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Abstract: This paper presents an approach to the elastic analysis of beams subjected to Saint-Venant torsion using
Green’s theorem and the finite difference method (FDM). The Saint-Venant torsion of beams, also called free torsion or
unrestrained torsion, is characterized by the absence of axial stresses due to torsion; only shear stresses are developed.
The solution to this torsion problem consists of finding a stress function that satisfies the governing equation and the
boundary conditions. The FDM is an approximate method for solving problems described with differential or partial
differential equations; it does not involve solving differential equations, equations are formulated with values at selected
nodes of the structure. In this paper, the beam’s cross-section was discretized using a two-dimensional grid and
additional nodes were introduced at the boundaries. The introduction of additional nodes allowed us to apply the
governing equations at boundary nodes and satisfy the boundary conditions. Beam’s cross-sections of various shapes
and openings were analyzed using this model; shear stresses, torsion constant, and warping were determined.
Furthermore, beams with thin-walled closed sections, single-cell or multiple-cell, were analyzed using the stress
function whereby the linear distribution of the shear stresses over the thickness was considered; closed-form solutions
for shear stresses and torsion constant were presented. For rectangular cross-sections, the results obtained in this study
showed good agreement with the exact results, and the accuracy was increased through a grid refinement. For thin-
walled closed sections it was noted that the maximal shear stress in the midline occurs at the position with the smallest
thickness, which is in agreement with Bredt’s analysis, but the maximal shear stress in the cross-section did not
necessarily occur at that position; moreover, the values of torsion constant were higher than those calculated using
Bredt’s analysis

Keywords: Theory of elasticity; Saint-Venant torsion; Green’s theorem; finite difference method; additional nodes;

thin-walled sections; cross-section with openings; warping

1. Introduction

This paper describes the application of Fogang’s model [1] based on the finite difference method (FDM), used for the
homogeneous Euler—Bernoulli beam, to the elastic analysis of beams subjected to Saint-Venant torsion. The Saint-
Venant torsion is characterized by the absence of axial stresses due to torsion; only shear stresses are developed. The

correct solution of the problem of torsion of prismatical beams was given by Saint-Venant [2]; he made assumptions on
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the deformation of the twisted bar that could satisfy the equations of equilibrium and the boundary conditions. Bredt [3]
derived formulas for the torsional analysis of thin-walled bars; these formulas form a basis for the calculation of shear
stresses and deformations in components with closed, thin-walled hollow cross-sections under pure torsional loading.
Prandtl [4] introduced a stress function in terms of which the shear stresses were defined. Therefore, the solution of the
torsion problem consists of finding a stress function which satisfies the governing equation and the boundary conditions.
Analytical solutions of the stress function are available for beams with elliptical cross-sections, equilateral triangle and
several other shapes; furthermore, the torsional problem was solved for rectangular cross-section using infinite
trigonometric series. However, analytical solutions of the Saint-Venant torsion are only suitable for simple cross-
sections; therefore, numerical methods to evaluate the torsional behavior of complicated cross-sections are
indispensable. Numerical methods such as energy methods were considered by numerous authors i.e. Ritz [5] and
Trefftz [6]; the stress function was approximately determined from the minimum condition of the strain energy of the
twisted beam. Various studies have focused on the analysis of beams under unrestrained torsion. Pluzsik et al. [7]
presented a theory for thin-walled, closed section, orthotropic beams which takes into account the shear deformation in
restrained warping induced torque; the analytical (“exact”) solution of simply supported beams subjected to a sinusoidal
load was developed for this purpose. Pan et al. [8] presented a matrix stiffness method for the torsion and warping
analysis of beam-columns in order to investigate the exact element torsional stiffness considering warping deformations;
the equilibrium analysis of an axial-loaded torsion member was conducted, and the torsion-warping problem was solved
based on a general solution of the established governing differential equation for the angle of twist. Pavazza et al. [9]
presented a novel theory of torsion of thin walled beams (“shear deformable beams”) of arbitrary open cross-sections
with influence of shear; the theory is based on the classical Vlasov’s theory of thin-walled beams of open cross-section,
as well on the Timoshenko’s beam bending theory. Choi & Kim [10] proposed a higher-order Vlasov torsion theory that
not only includes as many torsion-related modes as desired but also provides the explicit forces—kinematic
variables—stresses relationships that are fully consistent with those by the Vlasov theory. Amulu & Ezeagu [11]
investigated the effect of combined actions of torsion moments, bending moments and shear forces in reinforced
concrete beams with concrete compressive strength of 30N/mm?; the ultimate torsion moments, bending moments, and
shear forces of the beams were determined experimentally. Tran [12] used isoparametric eight-noded quadrilateral
elements in order to improve Gruttmann’s isoparametric four-noded quadrilateral elements; MATLAB was the language

for programming the numerical method.

In this paper the torsion problem of beams with solid cross-sections was solved using FDM. The cross-sections were
discretized with a two-dimensional grid and additional nodes were introduced at the boundaries. The introduction of
additional nodes allowed us to apply the governing equations at boundary nodes and to satisfy the boundary conditions.
Sections with openings were also analyzed. So, the values of the stress function at nodes were determined and thereafter
the shear stresses, torsion constant, and warping. Beams with thin-walled closed sections were analyzed using the stress
function whereby the linear distribution of the shear stresses over the thickness was considered; closed form solutions

for shear stresses and torsion constant were presented and compared to those of Bredt [3].
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2. Materials and methods

2.1  Linear elasticity of unrestrained torsion of beams

The axis convention in the cross-section is represented in Figure 1, whereas the x-axis is the longitudinal beam’s axis.

Figure 1. Axis convention within the beam’s cross-section

The equations in this section are related to the theory of linear elasticity of beams. The displacements in x-, y-, and z-

direction are denoted by u(x,y,z), v(x,y,z), and w(X,y,z), respectively, and the rotation of cross-section or angle of twist

(positive anticlockwise) is denoted by 6(x). The shearing strains Yyy and Yx; are related to the displacements as follows:
ou ov ou ow
= + = +

7xy—a_y &, —E & (1a,b)

!V xz

The cross-sections are assumed to rotate about an axis through the center of torsion T (Y, Z1) (which is equivalent to

the shear center). Therefore, the displacements v(x,y,z) and w(x,y,z) are related to the angle of twist 6(x) as follows

(2a, b)

v=—(z-2,)0, w=(y-v;)6
Combining Equations (1a-b) and (2a-b) yields the stress strains relationships

ou

de ou
7, =G a—(Z—ZT)

dé
291, _gl M (vov Y (3a, b)
dx Fa 01 (y=v:) dx

where G is the shear modulus. Combining Equations (3a) and (3b) yields following relationship between the shear

stresses and the rotation 6(x)

6Txy _ az—xz — —2G d_@ @)
0z oy dx
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Recalling that axial stresses do not occur in the beam subjected to unrestrained torsion, the equilibrium equation in x-

direction applied to an infinitesimal beam element with dimensions dx, dy, and dz yields

aTW aru
+
oy 0z

=0 )

Prandtl [4] introduced a stress function (I)(X,y,z), defined in terms of stress components as follows

o

Xy ’ Xz ©)
0z oy

It is noted that Equations (6) satisfy the equilibrium equation (5). Substituting Equations (6) into (4) yields the following

T

condition to be satisfied by the stress function (I)(x,y,z)
2 2
0¢ 09 _ _,599 @
oy> 0z7° dx

The analysis is then reduced of determining the stress function.

Let us consider an infinitesimal beam element at the boundary with dimensions dx, -dy, and dz. The outer normal N to the

boundary makes an angle a with the +y-axis, as represented in Figure 2.

Z
) n
PN : a Y
-dy
e

Figure 2 Infinitesimal beam element at boundary

Considering that axial stresses do not occur, the equilibrium equation applied to the beam element along the x-axis
combined with Equation (6) yields

—7,, (—dy)xdx -7, dzxdx=0
®)

—>a¢dy+a¢dz=0—>d¢:0
oy 0z
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This means that the stress function ¢(x,y,z) is constant along the boundary of the cross-section. Observing that

sina. = -dy/ds and cosa. = dz/ds, the shearing stress component Tt at the boundary directed along the tangent is

0 0 op dy O¢ dz
Tt_—Z' Sll’lCZ-i—Z' COSQ———¢SII’105— ¢COSO[= ¢ y— ¢— (9a)
0z oy oz ds 0oy ds
Likewise, the shearing stress component Tn at the boundary directed along the outer normal to the boundary is
: 0 op . opdz oO¢d
Tn:TxyCOSCZ+TX281HC¥=—¢COSOZ——¢SII10{: ¢—+ ¢ y (9b)
0z oy oz ds oy ds

Observing Equation (8), the shearing stress component Tn is zero; this is in agreement with the condition of stress free

outer surfaces. Therefore, the resultant shearing stress at the boundary is Tt. Let us recall the Green’s theorem which

relates a line integral around a closed curve B to a double integral over the plane region A bounded by B

Ldy + Mdz | = — dydz (10)
[ ] oM oL
B A

oy 0z
whereby L and M are functions defined on the region A and the path of integration along B is anticlockwise.

Recalling that the stress function has a constant value (g at the boundary, the Green’s theorem shows as follows that the

resultant shear forces are zero

” 7, dydz = J dde = —(]5 gdz = —¢qudz _

_Urxydydz =”8—fdydz = —SB gdy = —¢B<_f> dz=0

where the line integrals are taken around the closed boundary B of the cross-section. Using Equations (6) and (11), the

(11

torque is then given by

dp 0¢ 12
M, = [[[ra (Y=¥i )7 (z-2,) Jdydz =[[| -—Zy-=Fz |dydz
oy 0z
The derivatives of (I)y with respect to y and (I)Z with respect to z, respectively, are given by

ooyl o, ., oléd_as
y P Ta &

Z+¢ (12b)
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Substituting Equations (12b) into (12a) yields

M, =2|[ gdydz - [ a[g;y]ﬁ[;zz] dydz .

In the case of cross-sections without openings and recalling that the stress function has a constant value (I)B at the

boundary, the Green’s theorem applied to the second term at the right-hand side of Equation (12c¢) is given by

] 8[;;y]+azz] dycz = [ gydz - gzdy) = ¢

plydz—zdy]=24A, (120

B

where Agp is the area enclosed by the outer boundary of the cross-section. Let us express the stress function as follows

¢(x,y,z):¢8+¢*(x,y,2) (12¢)

with the function (I)* being zero along the boundary and satisfying Equation (7). Substituting Equations (12d) and (12e)
into (12c¢) yields

M, = 2” ¢ dydz (12f)

Therefore, for a beam’s cross-section without openings the expression of the torque is independent of the value d)B of

the stress function at the boundary. Furthermore, Equations (12a-f) show that half the torque is due to the stress

component Txy and the other half to Txz. For simplification purpose, a modified stress function y(y,z) is defined

¢*(x,y,2)=Gz—fxw(y,2)

(13a)

Thus, the function y(y,z) is zero along the boundary. Substituting Equations (13a) and (12¢) into (7) and (6) yields

62 W a2l//
>t = —2
oy oz (13b)

dg 0 dg 0

Txy =Lo—_—X 7 > Ty = -G X 7
dx oz dx oy

The torsional stiffness Glt is related to the torque Mt and the angle of twist 6(x) as follows
do 13
M, =Gl (%
X

Combining Equations (12f), (13a), and (13c¢) yields the torsion constant It
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|, = ZH wdydz (13d)

In the case of cross-sections having openings Equation (12d) becomes

J] 5g¢;y]+a[a¢;z] dde:2¢BAB_Zz¢IA (14a)

where A;j are the areas enclosed by the openings i and ¢i the constant values of the stress function along the boundary of

the opening i. Combining Equations (12c, ¢) and (14a) yields

M, = 2” ¢ dydz + Z 26 A (14b)

*
Observing that (I)i = d)B + (1) i, we set d)B to zero and combine Equations (13a, ¢) and (14b) to obtain the torsion constant

| =2[[ydydz+ 23w A (140
A I

Equation (14c) can be found in Dieker [13].

2.2  Finite difference approximations

For simplification purpose, the analysis will be conducted in the following with the modified stress function \J(y,z). The
analysis is then governed by Equation (13b-1). This equation has second order derivatives; consequently, the function

\Y(y,z) is approximated around the node of interest 1 as a second degree polynomial in each direction. The unknown at

any node is the value \; of the modified stress function.

Given the grid spacings Ay = h and Az = Ah in y- and z-direction, respectively. The finite difference approximations

(FDAs) for the first and second derivatives are then given by

o’y _ O’y _ O’y _ Wi T2ty

2 - 2| 2 - 2 >
Nl N N, h
oy _ TVia Vg

oy | 2h

The partial derivatives in z-direction are formulated similarly.

(15a, b)
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2.3 Analysis at interior nodes
2.3.1 Uniform grid
Figure 3 shows the node distribution of the beam’s cross-section having equidistant nodes with spacings Ay and Az in y-
and z-direction, respectively. The node of interest k and the surrounding nodes are represented, whereby n, s, ¢, and w

stand for the directions north, south, east, and west, respectively, according to the directions in the stencil. The node k

may even be at the boundary of the beam, however being not at angles.

A Ay Ay

——
—_—

Y

Figure 3 Node of interest K and its surrounding nodes for uniform grid

Given the grid spacings Ay = h and Az = Ah. The governing equation (Equation (13b-1)) at a given node can be

expressed by means of a stencil using Equations (15a) as follows

—|1 | 2-=| 1|x[y]=-2 (16)

Ty =G —x—r [0] [x[w]. :—G—xz—[ 1 [0] 1] a17)

In the stencil notation the factor associated to the node of interest is in brackets.
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2.3.2 Non-uniform grid

The distances to the node of interest k are represented in Figure 4 below

hkw hke

Figure 4 Node of interest K and its surrounding nodes for non-uniform grid

The stress function in y-direction i.e. can be described with values at grid points as follows:

v x L0 +w x F 00 +w, x £ (X) (18a)

The shape functions f}(x) (j =1-1; 1; i+) can be expressed using the following Lagrange interpolating polynomials

i+1

X—X
f (X) I I N N (18b)
k=i— IX
k#j

The governing equation at node k is derived using Equations (13b-a), (18a), and (18b) as follows

2
he (e + i)
2 22 2 qwl== o
hkw (hkw + hke ) hkw hke hkn hks hke (hkw + hke )
2
i he (N + 1) |
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The shearing stresses are expressed using Equations (13b), (18a), and (18b) as follows

hks
hkn (hkn + hks )
déo 1 1
=G —= o (20a-b)
WG| [ h W
_ hkn
hks (hkn + hks)
déo —h 1 1 h
— —G ke _ kw
TXZ dX " hkW (hkw + hke ) hkw hke hke (hkw + hke) " [l//]
2.4 Analysis at skew edges

Figure 5 shows the skew edge of the beam’s cross-section with regular and additional nodes. The tangent t to the skew

edge makes an angle o with the +y-axis. One additional node is associated to each edge node; therefore, the governing
equation (Equation (16) or (19)) is applied at any edge node and the boundary condition \Jf = 0 is set.
z

s n

Figure 5 Skew edge of beam’s cross-section with regular nodes () and additional nodes (x)

It is recalled that the shear stress component Tt directed along the tangent is calculated using Equations (9a), and the

shear stress component Txy and Txz using Equations (17) or (20a-b).


https://doi.org/10.20944/preprints202203.0410.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2022 d0i:10.20944/preprints202203.0410.v2

Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion

2.5 Analysis at beam angles

The node distribution must be such that at any position three nodes are available in both directions; so the governing

equations that are formulated through the second derivatives of the stress function can be set.

2.5.1 Rightangles

Figure 6 below represents angles of the beam’s cross-section whereby regular nodes (o) and additional nodes (x) are

represented. The unknown at each node, regular or additional, is the value of the function J(y, z). One additional node

is associated to each boundary node, at which the boundary condition \f = 0 is set. The governing equations at angle
nodes W, E, S, and SE are modified using Equation (15a) to account for the absence of additional nodes in z-direction;
Therefore Equation (21a) is the governing equation at angles W and E, while Equation (21b) is the governing equation

at angles S and SE. Alternatively, additional nodes at angles could be considered in z-direction instead.

0 1 ] B 1 ] (21a-b)
1 [—2+—2} 1 L
A A
1 2 1 2
el 7 x[y]=-2, el H x[y]=-2
1 1
- 1| 24— 1

w /

7 ;

[ i

S \\ SE
c AN

Figure 6 Angles of beam’s cross-section with regular nodes (o) and additional nodes ()
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2.5.2 Various types of angles and shapes of beam’s cross-sections
Examples of node distributions at various angles and shapes of beam’s cross-sections are represented in Figure 7. The

additional node associated to a node k is denoted by ka.

+10a
(a) (b)
11a 10 93
/ 5 Sa
k 4 43 1 9
\ > 12a 12 8 B8a
\ 3 3a 7
2 2a 1 2 3 7 5 3 17
1 1a 2a 3a 4a 5a 6a 7a
1a X X X X
—_——— Sa g 43
6a - ~ 3a (d)
( { 7a ’23
[ %03
13
ga Y
& (53 o 2
i 42 (©) g 4
3 10 ! < 16a
\ Ga
. 2a
10a
1 12 14 * 144
7[\ 11a 122 - 13
. 13

Figure 7 Examples of node distributions at various angles and shapes of beam’s cross-sections

In the following the stencils may have to be modified to account for eventual non-uniform grids. Equations (16) or (19),

the governing equations, are applied at any boundary node if possible. In Figure 7b, the governing equations at nodes 8
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and 12 are expressed using Equation (21a); furthermore, the governing equations at nodes 1 and 11, and at nodes 7 and

9, respectively, are expressed using Equations (22a-b) as follows

1 1
? ? (22a-b)
1 2 1 2
F |:1—?:| -2 1 x[y/]=—2, F 1 -2 |:1—?:| X[l//]:—z
1 1
e A

In Figure 7c, the governing equations at node 5 is applied using Equation (21b). In Figure 7d, the governing equations at
nodes 9 and 1, respectively, are expressed using Equations (22a-b) and the governing equations at nodes 5 and 13,

respectively, are expressed using Equations (21a-b).

2.6  Beams with openings

2.6.1 Openings aligned with the Cartesian coordinate system
A beam’s cross-section having an opening is represented in Figure 8, together with regular nodes (®) and additional

nodes (x). The opening is aligned with the Cartesian coordinate system. The unknown at regular nodes and additional

nodes is the value of the stress function. The additional node associated to node k is denoted by ka.

w - I .
\ 3 lse s Jss Jar Js8 |39 [s%a  [agb ?
‘ 9 |4, 3% e 3la s OB liga 49b’
448 X X x49aa
53[5 Sha S [s9a  l5ob /
63 a4 B4a (93a |6Y9a 69b
X X
1

Figure 8 Beam’s cross-section having an opening aligned with the Cartesian coordinate system

Similarly to Fogang [14] related to the analysis of deep beams, it is assumed that different nodes may be at the same

geometrical position, i.e. nodes 35a and 44a, 39a and 49aa in Figure 8. The governing equations are applied to any

node on the opening. The boundary conditions are Y/ = constant at nodes on the opening, formulated as i = J;
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whereby i is a fixed node and k is any other node on the opening. Therefore, if boundary conditions are applied to n
nodes in the opening, making n - 1 equations, then n - 1 additional nodes should be considered in order to have as many
nodes as equations. However, boundary conditions are not applied to angle nodes 34 and 39a since additional nodes are
not associated to them; this corresponds to chamfering the right angles and letting the angle nodes 34 and 39a behave

like interior nodes as represented in Figure 9.

33 |34 Ls Le L? Jss Le 3% |30

_ 3%
43 44 4 4a><35&1 ><36&1 ><37’.21 ><38& 4922 492 49b
53 54 54a 5%a [5%a 59b
X X

Figure 9 Beam’s cross-section having an opening with chamfering of the right angles

Particular attention must be taken by the formulation of the governing equations and equations determining the shear

stresses, especially in the vicinity of angle nodes; those equations at any node k involve the node ka.

2.6.2 Openings with various shapes
A beam’s cross-section having an opening is represented in Figure 10, together with regular nodes () and additional

nodes (x). The opening is not aligned with the Cartesian coordinate system.

N

AN
/3\3

fa \
- o 3 5 N
8a
_1 10 Sa L4 N4 .
Da a
y 2a 3
T a
\ 1a 2
12\, 122 /

\ 1

Figure 10 Beam’s cross-section having an opening of various shape
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It is further assumed that different nodes may be at the same geometrical position, i.e. nodes 4a and 3a. The governing

equations are applied to any node on the opening. The boundary conditions \J = constant are applied to any nodes

on the opening since additional nodes are associated to all of them. Therefore, for Figure 10 eleven boundary conditions
are applied and so eleven additional nodes should be considered in order to have as many nodes as equations.
Consequently the node 12a gets suppressed. By the formulation of the governing equations and equations determining the

shear stresses, especially at angle nodes; those equations at any node k involve the node ka.
2.7  Beams with thin-walled sections

2.7.1 Fundamentals of thin-walled sections

Given a beam with thin-walled section represented in Figure 11.

Ao

Aj

tfs)
Figure 11 Beam with thin-walled section

At the one hand, the analysis of beams with single-cell thin-walled closed sections i.e. is governed by the following

Bredt’s [3] formulas for the shear stress Tt at an arc coordinate s and the torsion constant It

__M __4A e
()= 5a1(s) It_qg?S) -
t(s

where A, is the area enclosed by the midline of the thin-walled closed section. Bredt’s formulas are derived under the

assumption of a constant shear stress Tt over the thickness whereby stresses Tn are neglected.

At the other hand, the analysis of thin-walled open sections is governed by the following formulas

M
i (8)=T54(5), 1, :% [t(s) ds @304

t
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In the present study, the stress components Tn and Tt can be defined as follows using a coordinate transformation and
observing Figure 2 and Equations (6),
— ¢ 7. =— _¢ (24a-b)
n 3 t
0S on
Furthermore, Equations (4), (7), and (13b) are transformed as follows
2 2 2 2
01, 0% _ _,,40 ¢ d¢_ .40 Py 3y

=2G6—, — - =-2G—, —+——=-2 (25a-c)
oS  on dx 0s”  on dx 0S on

T

Let us consider continuity regions and discontinuity regions in the cross-section defined as follows: continuity regions
that are away from segment ends and angles of the cross-section, are characterized by constant stress function along the

arc coordinate s while discontinuity regions are segment ends and angles of the cross-section.

2.7.2 Thin-walled open sections
At an arc coordinate s the inner and outer node are denoted by si and so, respectively. Recalling that the stress function is
constant along the unique boundary, the stress component Ts at the midline at position s of thickness t(s) can be

determined using Equations (15b) and (24b) as follows
0p _ ¢y~ 9y
(S)Z— _ _ Pso i) 26)

on t(s)

The stress component Tt at the midline is zero: this finding is in agreement with the analysis of thin-walled open sections.

4

Equation (24a) shows that the stress component Tn is zero in continuity regions while Tt that is zero at midline can be

expressed as follows using Equation (25a)

rt(s,n):zG(;—fxn (272)

The stress Tt can be formulated using the torsion constant It and the torque Mt in Equation (13c) as follows

Tt(S,n)ZZ%xn (27b)

t
Equation (27b) shows that the stress component Tt is linearly distributed over the thickness, zero at midline and maximal

at the boundaries as follows
M, t(s)

=+2—L
(8) =27

=+

T

t,max

Mt
t
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Consequently, the maximal stresses occur at positions with greatest thickness; this finding is in agreement with the
analysis of thin-walled open sections. The modified stress function (s, n) defined in Equation (13a) which is zero at
n =+ t(s)/2 and satisfies Equation (25¢) is given by
2 2
t(s) 4n
w(s,Nn) = 1—-——; (282)
4 t(s)

Then, the torsion constant It calculated using Equation (13d) and (28a) is

1 3
. =§jt(s) ds osb)

Equation (28b) is a well-known formula in the analysis of thin-walled open sections.

2.7.3 Thin-walled closed sections

The analysis of closed thin-walled sections is conducted using the Bredt’s [3] formulas (Equations (23a-b)). These

formulas are based on the assumptions of constant shear stress Tt over the thickness and neglecting the stress component
Tn. First, these assumptions do not satisfy the relationship between the shear stresses (Equation (4)). Second, Bredt’s

Equation (23a) implies that the total torque is due to the stress component Tt, and as shown earlier (Equation (12f)), that is

inexact. In the following, another approach for the torsional analysis of closed thin-walled sections is presented.

Single-cell thin-walled section: The stress function is taken zero along the outer boundary and (I)si along the inner

one. The stress component Tt at the midline at position s of thickness t(s) can be determined using Equations (15b) and

(24b) as follows

on t(s)  t(s) @

It is worth mentioning that ¢si corresponds to the shear flow of the Bredt’s analysis. The stress component Tt can also be

Tt(S)=—8¢_ ¢so_¢si _ ¢si

determined using Equations (9a) as follows

. :a¢dy_a¢dz_)
‘" 0z ds oy ds

Let us perform a line integral through the midline using Equations (7), (13a), and (29-30) and the Green’s theorem

’ o o o’ 0 déo
<j‘>rds_q’>t¢8) _qS ¢dy—@¢ g—ﬁ‘é—g"’ dydz =2G— A,

Vi — - Z_AM
45’[(5) ds_ZAM d £ 31)

w 1(S)

7. ds =g—fdy—%dz (30)
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where Ay is the area enclosed by the midline of the cross-section. The modified stress function (s, n) defined in

Equation (13a) which is zero and s at n =+ t(s)/2, respectively, and satisfies Equation (25¢) is given by

(1 n) e[, 4n’
A ] P aTy i e

(32a)

The torsion constant It is then calculated using Equations (14c), (31), and (32a) as follows

t

C2AA, e s AAVA
= +3<£t(s) ds+ 1 (320)

u 1(S) w 1(S)
The second term at the right-hand side of Equation (32b) can be neglected; thus Equation (32b) becomes

28, (A+A)
! ds

b 1)

where A; and A, are the areas enclosed by the inner and the outer boundary of the cross-section, respectively, and A is

(32¢)

the area of the cross-section material. This expression of the torsion constant looks similar to that of Bredt (Equation

(23b), A; + A, replacing 2A ) and coincides with it for very small thicknesses.
In continuity regions, the stress component Tn is zero and Tt is as follows using Equations (25a) and (29).

Equation (33a) shows that at a position s the stress component Tt is linearly distributed over the thickness, maximal and

minimal at the boundaries. Using Equations (13c) and (31) Tt is given by

(33b)
s (8) = x| £ (5) 4 ——x

l, m)¢
t(s)

Equation (33b) shows that contrarily to Bredt’s formulas the maximum shear stress in the cross-section does not

necessarily occur at the position with the smallest thickness. The shear stress at the midline is as follows using

Equations (13c¢), (29), (31), and (32c¢);

7.(s)= M, (33¢0)

(A+A)L(s)
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it is noted that its maximal value occurs at the position with the smallest thickness; interestingly the expression looks

similar to that of Bredt (Equation (23a), A; + A, replacing 2A).

Multiple-cell thin-walled section: The stress function is taken zero along the outer boundary and ¢ along the
inner boundary of a cell k. For a given cell at a position s the stress function at the inner and outer boundary are denoted

by ¢si and (I)SO , respectively. So, the stress component Tt at the midline at position s of thickness t(s) is as follows

7, (S) _ a¢ _ ¢so _¢si _ ¢si _¢so (34a)

on t(s) t(s)

Equation (31) is applied at each cell through the midline using Equations (12¢), (13a), and (34a); for the cell k it yields

ViV ds =2 Al\/l (34b)
t (s) ‘
A
where Ay is the area enclosed by the midline of the cell k. Let the cell k of thickness ti(s) be bordered by q cells of

thickness ty(s); Equation (34b) applied at the cell k is

"”kqgus) 2V @_MW o

So, the values Yy of the modified stress function at the inner boundaries of the cells can be determined from the system of

linear equations (34c). Y(s, n) defined in Equation (13a) with values s, and g at n ==+ t(s)/2, respectively, which
satisfies Equation (25¢) is given by
2 2
N L. n ) e _4an (35)

|
W(San)_(//si 5_6 TV 2+t(5) 4 t(s)z

The torsion constant It is then calculated using Equation (14c) and (35a)
1 3
I, :j(l)”si +Wso)t(8)d8+gj.t(8) dS+22ka1k (35b)
k

where Ajy is the area enclosed by the inner boundary of the cell k. The first integral in Equation (35b) is rewritten as

I(Wsi TV )t(S)dS = Zl//kAk (35¢)
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where A\ is the area of the cross-section material associated to the cell k. The second term at the right-hand side of

Equation (35b) can also be neglected; substituting Equation (35¢) into (35b) yields

| :;‘//k(p‘ik"'pbk) (354)

where A is the area enclosed by the outer boundary of the cell k. As an example the analysis of a three-cell thin-
walled section is presented in Appendix B.

In continuity regions, the stress component Tn is zero and Tt is as follows using Equations (25a) and (34a)

2Gd_gxn+¢si _¢so _ I\/It % 2n_|_l//si —Vy

dx t(s) I, t(s)

Similarly to the single-cell thin-walled section, the stress component Tt at a position s is linearly distributed over the

7,(s,n)= (36a)

thickness, maximal and minimal at the boundaries as follows

M o
Tt max.min (S) = I—t x| +t (S) + % (36b)
t

For a segment of the beam’s cross-section bordered by cells j and k and having the thickness tj, the shear stresses can

be calculated using Equation (36b) either from the cell j or from the cell k; Ty, j and T, o being the stresses at the inner

and outer boundary of the cell p (p =], k), respectively, it yields

M, Vi~V M, Vi—Y
Tj’izl_x _tjk +t— R Tj,OZI—X tjk +t—

t ik t ji G360

Mt (//k_l//j Mt Wk_l//j
T BT U

t jk t ik

It is noted as expected that Tj; = -Tk o and Tj o = -Tk .
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2.8  Warping of the cross-section
In the following the cross-sections are assumed free to warp. For a given cross-section and torque the values of the

stress function y(y,z) were determined according to previous sections. Substituting Equations (3a-b) into (5) yields
2 2
o’u ou

8y2 + ? =0 (37a)

Let the outer normal to the boundary make an angle a with the +y-axis (see Figure 2). The boundary conditions are such
that the shearing stress component at the boundary directed along the outer normal is zero from the condition of stress
free outer surfaces; this shear stress is expressed using Equations (9b) and (3a-b)

o _

7. =G (Z—ZT)d—Q cosa +G a—u+(y—yT)(:l—f sina =0 (37b)

dx 0z

Equation (37b) can be rewritten using (13c)

G a—ucoschrg—lZJsinO: +¥[(y—yT)sina—(Z—ZT)cosa]:0 (37¢)
t

Equation (37a) is the governing equation which is applied at any node of the cross-section and Equation (37¢) is the
boundary condition. For convenience the node distribution is taken the same as that for the stress function. So, the
governing equation (Equation (37a)) is expressed similar to that of the stress function (Equations (16) and (19));
however, zero is put in place of the right-hand side of the latter equations. A modified warping U is defined as U =

GIt/Mt x u; therefore, Equations (37a) and (37¢) become
PU LU
8y2 072 -
oU oJ . :

Ecosa+gsma+(y— y; )sina—(z-z; Jcosa =0

In Equation (38b) the derivatives of U are expressed using the stencils in Equations (17) and (20a-b). A kinematic

0

(38a-b)

boundary condition is needed for solving the warping problem; therefore, at the center of torsion T (yT, Z7)

(equivalent to the shear center) or at another point suitably chosen (i.e. a point in the symmetry axis) the warping is set
to zero and the governing equation is not applied.

Beam with circular cross-section: the center of torsion is at yr = zr = 0, and the boundary is defined by

y = Rcosa, and z = Rsina. It results that both governing equation and boundary condition (0U/dyxcosa. + dU/0zxsino

= 0) are homogeneous differential equations and consequently the warping is zero.
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3 Results and discussions

3.1 Torsion of beam with rectangular cross-section
The elastic torsional behavior of a beam with rectangular cross-section was analyzed. The dimensions of the cross-

section in y- and z-directions are denoted by a and b, respectively. The torsion constant It = kiba® and the maximal
shear stress T = ka GdO/dx are determined, depending on the ratio b/a. A 4 x 4, 8 x 8, and 12 x 12 element mesh are

considered. Details of the analysis and results are presented in Appendix A and in the supplementary material “Torsion
of beam with rectangular cross-section.” Table 1 lists the results obtained with Timoshenko [15] using the membrane
analogy (exact results) and those obtained in the present study.

Table 1 Coefficients of the torsion constant and maximal shear stress

b/a=
1.00 1.50 2.00 3.00 10.00

ki k ky k ky k ky k ka k

Solution by Timoshenko [15] (exact results)

0.141 0.675 0.196 0.848 0229 0930 0.263 0985 0.312 1.000

Present study (Finite Difference Method)

4 x 4 elements 0.133 0.688 0.185 0.838 0.215 0913 0243 0971 0270 1.000

8 x 8 elements 0.140 0.677 0.194 0844 0227 0925 0260 0982 0.298 1.000

12 x 12 elements  0.140 0.676  0.195 0.846 0228 0928 0.262 0984 0.305 1.000

As Table 1 shows, the results using FDM show good agreement with the exact results, and the accuracy is increased
through a grid refinement. For high values of b/a, the torsion constant It is equal to 1/3xba’.

The warping is calculated for a beam with dimensions a = b = 1.0m for a unity torque, whereby a 12 x 12 mesh
with spacings Ay = Az = h is considered. Recalling that yr = zr = 0 for the rectangular cross-section, the boundary
conditions are set observing that at the edges y = £ a/2 the outer normal to the boundary makes an angle o = 0 and m,
respectively, with the +y-axis and at the edges z =+ b/2 makes an angle a. = 7/2 and 37/2, respectively. Equation (38b)

is then formulated as Ue - Uy, - 2hz = 0 and U, - Ug + 2hy = 0 at the edges y = + a/2 and z = + b/2, respectively.

Details of the results are presented in the above mentioned supplementary material. The factored warping G x u = U/It

(It = 0.141 m*) is given in Table 2.
g
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Table 2 Factored warping G x u for a beam with dimensions a=b = 1.0m and Mt = 1.0 MNm

-0.151 0.104 0.202 0.212 0.168 0.091 0.000  -0.091 -0.168 -0.212 -0.202 -0.104 0.151
-0.270 -0.064 0.048 0.090 0.085 0.049 0.000  -0.049 -0.085 -0.090 -0.048 0.064 0.270
-0.306 -0.139 -0.035 0.017 0.031 0.022 0.000  -0.022 -0.031 -0.017 0.035 0.139 0.306
-0.279 -0.152 -0.068 -0.019 0.003 0.006 0.000  -0.006 -0.003 0.019 0.068 0.152 0.279
-0.208 -0.123 -0.064 -0.027 -0.008 -0.001 0.000 0.001 0.008 0.027 0.064 0.123 0.208
-0.111 -0.068 -0.037 -0.018 -0.007 -0.002  0.000 0.002 0.007 0.018 0.037 0.068 0.111
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.111 0.068 0.037 0.018 0.007 0.002 0.000  -0.002 -0.007 -0.018 -0.037 -0.068 -0.111
0.208 0.123 0.064 0.027 0.008 0.001 0.000  -0.001 -0.008 -0.027 -0.064 -0.123 -0.208
0.279 0.152 0.068 0.019 -0.003 -0.006  0.000 0.006 0.003 -0.019 -0.068 -0.152 -0.279
0.306 0.139 0.035 -0.017 -0.031 -0.022  0.000 0.022 0.031 0.017 -0.035 -0.139 -0.306
0.270 0.064 -0.048 -0.090 -0.085 -0.049  0.000 0.049 0.085 0.090 0.048 -0.064 -0.270
0.151 -0.104 -0.202 -0.212 -0.168 -0.091 0.000 0.091 0.168 0.212 0.202 0.104 -0.151

The distortions are zero in the symmetry axes of the beam and greatest in the sides between the axis and the angles.

3.2 Torsion of beam with rectangular cross section having an opening
The torsional analysis of a beam with rectangular cross section having an opening, as represented in Figure 12, was
conducted. The dimensions of the cross section in y- and z-directions are denoted by a and b, respectively. The opening

was centered to the cross section with dimensions a/2 and b/2 in y- and z-directions, respectively.

I/

b/4

~ ~

Figure 12 Beam with rectangular cross section having an opening
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The shear stresses T = kx Gd0/dx are calculated at the middle of the sides at nodes 7, 17, 27, and 37, and nodes 69a,

69b, 69¢, and 69d, depending on the ratio b/a, whereby a = 1.0m. A 12 x 12 mesh was considered. Details of the results
are presented in the supplementary material “Torsion of beam with rectangular cross section having an opening.” Table
2 lists the results obtained in this study for a torque Mt = 1.0 kNm.

Table 2 Coefficients of shear stresses

b/a =
Node 0.25 0.50 1.00 1.50 2.00 3.00 5.00

7 -0.162 -0.284 -0.372 -0.409 -0.448 -0.538 -0.712
17 -0.120 -0.201 -0.206 -0.162 -0.124 -0.079 -0.043
Shear stress Txy
27 -0.079 -0.118 -0.040 0.085 0.199 0.380 0.625
37 -0.037 -0.034 0.127 0.335 0.532 0.880 1.459
69a -0.135 -0.138 -0.127 -0.195 -0.330 -0.723 -1.843
69b -0.016 0.012 0.040 -0.027 -0.162 -0.556 -1.676

Shear stress Txz
69c 0.063 0.147 0.206 0.142 0.006 -0.389 -1.509

69d 0.189 0.299 0.372 0.310 0.174 -0.222 -1.342

Stress function in the opening 0,0062  0.0199  0.0307 0.0143  -0.0195 -0.1182 -0.3981

For ratios b/a = 3.0 and 5.0, the shear stresses Ty, over the entire thickness (nodes 69a, 69b, 69c¢, and 69d) are negative

and consequently caused a shear flow in the opposite direction of the torque; this result is not consistent with a proper
torsional behavior of the beam. Furthermore, it is noted that this situation coincides with negative values of stress
function in the opening. Therefore, it can be concluded that for negative values of the stress function in the opening
shear flows in the opposite direction of the torque occur; the grid must then be refined in order to have reliable results.
So, another calculation is conducted for the ratios b/a = 2.0 (12 x 24 mesh) and 3.0 (12 x 36 mesh) with grid
spacings Az = Ay. The results are presented in the above mentioned supplementary material and listed in Table 2a.

Table 2a Coefficients of shear stresses for b/a=2.0 and 3.0

Stress function

bfa in the opening Shear stress Txy Shear stress Txz

7 27 47 67 129a 129b 129c 129d
37 67 97 189a 189b 189c 189d
2.0 0.0100 -0.490 -0.175 0.130 0459 -0.211 -0.044  0.124  0.291

3.0 -0.0107 -0.603 -0.175 0.192 0.657 -0.293 -0.126 0.040 0.207
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For b/a = 3.0 the results are better (values of stress function from -0.1182 to -0.0107) but the mesh is still to improve in

order to have a positive stress function in the opening.

3.3 Torsion of a beam with thin-walled sections
The elastic torsional behavior of a beam with closed thin-walled sections, as represented in Figure 13, was analyzed.
The dimensions of the cross-section in y- and z-directions are denoted by a = 1.0m and b = 1.0m, respectively. The

thickness t is chosen a/6, a/8, a/10, a/15, and a/20.
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Figure 13 Beam with rectangular thin-walled section
The shear stresses T; are determined for a torque Mt = 1.0 kNm for numerous values of thicknesses. Details of the

results are presented in the supplementary material “Torsion of beam with thin-walled sections.” The results obtained in
the present study are compared to those using Bredt’s formulas (Equations (23a-b)) and are listed in Table 3.

Table 3 Shear stresses and torsion constant for the thin-walled closed section

t=
a/6 a/8 a/10 a/15 a/20
Shear stress Tt Bredt 432 522 6.17 8.61 11.08
Outer 5.82 6.58 745 9.79 12.21
boundary
Shear stresses Tt Midline 4.15 5.12 6.10 8.57 11.05
Inner 2.49 3.66 474 734 9.89
boundary
Torsion Constant It (Bredt)  0-096 0.0837 0.0729 0.0542 0.0429

Torsion Constant It (Present study) 0.1003 0.0854 0.0738 0.0545 0.0430
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The shear stresses in this study vary linearly over the thickness. As Table 3 shows, this paper presents values of shear
stresses at midline close to those of Bredt but the maximal values are higher. It is noted that for very small values of

thickness, the results at midline converge towards those of Bredt.

3.4 Torsion of a symmetrical beam with double-cell thin-walled section
The torsional behavior of a beam with symmetrical double-cell thin-walled section, as represented in Figure 14, was

analyzed. The thicknesses are tk, k = 1 to 4.
t1
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Figure 14 Beam with double-cell thin-walled section

Let /1 and Y be the values of the modified stress function at the inner boundaries of the cells 1 and 2, respectively;

they are calculated using Equation (34¢) and the torsion constant is determined using Equation (35d)

2An

v, =y, = s =2 (A + A
1 2 §+E+E t 1(1 1) (39)
t ot ot
t, t t, t t, t t, t
= = ab, =|lb-1-2fa-2-=2| =|b+l+2a+2+=2
An=A=ab A =(b-2-l)a-bob) A [belel ard

The results show that contrarily to Bredt’s analysis the central web (thickness t3) contributes to the torsional stiffness and

to the shear stresses; the stress distribution is linear and odd with respect to the midline with maximal and minimal value

—+ %t (402)

3
It

The maximal and minimal values in other segments are obtained using Equation (36b), with k=1, 2, and 4

Tt ,max,min

M (40b)
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4 Conclusion

The FDM-based model developed in this paper enables, with certain easiness, the elastic analysis of beams subjected to
Saint-Venant torsion. The results showed that the calculations, as described in this paper, yield accurate results. Beams
with thin-walled sections were also analyzed and closed form solutions were presented; these solutions which account
for the linear distribution of the shear stresses over the thickness can be regarded as an improvement of the Bredt’s

analysis.

The following aspect was not addressed in this study but could be analyzed with the model in future research:

v' Analysis of beams with thin-walled sections using FDM
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° “Torsion of beam with thin-walled sections.”
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Appendix A Beam with rectangular cross-section
Given a beam with rectangular cross-section and known values of \J. The integral | ydydz needed for the torsion

constant It is determined here. The grid spacings in y- and z-direction are denoted by Ay and Az, respectively. The

cross-section is divided in rectangles around grid points, as represented in Figure 15.

N1 o\

Figure 15 Rectangles for the calculation of the torsion constant
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Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion

Given the rectangle bounded by nodes k, e, s, and se in Figure 15. The stress function y(y,z) is approximated as follows

l//(yﬂ Z) - l//k fk(y9 Z)+l//e fe(y’ Z) +l//s fs(y9 Z)+l//se fse(ya Z) (A1)

The shape function fe(y,z) i.e. can be expressed as follows

__ ¥
fe(ya Z)_ AyXAZ (A2)

Using Equations (A1) and (A2), the integral for the rectangle of interest is

_UV/dde = i(l/lk W, Y Y )X AY X AZ (A3)

Using Equation (A3) for a uniform grid, | dydz on a rectangle around an interior node (node k) is Wi AyAz.
Similarly, using Equation (A3) and recalling that the values of \/ are zero along the boundary, the integral for a

rectangle around a boundary node (node nn) is 1/8x\/,AyAZ, and for a rectangle around an angle node (node n1)

1/64x\y Ay AZ.

Appendix B Three-cell thin-walled section

Given the three-cell thin-walled section represented in Figure 16, with thicknesses tk, k =1 to 8. Let /1, /2, and /3 be

the values of the modified stress function at the inner boundaries of the cells 1, 2, and 3, respectively.
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Figure 16 Three-cell thin-walled section
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Cross-sectional Analysis of Beams Subjected to Saint-Venant Torsion

The areas Apmk, Ak, and Ay with k =1, 2, and 3 are as follows

t ot t ot t ot t ot
=(a+b)c, A, =|a+b—2—-=2|lc—L1-2 | A, =|a+b+2+2 ||c+2+=
Ay =(a+b)c,A, S5 1675 A Ay Cas-
t. t t t t. t
:ad, —|lg-—=>2_7 d__3__6, =la+=2+2L||d+2+2 (B1)
Pz A 2 2 2 2 A 2 2 2 2
t ot t. t t ot t t
=hd, =|b—ZL-2|ld—=-=2L|, =|b+ZI+2||d+2+=2
P A 2 2 2 2 A 2 2 2 2

Equation (34c) applied at each cell as follows yields the values .

a+b ¢ a+b ¢ a b
—t—t—t— |y, ——y,—=2
¥V, t t) t 3 l//2t3 l//3t3 Avi

a d a d a d
—F—+—+— |-y, ——y,—=2
v, _'[3 Lot t v, t Vs t Ay @1

b d b d b d
—t—t—t— |-y, ——,—=2
v, _t3 t7 ts tS_ 4 t3 v, t7 AM3

Then the torsion constant and the shear stresses are calculated using Equations (35d) and (36¢), respectively.
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