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Abstract: Predicting change from multivariate time series has relevant applications ranging from 

medical to engineering fields. Multisensory stimulation therapy in patients with dementia aims to 

change the patient’s behavioral state. For example, patients who exhibit a baseline of agitation may 

be paced to change their behavioral state to relaxed. This study aims to predict changes in behavioral 

state from the analysis of the physiological and neurovegetative parameters to support the therapist 

during the stimulation session. In order to extract valuable indicators for predicting changes, both 

handcrafted and learned features were evaluated and compared. The handcrafted features were 

defined starting from the CATCH22 feature collection, while the learned ones were extracted using 

a Temporal Convolutional Network, and the behavioral state was predicted through Bidirectional 

Long Short-Term Memory Auto-Encoder, operating jointly. From the comparison with the state-of-

the-art, the learned features-based approach exhibits superior performance with accuracy rates of 

up to 99.42% with a time window of 70 seconds and up to 98.44% with a time window of 10 seconds. 

Keywords: behavioral change prediction; learned features; deep feature learning; handcrafted fea-

tures; bidirectional long-short term memory; autoencoders; temporal convolutional neural network; 

clinical decision support system; multisensory stimulation therapy; physiological signals. 

 

1. Introduction 

In recent years, the detection and prediction of changes in time series data obtained 

from observations of a monitored system has become a relevant research topic in various 

fields [1, 2, 3]. In particular, change-point detection has attracted considerable interest in 

medical and neurological fields, where the accurate determination of changes in physio-

logical parameters is particularly critical [4, 5]. 

Furthermore, change prediction is also important in supporting clinical decisions re-

garding the delivery of therapeutic interventions, such as in the case of the multisensory 

stimulation in dementia which was investigated in the MS-Lab (Multi Sensorial Stimula-

tion Lab) project [6]. In MS-Lab, aiming to improve the efficacy of multisensory stimula-

tion, a series of miniaturized non-invasive sensors located on the patient’s body were used 

to measure various neurovegetative parameters in real-time. A Clinical Decision Support 

System (CDSS) was specially designed to find predictive patterns in multivariate neu-

rovegetative time series (i.e., that anticipate behavioral reactions induced by therapy stim-

uli), and thus to provide useful hints to the therapist in selecting the most effective stim-

ulation. 

As it is well known, behavioral and non-behavioral reactions are induced by endog-

enous and exogenous stimuli. Behavioral reactions, such as expressing aggressiveness, 

facial emotions, etc., can be inhibited by voluntary control to some extent. On the other 

hand, non-behavioral reactions, as neurovegetative manifestations, are not under the 
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influence of the cerebral cortex and thus are very difficult (if not impossible at all) to con-

trol voluntarily [7, 8]. Furthermore, neurovegetative responses (i.e., physiological param-

eters), in terms of ergotropic and trophotropic reactions, can be considered as anticipatory 

of some behavioral reactions such as activation and relaxation [9, 10, 11]. 

The involuntary behavior is related to autonomic nervous system (ANS) functions 

such as sympathetic and parasympathetic activities: stressful or relaxing situations cause 

dynamic changes in ANS. More specifically, the sympathetic nervous system (SNS) dom-

inates during stressful event, whereas the parasympathetic nervous system (PNS) domi-

nates during resting behavior [12]. These concepts have been exploited in several studies 

to investigate symptoms of stress, e.g., agitation, anger, fear and frustration, by measuring 

physiological neurovegetative parameters, since many of them are regulated by SNS and 

PNS, such as heart rate (HR), heart rate variability (HRV), respiration rate (RR), respira-

tion amplitude (RA), galvanic skin response (GSR), blood pressure (BP), and so on [13, 

14]. In particular, various studies have shown [15, 16] that skin temperature (ST) and GSR 

are indicator of stress level, i.e., high levels of stress are related to low levels of skin tem-

perature due to contraction of blood vessels, and low levels of skin resistance due to an 

increase of the body moisture. 

Consequently, physiological neurovegetative parameters can be investigated as can-

didate indicators able to anticipate the patient’s behavioral state underwent stimulation 

therapy to support decisions about the choice of the better stimulation to apply [6]. In that 

context, it is overwhelming important to detect early changes in physiological parameters 

suitable to predict incipient changes in patient’s behavioral state. The problem can be 

posed in terms of multivariate time series of physiological and neurovegetative parame-

ters, and it involves identifying suitable features to highlight changes. 

The watershed between methods for identifying changes in time series is undoubt-

edly represented by how features are obtained, which can be handcrafted or learned [17]. 

Most of the features reported in the literature are designed manually, i.e., handcrafted, 

paying attention to peculiar characteristics of the physiological parameters under consid-

eration. The design of handcrafted features often requires finding a compromise between 

accuracy (ACC) and computational efficiency. 

Healey and Picard [18] investigated the applicability of physiological signals from 

Electrocardiogram (ECG), Electromyogram (EMG), GSR, and RA (i.e., the rib cage expan-

sion) to determine driver’s stress levels in a real-world scenario. The authors reported that 

three stress levels could be recognized with an overall ACC of 97.4% using statistical 

handcrafted features extracted from 5-minute data segments. 

Handcrafted feature design is often associated with data fusion when dealing with 

multiple sensors, that is, the problem of how to integrate them to achieve better analysis 

results [19]. Zhang et al. [20] proposed a Bayesian network for the hierarchical merging of 

multi-sensor data, which differs from conventional approaches that integrate features like 

a flat layer. Downstream of a two-stage process for selecting statistical features, the au-

thors suggested an approach capable of autonomously learning the Bayesian network 

structure. The authors conducted the experiments using two public domain datasets for 

stress detection, including EMG, GSR, HR, RA, and BP signals, and so obtaining an ACC 

of 90.53%. 

Among the various physiological and neurovegetative signals, the HRV analysis (i.e., 

R–R interval calculated from ECG peaks) effectively reflects the ANS regulation of cardiac 

activity [21]. Specifically, the high-frequency power of the HRV, i.e., from 0.15 Hz to 0.40 

Hz, is associated with the PNS activity, while the low-frequency power, i.e., in the 0.04-

0.15 Hz band, is an indicator associated with the activity of the SNS. Wang et al. [22] in-

vestigated the use of HRV to distinguish physiological conditions under three different 

stress levels. The authors proposed a statistical feature selection algorithm based on a k-

nearest neighbor classifier capable of exhibiting 88.28% ACC on a public domain dataset 

for assessing stress while driving. 

In order to develop a prototype system for mental stress assessment, Chiang [23] 

combined various approaches, such as Single Value Decomposition (SVD), fuzzy theory, 
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and associative Petri nets, to extract and analyze HRV from the ECG signal. The author 

extracted 12 features, both time-domain (statistical) and frequency-domain (power spec-

trum), from which selected the nine most representative ones by using the information 

gain method. The reported results, obtained on a public domain dataset, showed an ACC 

of 95.10%. 

Chen et al. [24] developed an automatic system to detect driving-related stress levels 

based on multi-channel physiological signals. Various features were extracted by the au-

thors using wavelet decomposition, time, and spectral analysis, and combining Sparse 

Bayesian Learning (SBL) and Principal Component Analysis (PCA) techniques to select 

the optimal feature set. Finally, they used Kernel-based classifiers to improve stress de-

tection ACC, which on a publicly available dataset was 89.70%. 

Zhang et al. [25] investigated the feasibility of recognizing different stress levels from 

heterogeneous data of a physiological type (such as ECG, EMG, and GSR) and of a behav-

ioral type, i.e., by using the reaction time. The authors employed visual and acoustic 

stressors to elicit stress in the subjects during the experiment, reporting a stress detection 

ACC of 92.36%. 

Numerous methods have been devised to convert time series of any complexity into 

feature sets that can represent the dynamic characteristics of the original time series [26]. 

The selection of features relevant to the problem under consideration was typically made 

manually, without a quantitative comparison between the various candidate features. 

Nevertheless, this handcrafted process left uncertainty about the optimality of the selected 

ensemble. For this reason, data-driven methods have recently been proposed that can 

make systematic comparisons between a large number of time series features. One of these 

approaches has been operationalized in the form of a Matlab® toolbox with the name 

hctsa (highly comparative time-series analysis) [27]. 

Similarly, Lubba et al. [28] have developed a data-driven framework, called 

CATCH22 (22 CAnonical Time-series CHaracteristics), capable of distilling the most rep-

resentative features from thousands of candidates extracted from a set of 93 different time 

series classification problems, including scientific, industrial, financial, and medical ap-

plications. The authors implemented their framework in C language while providing 

wrappers for python, R, and Matlab®. 

The handcrafted features are obtained through a labor-intensive engineering process 

based on experience and a priori knowledge, marking the limits of current machine learn-

ing algorithms, unable to extract all the juice contained in the data. In order to expand the 

applicability of machine learning algorithms, it is highly desirable to automate the feature 

extraction process, making the algorithms less dependent on feature engineering. 

Feature learning, also known as representation learning, or end-to-end learning, has 

recently established itself in the habit of Deep Neural Networks (DNNs). Indeed, initially 

used to solve complex image classification and object recognition problems, DNNs have 

also proved helpful for extracting features regardless of the specific classification/regres-

sion problem on hand [29]. Furthermore, the deep feature learning process is intimately 

connected with unsupervised learning. In fact, the learning of features does not require 

labeled samples since the aspects relevant to the prediction problem under consideration 

(i.e., classification or regression) are somehow incorporated in the distribution of the input 

data. This is particularly true under the manifold hypothesis, according to which the ele-

ments of application interest are always associated with low dimensional regions (i.e., 

manifolds) included in the original data space [30]. 

According to the "greedy layer-wise unsupervised pre-training" paradigm [31], the 

feature hierarchy is learned one level at a time through unsupervised learning of the trans-

formation that connects one level to the next. In doing so, a layer of weights is added to 

the deep neural network at each iteration. Feature learning was applied by Wang and Guo 

[32] to the problem of recognizing driver’s stress states. The authors proposed a two-stage 

model. Initially, the features were learned by deep learning based on Multi-layer Percep-

tion (MLP) Auto-Encoders (AEs) from physiological signals of ECG, GSC, HR, HRV, and 
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RA; subsequently, the stress states were recognized using the AdaBoost classifier. The 

reported results showed 90.09% ACC on a publicly available dataset. 

Time series prediction, previously based mainly on analytical models, such as Auto-

Regressive Integrated Moving Average (ARIMA) [33], has recently been increasingly im-

proved by deep learning models. In particular, the adaptation of the MLP to deal with 

time series is represented by the Recurrent Neural Network (RNN), whose main charac-

teristic is that the output of the hidden layer at the present instant is transferred to the 

hidden layer of the following time instant to preserve the time dependence of the data. 

However, in the presence of long-time dependencies, this transfer becomes difficult, rais-

ing the problem known as vanishing gradient in the back-propagation calculation [34]. To 

overcome such drawbacks, Hochreiter and Schmidhuber [35] proposed the Long Short-

Term Memory (LSTM), in which the internal structure of the hidden layers is more com-

plicated by the presence of blocks equipped with forget gate, input gate, and output gate. 

The distinctive aspect is that the memory cell state crosses the entire chain to selectively 

add or remove information through the intervention of the three gates. 

Sundaresan et al. [36] proposed an LSTM-based DNN to classify mental stress from 

EEG scalp signals in young people with ASD. The results showed that mental stress states 

could be accurately assessed in adolescents with and without ASD, and adolescents with 

varying baseline levels of anxiety. The effectiveness of LSTM has been demonstrated, in 

particular, for anomaly detection in time series with remarkable results [37, 38, 39]. The 

anomaly detection, in this case, is based on the application of the reconstruction error used 

as an anomaly score. An AE structure is often used to compress and reconstruct multi-

dimensional input starting from non-anomalous training data. Indeed, AE cannot cor-

rectly reconstruct never-before-seen patterns of anomalous data, unlike previously-seen 

patterns of non-anomalous data. 

CNNs represent the most prominent example of deep learning exploitation for fea-

ture extraction, initially applied mainly to solve computer vision problems such as object 

recognition and classification [40, 41, 42], later they were also used for processing of phys-

iological multivariate time series [43, 44]. However, CNNs are not born to manage tem-

poral dependencies; therefore, to fill this gap, Bai et al. [45] proposed the Temporal Con-

volutional Network (TCN), transposing the time-dependency problem from the RNN do-

main to the CNN one. TCNs proved superior to LSTMs in various application fields [46, 

47], also resulting in computationally more efficiency [48]. 

The present study aims to establish a comparison between handcrafted and learned 

features in predicting behavioral changes from physiological signals during multisensory 

stimulation therapy in Dementia. The deep learning framework put together the benefits 

of TCN in feature extraction and of Bidirectional Long Short-Term Memory (BLSTM) in 

change detection, resulting in increased computational efficiency and better detection per-

formance. The change prediction of the patient’s behavioral status supports therapists in 

decision-making on selecting suitable stimulations. The study was carried out as part of 

the MS-Lab project [6], and the computational framework developed was integrated into 

the CDSS, currently undergoing clinical trials. 

2. Materials and Methods 

In this section the algorithmic framework is presented, focusing on the behavioral 

change prediction from physiological multivariate time series. 

2.1. Experimental Setup and Data Acquisitions 

The Experimental protocol adopted in this study  was  approved  by  the  Ethics  
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Figure 1. Multi-sensor setup for the acquisition of physiological and neurovegetative parameters. 

Committee of the University of Salento (Lecce, Italy). The physiological signals of 

HR, RR, HRV, and Activity Level (ACT) were measured through chest strap Zephyr™ 

BH3 [49], worn by each subject during the stimulation session. The physiological signal 

GSR was measured by using the MINDFIELD® eSense [50] device provided with two 

electrodes attached to the outer side of the left-hand palm. The BP were measured with a 

wearable cuff-based device manufactured by GIMA® [51]. All sensors mentioned above 

are shown in Figure 1. The physiological signals were collected in two different datasets, 

namely Dataset 1 (DS1) and Dataset 2 (DS2). In addition, a further dataset DS2’ was also 

obtained starting from DS2 by suppressing the GSR signal. The main characteristics of the 

two datasets are summarized in Table 1 and described in detail below. 

In the case of DS1, four patients were recruited from the nursing center of Casa 

Amata Srl (Taviano, Lecce, Italy) based on their degree of dementia severity, assessed 

through the Mini-Mental Statement Examination (MMSE) with a score lower than 10 

points [6]. Four behavioral states were considered: Active (AC), Agitated (AG), Apathetic 

(AP), and Relaxed (RE). Initially, each patient underwent a neurological examination to 

establish the underlying behavioral state, i.e., AG or AP behavior. Two patients were en-

rolled with an underlying AG type clinical condition, and the other two with an AP un-

derlying clinical condition. 

Then, during the therapy session, each patient was subjected to a multisensory stim-

ulation lasting 7-13 minutes, after an initial period of equal duration in the absence of 

stimulation used as a baseline. The type of stimulation was chosen based on the patient’s 

underlying behavioral status and preferences. For example, in the case of a patient with 

AG behavior, stimulation will be selected to relax, i.e., to change the behavioral state from 

AG to RE. The stimulations used consisted mainly of exposure to video clips according to 

each patient’s preferences (e.g., dances and sounds of local folk, rock music bands, relax-

ing light colors and sounds, etc.). 

HR, HRV, RR, and ACT parameters were acquired during the session. Instead, the 

BP and GSR parameters were not acquired as the measurement systems (i.e., electrodes 

attached to the palm and a cuff in the arm) were not adequate for the clinical conditions 

of some patients (especially for those with AG behavior). The therapist manually anno-

tated the behavioral states manifested by each patient. 
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Regarding the DS2 dataset, to further validate the algorithmic framework with also 

additional physiological signals, i.e., the GSR and BP, the dataset was collected by involv-

ing five healthy volunteers. The participants were exposed to different stimulation sce-

narios to elicit the four behavioral states AC, AG, RE, and AP.  

Specifically, for the AC and AG behaviors, the participants were asked to watch short 

video clips selected from the FilmStim database [52] to elicit specific emotions as follows: 

AC – amusement, sadness, tenderness; AG – anger, fear, disgust. In the case of the AP 

behavioral state, the elicited emotion was boredom by exposing the volunteers to the re-

petitive task of performing orally simple arithmetic operations displayed on the screen. 

Finally, the RE behavior was simulated using the relaxation VR application devel-

oped by TRIPP, Inc. [53] for the VR viewer Oculus Quest 2 [54]. The exposure to stimula-

tions lasted from 15 to 60 minutes, and the same volunteer signaled the beginning of the 

new behavioral state. Then, from the beginning of the new behavioral state, the neuroveg-

etative signals were extracted for a duration equal to the dataset DS1, i.e., about 7-13 

minutes. 

Table 1. Overview of the collected datasets. 

Dataset Involved subjects Included signals Behavioral states 

DS1 4 (patients) HR, RR, HRV, ACT AC, AG, AP, RE 

DS2 5 (healthy volunteers) HR,RR,HRV,BP,GSR,ACT AC, AG, AP, RE 

DS2’ 5 (healthy volunteers) HR, RR, HRV, ACT AC, AG, AP, RE 

2.2. Data Preprocessing 

All signals provided by the BH3 [49] and eSense [50] devices were sufficiently clean, 

so filtering was unnecessary. The BH3 device provided the HR, HRV, RR, and ACT signals 

at one sample per second, whereas the eSense device sampled the GSR signal with a sam-

ple rate of 5 Hz, so it was necessary to down-sample the GSR signal at 1 Hz. 

In order to have balanced datasets, the duration of the acquired stimulations was 

standardized to 7 minutes each. Physiological signals were treated as multivariate time 

series by extracting sliding windows lasting 10 to 70 seconds at a 1-second step. Thus, the 

processed time-series samples varied from 351 (window duration of 70 s) to 411 (window 

duration of 10 s) for each behavioral state, getting a total amount of samples per subject 

ranging from 1364 to 1604 in the case of DS1, and from 1023 to 1203 in the case of DS2. 

In order to better evaluate the handcrafted features compared to the learned ones, 

the statistical features defined in the previous study [55] have been extended by extracting 

the 22 features suggested by Lubba et al. [28]. This collection of features, called by the 

authors “CAnonical Time-series CHaracteristics” (CATCH22) and summarized in Table 

2, is the result of a selection among 5000 candidate features, carried out by evaluating the 

classification performance of 93 different time series. 

Let ��  be the stimulation duration (in seconds), and let �� ∈

{10, 15, 20, 30, 40, 50, 60, 70} be the window duration (in seconds), the number of sampled 

windows is given by �� = �� − ��, and the feature extraction process can be defined as 

the following map function 

�����22 ∶  ��� ∈ ℝ� �� × �� �� → ��� ∈ ℝ� �� × �� �� (1)

where �� ∈ {4, 6} is the number of collected physiological signals, �� = 22 is the number 

of extracted features, ��� is the time-series matrix, and ��� is the corresponding feature 

matrix. 
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Table 2. Time-series features suggested by Lubba et al. [28] and included in CATCH22 collection. 

Type Description 

Distribution  Mode of z-scored distribution: 5-bin histogram. 

 Mode of z-scored distribution: 10-bin histogram. 

Simple temporal statistics  Longest period of consecutive values above the mean. 

 Time intervals between successive extreme events above

the mean. 

 Time intervals between successive extreme events below 

the mean. 

Linear autocorrelation  First 1/� crossing of autocorrelation function. 

 First minimum of autocorrelation function. 

 Total power in lowest fifth of frequencies in the Fourier 

power spectrum. 

 Centroid of the Fourier power spectrum. 

 Mean error from a rolling 3-sample mean forecasting. 

Nonlinear autocorrelation  Time-reversibility statistic, ⟨(���� − ��)�⟩�. 

 Automutual information, � = 2, � = 5. 

 First minimum of the automutual information function. 

Successive differences  Proportion of successive differences exceeding 0.04�. 

 Longest period of successive incremental decreases. 

 Shannon entropy of two successive letters in equiprobable 

3-letter symbolization. 

 Change in correlation length after iterative differencing. 

 Exponential fit to successive distances in 2-d embedding 

space. 

Fluctuation Analysis  Proportion of slower timescale fluctuations that scale with 

DFA (50% sampling). 

 Proportion of slower timescale fluctuations that scale with 

linearly rescaled range fits. 

Others  Trace of covariance of transition matrix between symbols 

in 3-letter alphabet. 

 Periodicity measure of Wang et al. [56]. 

2.3. One-Class Support Vector Machine 

The behavioral change detection can be posed as a one-class classification problem 

where the target (or normal) class corresponds to the behavioral state observed prior to 

the stimulation administration, also called baseline state. As is well known, the one-class 

classification is characterized by a sufficiently large number of samples belonging to the 

target class, while the samples belonging to classes not of interest (outliers) are absent or 

very few. Such condition is naturally satisfied by the application under consideration, i.e., 

behavioral-state change detection, since it is the therapist that determines the initiation of 

the multisensory stimulation. Thus, the classifier training occurs during the baseline state, 

and it ends when a stimulation is applied. The classic formulation of the One-Class Sup-

port Vector Machine (OCSVM) provides for using hyperplanes to isolate the target class 

samples from outliers that are assumed to fall on the plane through the origin [57]. Hence, 

the OCSVM algorithm maps data points of the feature space (���) into the Kernel space to 

separate them with maximum margin, assigning the value +1 to points of the target class 

and -1 to the other points.  

Let � ∈ ℝ� be the normal vector of the hyperplane separating the target class from 

the origin, let �� ∈ ℝ� be the �-th row of ��� (� = 1, … , �), let � ∈ ℝ� be slack variables 

that penalize the outliers, let � ∈ ℝ  be  the  maximum  separation  distance  of  the  
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Figure 2. Physiological signals in baseline (AG) and stimulated (RE) behavioral states. 

hyperplane from the origin, and let � ∈]0,1] be the upper bound on the percentage of 

outliers, hence the normal vector � is given by solving the following maximization prob-

lem 

max
�,�,�

1

2
‖�‖� +

1

� �
� ��

�

���

− � 

subject to ∀� = 1, … , �: � ⋅ ��
� ≥ � − ��, �� > 0. 

(2)

Considering physiological signals measured during a multisensory therapy session, 

as shown in Figure 2, the baseline physiological signals are used to train the OCSVM 

model. After that, during the stimulation phase, changes in physiological parameter can 

be detected through model testing, predicting a Behavioral State Change (BSC), e.g., from 

AG to RE in the example reported in the previously mentioned figure. 

2.4. Bidirectional Long Short-Term Memory Autoencoders 

Let �� ∈ ℝ� be an input time-series data (i.e., the �-th row of ���), let ��, �� ∈ ℝ�×� 

(∀� ∈ {Ι, �, �, �}) be weight matrices, let �� ∈ ℝ� (∀� ∈ {Ι, �, �, �}) be bias vectors, a LSTM 

memory cell at time step � is defined by its input Ι�, its state ��, its output ��  and its gates 

��, ��, ��  (input gate, forget gate, and output gate, respectively), and hence its transition 

equations are given as follows 

Ι� = ℎ(���� + ������ + ��)  

�� = �(���� + ������ + �� + �� ∘ ����)  

�� = ������ + ������ + �� + �� ∘ �����  
�� = �(���� + ������ + �� + �� ∘ ��)  

�� = �� ∘ Ι� + �� ∘ ����  

�� = �� ∘ ℎ(��)  

(3)

where ���, ��, ��� are three peephole connections scaling the gates with the cell state, �(∙) 

is the sigmoid activation function, ℎ(∙) is the hyperbolic tangent activation function, and 

∘ denotes the Hadamard product. 

The structure of the LSTM memory cell described above allows the network to access 

long time-series sequences in both backward and forward directions (within the same 

time window). The general structure of such a BLSTM network is shown in Figure 3. 
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Figure 3. Diagram of a BLSTM layer. 

In this paper, the BSC prediction using feature learning is accomplished via AE, in 

which both encoder and decoder networks are based on BLSTM. An AE is an unsuper-

vised neural network consisting essentially of an input layer, an encoder neural network, 

a decoder neural network, and an output layer. Once compressed by the encoding, the 

data provided as input are represented in the so-called latent space. Then, the decoder 

decompresses such a latent representation trying to reconstruct the input data into output. 

More specifically, let �� ∈ ℝ� (with � = 1, … , �) be the time series provided as input 

to the AE network, let �(��) ∈ ℝ��
(with �� < �) be the encoded representation provided 

by the encoder network, let �̂� = ���(��)� ∈ ℝ� be the reconstructed input provided by 

the decoder, the AE training consists in minimizing the reconstruction error 

RE(�, �̂) =
�

�
∑ ‖�� − �̂�‖

��
���   (4)

which is backpropagated through the network to update the weights. 

The effectiveness of the AE in learning features lies in constraining the latent space 

to be smaller than the input (�� < �), which forcing the neural network to learn the most 

salient features of the time series data ���. 

The network parameters of the BLSTM-AE architecture, whose overview is shown in 

Figure 4, are optimized using the genetic approach presented by Diraco et al. in [58]. For 

this purpose, a variable number of blocks is considered ranging from 3 to 5, two external 

and one more internal, each block consisting of BLSTM, fully-connected, Rectified linear 

unit (ReLU) and dropout layers, where the last two layers are optional. At the end of the 

optimization process, the obtained architecture is compound of three blocks, of which the 

first and last consist of only the BLSTM (�� and ��) and fully-connected (�� and ��) lay-

ers, while the central one includes all layers (��, ��, ��, ��). Regarding the network param-

eters, the number of hidden units ��, the output dimensions ��, and the dropping out 

probability �� are provided in Table 3. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2022                   doi:10.20944/preprints202203.0403.v1

https://doi.org/10.20944/preprints202203.0403.v1


 

 

 

Figure 4. Architecture of the BLSTM-AE network. 

Table 3. Optimized parameters of the network architecture shown in Figure 4. 

Network parameters Optimized values 

��, ��  16, 500 

��, ��, ��  256, 50, 0.7810 

��, ��  16, 500 

2.5. Temporal Convolutional Network 

In order to increase the representational power of learned features also in situations 

of temporal dependencies that go beyond a single observation window, the use of a su-

pervised pretrained network based on temporal convolution (i.e., TCN) was investigated 

in combination with the unsupervised Bidirectional Long Short-Term Memory Autoen-

coder (BLSTMAE) network previously described. In addition, to not jeopardize the basic 

unsupervised structure of the BLSTMAE approach, the pre-training of the TCN was con-

ducted on the DS2 dataset, which was different from the one used for validation, i.e., the 

DS1 dataset. 

TCN networks [45] are convolutional networks specifically designed to process time 

series, similar to LSTM networks but with even better performance. The main feature of 

TCN networks is implementing a dilated causal convolution, i.e., it only involves values 

temporally prior to the current one. This allows the network to capture long-term patterns, 

increasing the receptive field without resorting to pooling and, thus, avoiding loss of res-

olution [59]. 

Given the input sequence � ∈ ℝ�, the dilation factor �, the convolutional kernel � 

of size � ∈ ℕ (with � > � > �), thus the Dilated Causal Convolution (DCC) with dilation 

factor � at the time instant � is defined as follows 

 DCC�(�, �)(�) = ∑ �(�)�����
���
���  (5)

that for � = 1 corresponds to the classical convolution. By exponentially increasing the 

dilation factor at each layer, it is possible to obtain a wider receptive field. In  this  way,  
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Figure 5. The general TCN architecture with � residual blocks. 

considering a total amount of � layers, the size � of the receptive field of the network is 

given by 

� = (� − 1)(2� − 1) + 1. (6)

The general TCN architecture, provided in Figure 5, has a modular structure based 

on � residual blocks, each including two DCC with equal dilation factor, depth and size. 

Suck blocks are characterized by residual connections that, as suggested by He et at. [60], 

improve performance of deep architectures by adding the block input to its output. 

As for the BLSTMAE network, also in the case of the TCN network the parameters 

have been optimized using the genetic approach presented in [58]. The corresponding 

optimized parameters, i.e., the numbers of convolutional filters ��, the filter sizes ��, and 

the drop out percentages ��, are reported in Table 4. 

Table 4. Optimized parameters of the network architecture shown in Figure 5. 

Network parameters Optimized values 
�  5 
��, ��, ��  256, 8, 0.6116 
��, ��, ��  256, 6, 0.6391 
��, ��, ��  256, 19, 0.0438 
��, ��, ��  256, 8, 0.6323 
��, ��, ��  256, 7, 0.5121 

2.6. Joint Temporal Convolutional Network And Bidirectional Long Short-Term Memory 

Autoencoders 

As already mentioned, the two networks TCN and BLSTMAE are put together in 

order to increase the representation power of learned features. In the BLSTMAE TCN joint 

architecture, the TCN network plays the role of feature extraction, while the BLSTMAE 

network plays the role of detecting BSC. As shown in Figure 6, the TCN is pre-trained by 

using time-series data from DS2, whereas DS1 time-series data are used solely for testing. 

This distinction allows to preserve unsupervised operation during the testing phase. 

It is important to note that the TCN pretraining is done by simulating the behavioral 

states AC, AG, RE, and AP, involving healthy volunteers, i.e., whose physiological pa-

rameters are collected in the DS2’ dataset. In the  testing  phase,  instead,  the  joined  
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Figure 6. General overview of the joined architecture including the TCN and BLSTM-AE networks. 

 

Figure 7. Architecture of the BLSTM-AE network adopted in conjunction with the TCN. 

networks operate in unsupervised mode since activations (i.e., learned features) extracted 

from the pre-trained TCN are supplied as input to the BLSTMAE, which operates natu-

rally in an unsupervised manner, and then the RE is estimated comparing learned features 

and reconstructed ones by using Eq. 4. 

In the joint architecture, the parameters of the BLSTMAE network are optimized 

again on the basis of the activations extracted from the TCN network, and by following 

the approach presented in Diraco et al. [58]. The optimized architecture is provided in 

Figure 7, and optimized network parameters, i.e., number of hidden units ��, output size 

��, and dropping out probability ��, are reported in Table 5. 

Table 5. Optimized parameters of the network architecture shown in Figure 7. 

Network parameters Optimized values 
��, ��, ��  256, 200, 0.0083 
��, ��, ��  128, 100, 0.2875 
��, ��, ��  256, 200, 0.0095 
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3. Results 

A performance comparison of the three approaches is provided in Table 6. As can be 

seen, although generally the ACC percentages decrease with the window (WD) durations, 

this trend is much less pronounced in the case of the BLSTMAE TCN approach. The 

OCSVM approach based on handcrafted features has been evaluated in correspondence 

to windows with duration equal to or greater than 15s, since for windows of shorter du-

ration not all the features of the CATCH22 collection are defined. 

The ACC is defined in terms of true positives (TPs), true negatives (TNs), false posi-

tives (FPs), and false negatives (FNs) as follows 

ACC =
�����

�����������
 . (6)

TP, TN, FP, and FN refer to change predictions, and more specifically, TP are the changed 

states correctly predicted as changed, TN are unchanged states correctly predicted as un-

changed, FP are unchanged states wrongly predicted as changed, and FN are changed 

states wrongly predicted as unchanged.  

All BSCs are considered from the baseline behavioral state to a different behavioral 

state manifested after the stimulation. For example, the AG-AC change indicates the tran-

sition from the baseline state of AG to the stimulated state of AC after the administration 

of sensory stimulation. The Receiver Operating Characteristic (ROC) curves of the BSP 

achieved with the evaluated approaches are reported from Figure 8 to Figure 13, provid-

ing both values of ACC and Area Ander the Curve (AUC). 

Table 6. Average ACC percentages of the three approaches at the varying of window durations. 

WD (seconds): 70s 60s 50s 40s 30s 20s 15s 10s 

Method Dataset 

OCSVM DS1 95.90 94.19 91.98 87.80 85.36 82.28 79.03 NA 

DS2 98.24 97.66 96.51 93.26 91.31 88.79 85.68 NA 

DS2’ 97.69 97.39 96.24 92.77 91.06 88.61 85.55 NA 

BLSTMAE DS1 85.98 85.02 83.14 81.26 80.97 80.46 79.37 74.97 

DS2 91.01 87.78 86.82 86.61 85.69 85.14 84.93 83.92 

DS2’ 86.36 86.09 85.93 85.75 84.17 83.75 83.05 82.55 

BLSTMAE 

TCN 

DS1 99.25 98.92 98.91 98.72 98.71 98.69 98.68 98.44 

DS2 99.42 99.28 99.18 99.11 99.04 99.02 98.92 98.38 

DS2’ 99.21 99.13 99.03 98.94 98.89 98.81 98.59 98.42 

 

Figure 8. ROC curves of the OCSVM approach on the DS1 dataset for WD=15s. 
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Figure 9. ROC curves of the OCSVM approach on the DS1 dataset for WD=70s. 

 

Figure 10. ROC curves of the BLSTMAE approach on the DS1 dataset for WD=15s. 

The ROC curves of the OCSVM approach are shown in Figure 8 and Figure 9. With 

WD=15s, the worst performance was found in correspondence to changes in behavioral 

status AC-AP, AC-RE, AP-AC, AP-RE, RE-AC, RE-AP, with ACC less than 80%. In the 

cases of RE-AC and RE-AP, the ACC was lower than 70%. In all other changes, the ACC 

was greater than 90%. Performance has improved significantly with WD = 70s. Almost all 

state changes exhibited ACC greater than 95%, except AC-AP and AC-RE settled at 94% 

and 93%, respectively. 

As regards the BLSTMAE approach, whose ROC curves are provided in Figure 10 e 

Figure 11, in the case of WD=15s, the worst performance was found for the state changes 

AG-RE, AC-AP, AP-RE, and RE-AC, with lower ACC values to 70%. The best perfor-

mances, on the other hand, were found for changes of state AG-AP, AP-AG, and AP-AC. 

In the case of WD = 70s, the performance is improved but not that much. The BCP ACC 

of AG-AP and RE-AC changes even worsened. 
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Figure 11. ROC curves of the BLSTMAE approach on the DS1 dataset for WD=70s. 

 

Figure 12. ROC curves of the TCN BLSTMAE approach on the DS1 dataset for WD=15s. 

Finally, the ROC curves of the BLSTMAE TCN approach are provided in Figure 12 

and Figure 13. With this approach, even for WD = 15s the ACC of the BCP is higher than 

96% for all state changes and it is better than all other approaches including the cases 

where WD is equal to 70s. 

In this study, all presented network architectures were implemented and evaluated 

using the MathWorks® Deep Learning Toolbox (v 14.2, R2021a, MathWorks Inc., Natick, 

Massachusetts, United States) [61]; whereas, the genetic optimizations were performed 

using the MathWorks® Optimization Toolbox (v 9.1, R2021a, MathWorks Inc., Natick, 

Massachusetts, United States) [62]. 
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Figure 13. ROC curves of the TCN BLSTMAE approach on the DS1 dataset for WD=70s. 

For each observation window from 10 to 70 seconds, the experimentation was con-

ducted through ten-fold cross-validation on the total number of samples (i.e., ranging 

from 12,636 samples for 70-second windows to 14,796 samples for 10-second windows). 

The OCSVM approach was evaluated (trained and tested) on a computer system with 

CPU Intel® Core™ i7-8565U at 2.00GHz. Both optimization, training and testing of the 

BLSTMAE and TCN networks were performed on a computer system equipped with CPU 

Intel® Core™ i7-5820K at 3.30GHz, and GPU NVIDIA GeForce® GTX TITAN X. And fi-

nally, optimization, training and testing of the joined network architecture BLSTMAE 

TCN were executed on a computer system based on CPU Intel® Core™ i9-10900K 

3.70GHz, and GPU NVIDIA GeForce RTX™ 2060. 

All network were trained from scratch using the Adam solver [63] with gradient de-

cay factor 0.9 and initial learning rate 0.001. The number of epochs, instead, was different 

for the three networks, with 1000 epochs for BLSTM, 500 epochs for TCN, and 2000 epochs 

for BLSTMAE TCN. The genetic optimization of network hyperparameters was the pro-

cess that took the most time, taking 35 days for BLSTM, 18 days for TCN, and 76 days for 

BLSTMAE TCN. 

4. Discussion 

This study developed a new approach to predicting behavioral changes from neu-

rovegetative parameters using learned features. The proposed approach is based on deep 

feature learning using a pre-trained TCN. In particular, the pre-training process is based 

on non-field data, i.e., data not acquired by patients but prepared in a laboratory. This 

type of pre-training offers the advantage of making the system semi-supervised since pa-

tient data are only required during the stimulation therapy to predict behavioral changes, 

carried out via the BLSTMAE network. 

The deep learning feature approach was then compared with the traditional ap-

proach based on handcrafted features, obtained through CATCH22, i.e., 22 features for 

each considered neurovegetative/physiological parameter (88 features for DS1 and DS2', 

and 110 features for DS2) and classified via OCSVM. The comparison between hand-

crafted and learned features shows a higher processing time in the handcrafted case. This 

is due to the greater computational complexity of the CATCH22 extraction framework 

than the lighter TCN (testing phase) and the need to employ a wider observation window 

to obtain the same performance. 

On the other hand, the handcrafted CATCH22 extraction process, although it may 

appear to be an automatic process, it is not entirely so. In order to optimize the extraction 
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process, it is recommended to make a feature selection to identify the most suitable set of 

features to exclude the least performing ones [64]. 

Furthermore, the learned feature approach based on joined BLSTMAE and TCN ex-

hibits shorter reaction times and better performance than OCSVM (handcrafted features 

based on catch22) and BLSTMAE (learned feature) alone. As reported in Figure 6, the per-

formances exhibited by the joint use of BLSTMAE and TCN with a window of only 10 

seconds can be bought with those provided by OCSVM and by BLSTMAE alone with 

windows of 70 seconds. The architectures of the BLSTMAE and TCN networks have been 

specifically optimized to work together using the algorithm suggested in [58]. The perfor-

mance was significantly lower without joint optimization, i.e., using the individually op-

timized BLSTMAE network. 

The experimentation was conducted with six (HR, RR, HRV, BP, GSR, ACT) and four 

(HR, RR, HRV, ACT) signals, demonstrating that more signals bring performance bene-

fits. Furthermore, the results with four signals on patients and volunteers were quite com-

parable, confirming that the volunteers' simulation of the behavioral states was carried 

out in a sufficiently realistic way. 

Transitions involving the AC and AP states were more difficult to discriminate in the 

presence of four signals, particularly in the OCSVM and BLSTMAE cases. In the OCSVM 

case (handcrafted features), AC-AP, AP-AC, and AC-RE transitions were more problem-

atic (Figure 9). Instead, in the case of BLSTMAE (learned features), the transitions AG-AP, 

AG-RE, RE-AG, AC-AP, AP-AC, AC-RE, RE-AC, and AP-RE, were more problematic (Fig-

ure 11). This may be partly because the AC state does not always manifest itself with body 

movements but often results in a state of sustained attention, making it difficult to dis-

criminate from the AP state in the absence of the GSR neurovegetative signal. 

The results achieved in the present study were compared with the state of the art. 

Given the absence of studies in the literature on predicting behavioral states such as those 

considered in this study, the comparison was conducted by considering studies aimed at 

detecting different stress levels. To this end, the scales of stress levels and behavioral states 

have been placed side by side considering four levels: Level -1, Level 0, Level 1, and Level 

2. Level 0 indicates a total absence of stress, i.e., RE state. Level 1 corresponds to the 

healthy level of stress, eustress, which corresponds to the AC state considered in this 

study. Level 2, on the other hand, corresponds to excessive levels of stress, which also lead 

to a state of AG. In order to include the AP state, the negative level marked with -1 was 

introduced to indicate a state of no response, close to drowsiness, considered in some 

studies for the detection of stress and drowsiness while driving cars [22, 24]. The compar-

ison of the results achieved with the state-of-the-art is shown in Table 7. In the case of 

learned features, the ACC performance obtained in this study with 10-second windows 

with both four and six signals exceeds the state-of-the-art. In the case of handcrafted fea-

tures, however, the performances exceed the state-of-the-art only in the presence of six 

signals with a window of 70 seconds. However, with shorter windows, the performance 

remains comparable to the state-of-the-art. 

The main limitation of this study concerns the small number of patients involved, 

which, however, was extended by involving additional volunteers. A larger clinical trial 

involving more patients with dementia is currently underway. 
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Table 7. Comparison of the achieved results with the state of the art. 

Authors Signals Features ACC (%) 

Healey and Picard [18] ECG, EMG, GSR, RA Handcrafted 97.40 

Zhang et al. [20]  EMG, GSR, HR, RA, BP Handcrafted 90.53 

Wang et al. [22] HRV Handcrafted 88.28 

Chiang [23] ECG, HRV Handcrafted 95.10 

Chen et al. [24] ECG, EMG, GSR, RA Handcrafted 89.70 

Zhang et al. [25] ECG, EMG, GSR Handcrafted 92.36 

Wang and Guo [32] ECG, GSC, HR, HRV, RA Learned 90.09 

This study HR, RR, HRV, ACT Handcrafted 79.03 / 95.90 

This study HR,RR,HRV,BP,GSR,ACT Handcrafted 85.68 / 98.24 

This study HR, RR, HRV, ACT Learned 98.44 / 99.25 

This study HR,RR,HRV,BP,GSR,ACT Learned 98.38 / 99.42 

5. Conclusions 

The contribution of this study is threefold: 1) a new approach for BSP based on 

BLSTMAE TCN deep feature learning has been presented; 2) the feature learning (i.e., 

TCN) and change detection (BLSTMAE) architectures have been set up in order to operate 

jointly in an optimized way; 3) the proposed framework has been validated on four pa-

tients with dementia and five volunteers, using two datasets consisting of four (three neu-

rophysiological and one of activity) and six signals (five neurophysiological and one of 

activity). 

Although conducted on a small number of subjects, the validation demonstrated the 

feasibility of the BSP, which was subsequently incorporated into a CDSS within the MS-

Lab project to support therapists during the administration of multisensory stimulation 

therapy. 

Ongoing and future activities are focused on the clinical trial of the CDSS on a more 

statistically significant number of subjects with dementia. The data collected during the 

experimentation will be used to evaluate further the effectiveness of the learned features 

to detect valuable indicators for predicting the patient’s behavioral state during therapy. 

Supplementary Materials: N.A. 

Author Contributions: Conceptualization, G.D. and A.L.; methodology, G.D.; software, G.D.; vali-

dation, G.D; formal analysis, G.D.; investigation, G.D.; resources, G.D. and A.L.; data curation, G.D.; 

writing—original draft preparation, G.D.; writing—review and editing, G.D.; visualization, G.D.; 

supervision, A.L.; project administration, A.L. and P.S.; funding acquisition, A.L. and P.S. All au-

thors have read and agreed to the published version of the manuscript. 

Funding: This work has been carried out within the project PON “Si-Robotics” (ARS_01_01120) 

funded by MUR - Italian Ministry for University and Research. 

Institutional Review Board Statement: The study was conducted according to the guidelines of the 

Declaration of Helsinki, and approved by the Ethics Committee of University of Salento (Lecce, 

Italy). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 

study. Written informed consent has been obtained from the patient(s) to publish this paper. 

Data Availability Statement: N.A. 

Acknowledgments: The authors would like to thank colleagues of Casa Amata Srl (Taviano, Italy) 

and eResult (Cesena, Italy) for their support. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2022                   doi:10.20944/preprints202203.0403.v1

https://doi.org/10.20944/preprints202203.0403.v1


 

 

Appendix A 

Nomenclature 

 

AC Active 

ACC Accuracy 

ACT Activity Level 

AE Autoencoder 

AG Agitated 

ANS Autonomic Nervous System 

AP Apathetic 

ARIMA Auto-Regressive Integrated Moving Average 

AUC Area Ander the Curve 

BLSTM Bidirectional Long Short-Term Memory 

BLSTMAE Bidirectional Long Short-Term Memory Autoencoder 

BP Blood Pressure 

BSC Behavioral State Change 

CATCH22 CAnonical Time-series CHaracteristics 22 

CDSS Clinical Decision Support System 

DCC Dilated Causal Convolution 

DNN Deep Neural Network 

DS1 Dataset 1 

DS2 Dataset 2 

ECG Electrocardiogram 

EMG Electromyogram 

FN False Negative 

FP False Positive 

GSR Galvanic Skin Response 

HR Heart Rate 

HRV Heart Rate Variability 

LSTM Long Short-Term Memory 

MLP Multi-layer Perception 

MMSE Mini-Mental Statement Examination 

MS-Lab Multi Sensorial Stimulation Lab 

OCSVM One-Class Support Vector Machine 

PCA Principal Component Analysis 

PNS Parasympathetic Nervous System 

RA Respiration Amplitude 

RE Relaxed 

ReLU Rectified linear unit 

RNN Recurrent Neural Network 

ROC Receiver Operating Characteristic 

RR Respiration Rate 

SBL Sparse Bayesian Learning  

SNS Sympathetic Nervous System 

SVD Single Value Decomposition 

TCN Temporal Convolutional Network 

TN True Negative 

TP True Positive 

WD Window 
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