions, the stress component n is zero and t is as follows using Equations (25a) and (34a)      

      

 

 

Similarly to the single-cell thin-walled section, the stress component t at a position s is linearly distributed over the 

thickness, maximal and minimal at the boundaries as follows  

 

 

 

 

For a segment of the beam’s cross-section bordered by cells j and k and having the thickness tjk, the shear stresses can 

be calculated using Equation (36b) either from the cell j or from the cell k; p,i and p,o being the stresses at the inner 

and outer boundary of the cell p (p = j, k), respectively, it yields  

 

 

 

 

 

It is noted as expected that j,i = -k,o and j,o = -k,i.  
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2.8   Warping of the cross-section 

In the following the cross-sections are assumed free to warp. For a given cross-section and torque the values of the 

stress function (y,z) were determined according to previous sections. Substituting Equations (3a-b) into (5) yields 

 

              (37a) 

 

Let the outer normal to the boundary make an angle  with the +y-axis (see Figure 2). The boundary conditions are such 

that the shearing stress component at the boundary directed along the outer normal is zero from the condition of stress 

free outer surfaces; this shear stress is expressed using Equations (9b) and (3a-b)  

 

   

 

Equation (37b) can be rewritten using (13c) 

 

 

 

 

Equation (37a) is the governing equation which is applied at any node of the cross-section and Equation (37c) is the 

boundary condition. For convenience the node distribution is taken the same as that for the stress function. So, the 

governing equation (Equation (37a)) is expressed similar to that of the stress function (Equations (16) and (19)); 

however, zero is put in place of the right-hand side of the latter equations. A modified warping U is defined as U = 

GIt/Mt  u; therefore, Equations (37a) and (37c) become 

 

 

              (38a-b) 

 

 

In Equation (38b) the derivatives of U are expressed using the stencils in Equations (17) and (20a-b). A kinematic 

boundary condition is needed for solving the warping problem; therefore, at the center of torsion T (yT, zT) 

(equivalent to the shear center) or at another point suitably chosen (i.e. a point in the symmetry axis) the warping is set 

to zero and the governing equation is not applied.  

Beam with circular cross-section: the center of torsion is at yT = zT = 0, and the boundary is defined by            

y = Rcos, and z = Rsin. It results that both governing equation and boundary condition (U/ycos + U/zsin 

= 0) are homogeneous differential equations and consequently the warping is zero. 
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3 Results and discussions 

3.1  Torsion of beam with rectangular cross-section   

The elastic torsional behavior of a beam with rectangular cross-section was analyzed. The dimensions of the cross-

section in y- and z-directions are denoted by a and b, respectively. The torsion constant It = k1ba3 and the maximal 

shear stress max = ka Gd/dx are determined, depending on the ratio b/a. A 4  4, 8  8, and 12  12 element mesh are 

considered. Details of the analysis and results are presented in Appendix A and in the supplementary material “Torsion 

of beam with rectangular cross-section.” Table 1 lists the results obtained with Timoshenko [15] using the membrane 

analogy (exact results) and those obtained in the present study.  

Table 1   Coefficients of the torsion constant and maximal shear stress  

 

As Table 1 shows, the results using FDM show good agreement with the exact results, and the accuracy is increased 

through a grid refinement. For high values of b/a, the torsion constant It is equal to 1/3×ba3.  

The warping is calculated for a beam with dimensions a = b = 1.0m for a unity torque, whereby a 12  12 mesh 

with spacings y = z =h is considered. Recalling that yT = zT = 0 for the rectangular cross-section, the boundary 

conditions are set observing that at the edges y =  a/2 the outer normal to the boundary makes an angle  = 0 and , 

respectively, with the +y-axis and at the edges z =  b/2 makes an angle  = /2 and 3/2, respectively. Equation (38b) 

is then formulated as Ue - Uw - 2hz = 0 and Un - Us + 2hy = 0 at the edges y =  a/2 and z =  b/2, respectively. 

Details of the results are presented in the above mentioned supplementary material. The factored warping G  u  = U/It 

(It = 0.141 m4) is given in Table 2.   

   b/a =    

 1.00 1.50 2.00 3.00 10.00 

 
k1 k k1 k k1 k k1 k k1 k 

  Solution by Timoshenko [15] (exact results) 

 0.141 0.675 0.196 0.848 0.229 0.930 0.263 0.985 0.312 1.000 

 Present study (Finite Difference Method)  

4  4 elements 0.133 0.688 0.185 0.838 0.215 0.913 0.243 0.971 0.270 1.000 

8  8 elements 0.140 0.677 0.194 0.844 0.227 0.925 0.260 0.982 0.298 1.000 

12  12 elements 0.140 0.676 0.195 0.846 0.228 0.928 0.262 0.984 0.305 1.000 
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The shear stresses  = k Gd/dx are calculated at the middle of the sides at nodes 7, 17, 27, and 37, and nodes 69a, 

69b, 69c, and 69d, depending on the ratio b/a, whereby a = 1.0m.  A 12  12 mesh was considered. Details of the results 

are presented in the supplementary material “Torsion of beam with rectangular cross section having an opening.” Table 

2 lists the results obtained in this study for a torque Mt = 1.0 kNm.  

Table 2   Coefficients of shear stresses  

 

For ratios b/a = 3.0 and 5.0, the shear stresses xz over the entire thickness (nodes 69a, 69b, 69c, and 69d) are negative 

and consequently caused a shear flow in the opposite direction of the torque; this result is not consistent with a proper 

torsional behavior of the beam. Furthermore, it is noted that this situation coincides with negative values of stress 

function in the opening. Therefore, it can be concluded that for negative values of the stress function in the opening 

shear flows in the opposite direction of the torque occur; the grid must then be refined in order to have reliable results.   

So, another calculation is conducted for the ratios b/a = 2.0 (12  24 mesh) and 3.0 (12  36 mesh) with grid 

spacings z = y. The results are presented in the above mentioned supplementary material and listed in Table 2a. 

 Table 2a   Coefficients of shear stresses for b/a = 2.0 and 3.0 

  b/a = 

 Node 0.25 0.50 1.00 1.50 2.00 3.00 5.00 

Shear stress xy 

7 -0.162 -0.284 -0.372 -0.409 -0.448 -0.538 -0.712 

17 -0.120 -0.201 -0.206 -0.162 -0.124 -0.079 -0.043 

27 -0.079 -0.118 -0.040 0.085 0.199 0.380 0.625 

37 -0.037 -0.034 0.127 0.335 0.532 0.880 1.459 

Shear stress xz 

69a -0.135 -0.138 -0.127 -0.195 -0.330 -0.723 -1.843 

69b -0.016 0.012 0.040 -0.027 -0.162 -0.556 -1.676 

69c 0.063 0.147 0.206 0.142 0.006 -0.389 -1.509 

69d 0.189 0.299 0.372 0.310 0.174 -0.222 -1.342 

Stress function in the opening 0,0062 0.0199 0.0307 0.0143 -0.0195 -0.1182 -0.3981 

b/a  
Stress function 
in the opening Shear stress xy Shear stress xz 

  7 
27 
37 

47 
67 

67 
97 

129a 
189a 

129b 
189b 

129c 
189c 

129d 
189d 

2.0 0.0100 -0.490 -0.175 0.130 0.459 -0.211 -0.044 0.124 0.291 

3.0 -0.0107 -0.603 -0.175 0.192 0.657 -0.293 -0.126 0.040 0.207 
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The areas AMk, Aik, and Aok with k = 1, 2, and 3 are as follows 

 

 

 

 

 

 

 

 

 Equation (34c) applied at each cell as follows yields the values k.       
   

 

 

 

 

 

Then the torsion constant and the shear stresses are calculated using Equations (35d) and (36c), respectively. 
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