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Abstract: Micro-grids’ operations offer local reliability; in the event of faults or low voltage/frequency
events on the utility side, micro-grids can disconnect from the main grid and operate autonomously
while providing the continued supply of power to local customers. With the ever-increasing penetra-
tion of renewable generation, however, the operations of micro-grids become increasingly complicated
because of the associated fluctuations of voltages. As a result, transformer taps are adjusted frequently,
thereby leading to the fast degradation of expensive tap-changer transformers. In the islanding mode,
the difficulties also come from the drop of voltage and frequency upon disconnecting from the main
grid. To appropriately model the above, the nonlinear AC power flow constraints are necessary.
Computationally, the discrete nature of tap-changer operations and the stochasticity caused by re-
newables add two layers of difficulty on top of a complicated AC-OPF problem. To resolve the above
computational difficulties, the main principles of the recently-developed "l1-proximal" Surrogate
Lagrangian Relaxation are extended. Testing results based on 9-bus system demonstrate the efficiency
of the method to obtain the exact feasible solutions for micro-grid operations thereby avoiding
approximations inherent to existing methods, while demonstrating that through the optimization, 1.
the number of tap changes is drastically reduced, and 2. the method is capable of handling networks
with meshed topologies.

Keywords: Micro-grids; Droop Controls; Tap Changers; Islanded Mode; AC OPF; Lagrangian
Relaxation; Renewable Generation; Markov Process; Mixed-Integer Nonlinear Programming

1. Introduction

As the name suggests, a micro-grid is a relatively small geographically localized electric-
ity grid intended to provide uninterrupted service to local communities such as campuses,
business centers, hospital complexes, and other critical infrastructure. To enable self-
sufficiency to hedge against blackouts caused by natural disasters, micro-grids typically
include generators, combined heat and power, and batteries. With the recent push for clean,
green, and renewable energy, micro-grids may also include solar panels. Other grid devices
may also include electric vehicle (EV) charging stations.

Under normal conditions, micro-grids are typically connected to the main grid (e.g.,
a power distribution system) and may exchange power. The normal operations, there-
fore, include the proactive power generation at the least cost in anticipation of the in-
crease/decrease in customer demand as well as in anticipation of fluctuations of power
generation from renewables. The intermittency of renewables can, however, lead to fluc-
tuations of voltage, which may lead to frequent adjustments of taps within on-load tap
changers thereby leading to fast degradation of expensive equipment and adversely im-
pacting micro-grid economic viability. Stochasticity as well as the discrete nature of the
underlying problem need to be explicitly captured to design the optimal (or near-optimal)
control to ensure a low-cost power supply to local communities.
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Under faulty conditions or upon detection of low voltage/frequency on the main grid
side, the interconnecting device such as a circuit breaker opens to switch the micro-grid
to the islanded mode. In this mode, the micro-grid’s goal is to serve the local loads by
using locally available distributed energy resources. The micro-grid’s operations are also
complicated by the fact that disconnection may result in a drop in voltage and frequency.
Therefore, in addition to the considerations described in the previous paragraph, droop
controls need to be used to restore voltage and frequency to nominal ranges.

From the modeling standpoint, the main goal of the paper is to formulate a micro-grid
optimization problem while including AC power flows to explicitly capture voltage fluctua-
tions. To control voltage fluctuations, tap-changer, as well as droop control constraints, will
be included in the formulation. Uncertainties will be captured through the use of Markov
processes. The resulting problem, while generally smaller than the optimization problems
solved at the main grid level, is complicated due to non-convexities caused by nonlinear
AC power flows and by the discrete nature of tap changes (tap positions). Rather than
using AC power flow approximations (such as DistFlow or Second-Order Cone Relaxation),
an exact AC power flow in rectangular coordinates will be used.

From the methodological standpoint, the main goal of the paper is to develop an
algorithm to coordinate islanded micro-grid resources at a high level while overcoming
the above-mentioned difficulties, rather than to provide low-level detailed modeling of
micro-grid devices. Therefore, in Section 2, important micro-grid components/features
such as tap-changers, droop controls, AC power flow as well as Markovian approach for
modeling uncertainties will be reviewed. Modeling of batteries and EV charging stations
is out of the scope of the paper, although, the methodology to be developed in Section 3
is intended to support plug-and-play capabilities, therefore, the consideration of storage
and other DERs will only affect the way subproblems are solved at the low level and will
not affect the overall coordination at the high level. The gist of the “l1-proximal” Surrogate
Lagrangian Relaxation decomposition and coordination methodology is relaxation of
coupling constraints (e.g., nodal flow balance) to reduce the complexity of the problem
while coordinating nodal subproblems. Nonlinear constraints are linearized to both further
reduce complexity and to enable the use of mixed-integer linear programming (MILP)
solvers. To ensure the overall feasibility, “l1-proximal” terms, also amenable to the use of
MILP solvers, are introduced.

In Section 4, by considering a 9-bus micro-grid, the ability of the method to efficiently
handle non-linearity, non-convexity, and stochasticity of the underlying problem while
guaranteed feasibility is demonstrated. It is also demonstrated that the number of tap
changes is drastically reduced, that the method is capable of handling networks with
meshed topologies while overcoming nonlinearity difficulties brought by AC power flow,
tap changer, and droop control constraints.

2. Literature Review
2.1. AC Power Flow

Because of the high r/x-ratios within distribution systems, the popular DC power
flow model [1] is no longer suitable for formulating the power flows within micro-grids as
well. In the following, AC Power Flow modeling methodologies will be reviewed.
1. AC Power Flow for Radial Topologies. The AC Power Flows are known for their non-
linearity and non-convexity and the associated AC optimal power flow (AC-OPF) problem
is known to be extremely difficult. One of the popular ways to handle the non-linearities is
the so-called DistFlow model [2–6]. The model has been popular within distribution and
micro-grids due to the general ease of handling linear constraints and fairly high accuracy
of the approximation. The exactness of solutions, however, cannot be guaranteed. To
guarantee the exactness, the model has to be nonlinear. The so-called Second-Order Cone
Relaxation (SOCR) [7,8] addressed the exactness issue and the resulting model is convex,
which is amenable for the use of commercial solvers unlike the original non-convex AC
Power Flow.
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2. AC Power Flow for Meshed Topologies. The distribution networks (and micro-grids
as their part) are not necessarily radial as acknowledged for the next generation of power
distribution systems [9]. The SOCR is, however, not applicable for meshed topologies.
The AC power flow in rectangular coordinates is appropriate for both radial and meshed
topologies. One way to handle the associated non-convexity is by defining a convex hull of
the solutions; however, even if the tightest convex relaxation is attained [10], the solution
may still be inside of the convex hull rather than at its boundary, which could only be
guaranteed for linear programming problems. Another approach to handle non-linearity
and non-convexity is through dynamic linearization [11] - the linearization around the current
operation point, which may change from iteration to iteration. To guarantee feasibility,
the so-called “l1-proximal” terms have been used to gradually penalize the violations of
current solutions from previously obtain ones until convergence to a steady-state solution.

2.2. Droop Control

While in a grid-connected mode, micro-grids operate to control current and may
inject power into the main grid, in an islanding mode, whereby microgrid is disconnected
from the main grid while continuing the supply of power to local customers, micro-grid
need to operate in a voltage-control mode to ensure the constant voltage to local loads. In
an islanding mode, micro-grids may experience voltage fluctuations, and to recover the
nominal voltage (as well as frequency), droop controls are used [12–15].

2.3. Intermittent renewables

In some studies on the operation of micro-grids, deterministic approaches were
adopted, where intermittent and uncertain renewable generation is represented by its
mean value without explicitly considering uncertainties. For example in [16], Photovoltaic
(PV) was calculated off-line with given parameters and solar irradiation through a deter-
ministic approach. As uncertainties are not explicitly considered, the solutions obtained
by using deterministic approaches are not robust against realizations of renewable genera-
tion. To explore the intermittent and uncertain nature, stochastic programming has also
been used based on representative scenarios (e.g., [17]). It is, however, difficult to select
an appropriate scenario number to balance modeling accuracy, computational efficiency,
and solution feasibility. To overcome the difficulties caused by scenario-based methods,
a Markovian approach was developed [18]. Without considering transmission capacities,
wind generation was aggregated and modeled as a Markov chain, where a state represents
the wind generation at a particular hour, capturing all the past information. Since the num-
ber of states increases linearly with that of hours, the complexity is significantly reduced as
compared to scenario-based methods. In our previous work [19], a Markov-based model
was established to integrate intermittent and uncertain PV generation into micro-grids.

2.4. Tap-Changers

To reduce voltage deviations caused by intermittent renewables, tap changers have
been used [20]. Generally, the goal is to keep the voltage amplitude within the pre-defined
limits. With high levels of renewable penetration, however, to maintain power quality and
reliability, transformer taps are forced to be adjusted frequently. As a result, they can rapidly
reach their end of life or suffer from premature failures. As an example, Hawaii utilities
reported that their on-load tap changer (OLTC) transformers, traditionally maintenance-
free during a 40-year lifespan, would be maintained every three months and retire within
two years because the PV-induced voltage fluctuations made the OLTC be adjusted over
300 times per day [21].

3. Micro-grid Model

Model. Consider a network with a partly-connected mesh topology operated by a
micro-grid system operator (MSO). Let T be the planning horizon: T = {1, 2, ..., T}. Let B
be a set of buses indexed by b, Ib be a set of generators at bus b indexed by i, and L be a
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sets of power lines indexed by l. Solar states are modeled by using N discrete states with
associated probabilities Φ = {φn,t} at each time period t and transition probabilities πn,m
from state n to state m.

3.1. Objective

The MSO aims to minimize the total expected generation cost as well as the total
expected tap-changer cost:

min
F,G,V,X

O(G) = min
F,G,V,X

{
Φ · C ·G′

+ Φ · Ctap ·D′}
, (1)

where G =
{

gp
i,n,t, gq

i,n,t
}

is a vector of active and reactive generation levels at PV state
n with the corresponding generation costs C =

{
Cp

i,t, Cq
i,t
}

, and D =
{

dup
b,n,t, ddown

b,n,t
}

is a
vector of the change of tap position up and down at PV state n with the corresponding
tap-changing costs Ctap. Other decision variables include X =

{
xi,t
}

- a vector of binary
commitment decision variables, F =

{
f p
l,n,t, f q

l,n,t
}

- a vector of active (p) and reactive (q)
power flows at PV state n and V =

{
vRe

b,n,t, vIm
b,n,t
}

- a vector of real (Re) and imaginary (Im)
parts of voltages at PV state n . The optimization (1) is subject to the following constraints:

3.2. Intra-Nodal (Local) Constraints

Generation Capacity Constraints. Active and reactive generation levels are constrained
as:

G · X ≤ G ≤ G · X, (2)

where G =
{

gp
i,n,t, gq

i,n,t
}

and G =
{

gp
i,t, gq

i,t
}

are the minimum and maximum generation
levels, respectively.
Ramp-Rate Constraints. For probable transitions, ramp-rate constraints require that the
change of generation levels between two consecutive time periods does not exceed ramp
rates R =

{
rp

i , rq
i
}

:

− R ≤ Gn,t −Gm,t−1 ≤ R, ∀πn,m 6= 0. (3)

Voltage Restrictions. The voltages are subject to the following restrictions:

V2 ≤ V ·V′ ≤ V2, (4)

where V2 =
{

vb
2} and V2

=
{

vb
2} with vb and vb being minimum and maximum voltage

magnitudes.
Droop Control Constraints. It is assumed that generator î ∈ Ib̂ employs a droop control
strategy and the corresponding droop control constraints are:

fn,t = f re f
n,t − k f · (gp,re f

î,n,t
− gp

î,n,t
), (5)

√(
vb̂,n,t

)
·
(
vb̂,n,t

)′
=

√(
vre f

b̂,n,t

)
·
(
vre f

b̂,n,t

)′
− kv · (gq,re f

î,n,t
− gq

î,n,t
). (6)

PV generation. Following our previous work [19], a Markov-based model is adopted for
PV generation. In the model, weather uncertainties are assumed to be a Markovian process
with N states (as a percentage of the ideal weather conditions), and state n is denoted
as Wn. Based on historical data, the probability that the current weather state is n if the
previous state was m can be obtained as πm,n as shown below in Figure 1.
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Possible weather states

1

2

…

m

…

N

…

n

Ttt − 121

Wm(t − 1)

Wn(t)

mn

Hour
… …

Figure 1. A Markovian process.

The uncertain PV generation gPV
n,t is also a Markovian process as follows:

gPV
n,t = gIPV

t Wn, (7)

where gIPV
t is the ideal PV generation at time n. The probability φn,t that the PV generation

is gPV
n,t at time t is the sum of the probabilities at time t− 1 weighted by different transitions:

φn,t = ∑
m=1..N

πn,mφn,t−1. (8)

The probabilities of PV generation levels for future time slots can be obtained based on the
initial PV generation state and the transition matrix.
Tap changer. Assume that there is one tap changer associated with one solar farm, and the
bus index is omitted for brevity. Following [20], tap changer constraints can be written as:

Vn,t =
1

an,t
Vin −

an,tZt(a)Sn

(Vin)∗
, (9)

where Vin is the input voltage and Vn is a decision variable, a is the transformer turn
ratio defined under no load conditions as: Vin/Vn, Zt(a) is transformer leakage impedance,
which generally is a function of a, but in this paper it is assumed that Zt(a) is a complex
number, and S is the transformer load. Equation (9) can be equivalently written as:

an,t(Vin)∗Vn = Vin(Vin)∗ + (an,t)
2Zt(a)Sn. (10)

The transformer turn ratios an,t, which are decision variables, are controlled as:

an,t = a0 + dn,t∆a, (11)

where a0 is the rated turn ratio (usually 1), ∆a is the single tap position change, and {dn,t}
are integer decision variables denoting tap positions as:

dn,t = dn,t−1 + dup
n,t − ddown

n,t . (12)

3.3. Inter-Nodal (Global) Constraints

AC Power Flow Constraints in Rectangular Coordinates. Following [22–26], AC power
flow is modeled in rectangular coordinates by using complex voltages vb,n,t = vRe

b,n,t + j ·
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vIm
b,n,t. In the complex plane, complex voltages can be represented as row vectors vb,n,t =(
vRe

b,n,t, vIm
b,n,t

)
and power flows can be compactly written as:

f p
l,n,t = vs(l),n,t ·

(
gs(l),r(l) -bs(l),r(l)
bs(l),r(l) gs(l),r(l)

)
·
(

vr(l),n,t

)′
, (13)

f q
l,n,t = vs(l),n,t ·

(
-bs(l),r(l) -gs(l),r(l)
gs(l),r(l) -bs(l),r(l)

)
·
(

vr(l),n,t

)′
. (14)

Here bs(l),r(l) is susceptance and gs(l),r(l) is conductance of line (s(l), r(l)). Node s(l) denotes
the “sending" node of line l, and r(l) denotes the “receiving" node of the line l.
Nodal Power Flow Balance Constraints. For every PV state n at every node b, the net
active/reactive power generated and transmitted to the node should be equal to the net
power consumed and transmitted from node b:

∑
i∈Ib

gp
i,n,t + gPV,p

b,n,t +
L

∑
l=1:

r(l)=b

f p
l,n,t = Lp

b,t +
L

∑
l=1:

s(l)=b

f p
l,n,t, (15)

∑
i∈Ib

gq
i,n,t + gPV,q

b,n,t +
L

∑
l=1:

r(l)=b

f q
l,n,t = Lq

b,t +
L

∑
l=1:

s(l)=b

f q
l,n,t. (16)

If bus b does not contain generators, then ∑i∈Ib
gp/q

i,n,t = 0, if bus b does not contain load,

then Lp/q
b,t = 0, and if there is no PV generation, then gPV,p/q

b,n,t = 0
Line Capacity Constraints. Power flows in each line l at each PV state n satisfy the
following line capacity constraints:√(

f p
l,n,t
)2

+
(

f q
l,n,t
)2 ≤ f l . (17)

The above problem belongs to a class of Mixed-Integer Nonlinear Programming problems
notable for non-convexities brought by nonlinear AC power flows as well as by discrete
decision variables.

4. Solution Methodology

To resolve the above difficulties, a solution methodology is developed based on the
recent “l1− proximal” Surrogate Lagrangian Relaxation method [11]. The main ideas
behind the method are linearization of resulting subproblems, coordination of subproblem
solutions through the update of Lagrangian multipliers, and penalization of constraint
violations as well as “l1− proximal” terms to ensure feasibility.

4.1. Surrogate Absolute-Value Lagrangian Relaxation

Relaxed Problem. After relaxing nodal flow balance (15)-(16), and penalizing their viola-
tions, the relaxed problem becomes:

min
F,G,V,X

Lc(G; Λ) = min
F,G,V,X

{
O(G) + Λ · R + c ·

∥∥R
∥∥

1

}
, s.t., (2)− (14), (17),

where Λj =
(
ΛP

j , Λ
Q
j
)

are multipliers relaxing active/reactive power flow balance con-

straints (16). The vector, R = (BP, BQ)
′

denotes a vector of active/reactive power flow
balance constraint violations.
Multiplier Update. The multipliers are updated as follows:

Λk = Λk−1 + sk · Rk. (18)
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Stepsize Update. Following [11], the stepsize is updated in the following way:

sk = αk · sk−1 ·
∥∥Rk−1

∥∥
2∥∥Rk

∥∥
2

, (19)

where αk is a step-sizing parameter

αk = 1− 1

M · k1− 1
kr

, M > 1, r > 0. (20)

Penalty Coefficient Update. In the beginning of the iterative process, the penalty coefficient
ck increases by a predetermined constant β > 1:

ck = ck−1 · β. (21)

The intent is to increase the value of ck until the norm of constraint violations reduces to
zero and a feasible solution is obtained, after which the penalty coefficient is decreased per

ck = ck−1 · β−1 (22)

Subsequently, the penalty coefficient is not increased.

4.2. Practical Considerations of the Method

In practical implementations, the following considerations are important. Voltage
restrictions (4), droop control for voltage (6), tap-changer constraints (10), AC power flows
(13)-(14), as well as line capacity constraints (17) are nonlinear, they need to be appropriately
linearized while maintaining feasibility. Moreover, the left-hand side constraint of (4) and
(13)-(14) delineate non-convex regions. Following the work [11], the considerations are
briefly addressed next. The method of [11] is then extended to improve the linearization of
(4) as well as to resolve non-linearity difficulties brought by the newly considered droop
control (6) and tap-changer constraints (10).

In the following, the main linearization principles will be delineated first. Then, the
feasibility will be established.
1. Linearization of Cross-Product Terms within (13)-(14). To linearize AC Power Flow
while updating all the voltages, the following formula is used:

f̂ p
l,t =

1
2

vk−1
s(l),t ·

(
gs(l),r(l) -bs(l),r(l)
bs(l),r(l) gs(l),r(l)

)
·
(

vr(l),t

)
+

1
2

vs(l),t ·
(

gs(l),r(l) -bs(l),r(l)
bs(l),r(l) gs(l),r(l)

)
·
(

vk−1
r(l),t

)
. (23)

Reactive power flows are linearized in the same way.
2. Linearization of Voltage Restrictions (4). First, the squared terms within (4) are then
linearized in the following way:

V2 ≤ Vk−1 ·V′ ≤ V2. (24)

To avoid infeasibility along the iterative procedure, “soft" penalization in introduced
through the non-negative penalty variables Vpen = {vpen

b,t } and Vpen
= {vpen

b,t } as:

V2 −Vpen ≤ Vk−1 ·V′ ≤ V2
+ Vpen. (25)

To enforce feasibility of (25), Vpen and Vpen are penalized.
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3. Linearization of Tap-Changer Constraints (10). Tap-changer constraints contain both,
the cross-products and the squared terms. Following the ideas of above-presented lineariza-
tion, the linearization is performed as follows:

1
2

ak−1
n,t (Vin)∗Vn +

1
2

an,t(Vin)∗Vk−1
n = Vin(Vin)∗ + ak−1

n,t an,tZt(a)Sn. (26)

The linearization of voltage droop control constraints (6) as well as line capacity
constraints (17) is operationalized in the same way as described in point 2 and 3 above.
To ensure that solutions satisfying constraints (23), (25) and (26) satisfy the corresponding
original constraints (13), (4) and (10), respectively, proximal-like terms

∥∥V−Vk−1
∥∥

1,
∥∥F̂−

F̂k−1
∥∥

1, and
∥∥A−Ak−1

∥∥
1, which capture the deviations of voltages V, linearized power

flows F̂ and transformer turns ratios A ≡ {an,t} from previously obtained values are
introduced and penalized by ck

p. The intention here is to discourage oscillations of solutions
while encouraging their approach to common values through a separate penalty coefficient,
lower in value as compared to ck, is to avoid solutions getting trapped at previously
obtained values.
Linearized Relaxed Problem. The resulting MSO relaxed problem then becomes:

min
A,F̂,G,V,X

 Lck−1(G; Λk−1) + ck−1
p

(∥∥V−Vk−1
∥∥

1 +
∥∥F̂−F̂k−1

∥∥
1 +

∥∥A−Ak−1
∥∥

1

)
+

Λpen ·
(

V2−Vk−1 ·V′
)
+Λ

pen ·
(

Vk−1 ·V′−V2
)
+ ck−1 ·Vpen + ck−1 ·Vpen

, (27)

s.t., (2)− (3), (5), (11)− (12), (15)− (16), (23), (25)− (26).

The multiplier update for (27) is operationalized by appending constraints violations
R by

(
V2−Vk−1 ·V′

)
and

(
Vk−1 ·V′−V2

)
, and multipliers Λ by Λpen and Λ

pen, and by
following the multiplier updating procedure described in (18) with projections of negative
values of Λpen and Λ

pen onto a positive orthant {λ|λ ≥ 0}. Piece-wise linear l1-norms
within (27) are linearized following standard procedures [27,28].
Feasibility. As penalty coefficients ck increase, violation levels of relaxed constraints
decrease. However, the total lack of constraint violations does not imply feasibility because,
for example, linearized power flows do not coincide with original power flows. To ensure
that f̂ p

l,t → f p
l,t and f̂ q

l,t → f q
l,t, penalty coefficients ck

p increase in a manner similar to (21) as:

ck
p = ck−1

p · βp. (28)

The intent is to increase the value of ck
p until the “l1−proximal” terms reduce to zero and a

feasible solution is obtained, after which the penalty coefficient is decreased per

ck
p = ck−1

p · β−1
p . (29)

After constraints violations become zero, the feasible solution is obtained. After the re-
duction of penalty coefficients, multipliers are updated again until constraint violations
and proximal terms are zero again, and the process repeats. The reduction of constraint
violations and proximal terms to exactly zero may require significant CPU time, so the
algorithm stops when constraint violations are less than a predetermined value ε and
proximal terms are less than εp.

4.3. Algorithm.

Stopping Criteria. Within the above Algorithm, the "if" condition in step 4 can by itself
be used as a stopping criterion. Alternatively, after c is reduced per 4, the algorithm can
continue with the multipliers update until a predefined CPU limit us reached.
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Algorithm 1 Surrogate Lagrangian Relaxation

Initialize Λ0, c0, c0
p and s0

while stopping criteria are not satisfied
1 solve MSO problem
2 If the total constraints violations > ε and total violation of proximal terms is > εp update
multipliers and increase c
3 If the total constraints violations < ε and total violation of proximal terms is > εp update
multipliers, stop increasing c and increase cp
4 If the total constraints violations < ε and total violation of proximal terms is < εp reduce
c and stop increasing cp.

5. Results

The method is implemented using IBM ILOG CPLEX Optimization Studio V 12.8.0.0
[29] on a PC with 2.40GHz Intel Xeon E-2286M CPU and 32G RAM. To demonstrate the
coordination aspect and the near-optimal performance of the method, a simple 9-bus
system is considered.

5.1. System description

Consider a 9 bus system with meshed topology as shown in Figure 2. below [30].
Assume that at buses 2 and 3 there is a generator, respectively, at bus 4 there is a solar farm
of three stochastic states, and a tap changer, while at buses 5, 7, and 9, there is load. The
micro-grid is connected to the main grid through bus 1. The time interval is 15 minutes
and the planning horizon is 3 hours.

145

6

7 8

9

3

2

Grid

Figure 2. Topology of the 9-bus system.

5.2. Results and discussions
5.2.1. Droop control

To demonstrate the performance of droop control, the micro-grid is disconnected from
the grid at interval 12; thus, turning the local operations into the islanded mode. By using
the approach developed above, the problem (1)-(17) is solved, and a feasible solution is
obtained in 202 seconds. The results show that the frequency stays within the range of [59
Hz, 61 Hz] due to effective droop control.

5.2.2. Tap-changer

To show the impacts of tap changing, the problem in 5.2.1 is solved again without
tap-change-related costs in the objective function. The results are compared in Table 1
below. It can be seen that the expected number of tap changes is much reduced when the
corresponding cost is considered in the objective function.
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Table 1. Results on tap-changing

Expected number of tap
changes Solving time

Without tap-changing cost 7 202 sec
With tap-changing cost 0 262 sec

5.2.3. Costs

To show the benefits of being connected to the main grid all the time, the problem in
5.2.1 is solved again under the grid-connected mode. The results are compared in Table 2
below. It can be seen that the total cost is reduced by connecting to the main grid, taking
advantage of the time-vary costs of the grid power.

Table 2. Results of two different grid-connection scenarios

Expected cost Expected number of
tap changes Solving time

Grid connected until
interval 11 $37,126 0 202 sec

Grid connected all the
time $36,724 0 154 sec

6. Conclusions

In anticipation of the transition of the fully centralized operations toward more dis-
tributed generation supported by the emergence of micro-grids, this paper addresses the
issues of sustainability of the micro-grid operations: through the consideration of Markov
processes to capture stochasticity of the renewable generation; through tap-changer con-
straints penalizing frequent changes of taps, the lifespan of the expensive equipment will
be greatly extended; through consideration of AC power flow constraints appropriate
for distribution systems; through droop-control constraints for restoration of frequency
and voltage after the disconnection from the main grid. The abovementioned constraints
lead to non-convexities and the difficulties of solving the resulting micro-grid operation
optimization problems. The methodology based on dynamic linearization and l1-norm
penalization is exact and is amenable for the use of MILP solvers. It is also demonstrated
that the micro-grids’ operations benefit from the new solution methodology, specifically,
AC power flows are satisfied exactly ensuring the feasibility of operations and the number
of tap changes is drastically reduced thereby ensuring higher sustainability in the presence
of voltage fluctuations caused by uncertainties.
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MILP Mixed-Integer Linear Programming
MSO Micro-grid system operator
OLTC on-load tap changer
OPF Optimal Power Flow
PV Photovoltaic
SOCR Second-Order Cone Relaxation
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